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Avian coccidiosis is caused by Eimeria, which is an intracellular apicomplexan parasite

that invades through the intestinal tract to cause devastating disease. Upon invasion

through the intestinal epithelial cells, a strong inflammatory response is induced that

results in complete villous destruction, diarrhea, hemorrhage, and in severe cases,

death. Since the life cycle of Eimeria parasites is complex and comprises several

intra- and extracellular developmental stages, the host immune responses are diverse

and complex. Interferon-γ-mediated T helper (Th)1 response was originally considered

to be the predominant immune response in avian coccidiosis. However, recent studies

on other avian T cell lineages such as Th17 and T regulatory cells have implicated

their significant involvement in maintaining gut homeostasis in normal and disease

states including coccidiosis. Therefore, there is a need to understand better their

role in coccidiosis. This review focuses on research findings concerning the host

immune response induced by avian coccidiosis in the context of T cell immunity,

including expression of T-cell-related cytokines and surface molecules that determine

the phenotype of T lymphocytes.
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INTRODUCTION

Avian coccidiosis is caused by intracellular protozoan parasites that belong to several different
species of Eimeria (1, 2). This apicomplexan parasite invades intestinal epithelial tissues and causes
severe damage in birds, resulting in enormous economic losses in the poultry industry. The major
challenge in coccidiosis control is the diversity among several Eimeria species that target different
specific regions of the intestine.

The coccidia exhibit a complex life cycle comprising both intracellular and extracellular stages as
well as asexual and sexual reproduction (3, 4). The life cycle mainly consists of an exogenous stage,
characterized by excretion of unsporulated oocysts, and endogenous stage of schizogony (asexual
reproduction) and gametogony (sexual differentiation) (5, 6). During the exogenous stage, the
unsporulated oocysts become sporulated (with four sporocysts, each containing two sporozoites)
under the influence of external environmental factors such as moisture, oxygen, and warmth. The
endogenous stage occurs inside the host, which involves several stages of asexual reproduction
followed by sexual reproduction, fertilization, and shedding of the unsporulated oocysts. In general,
two to four generations of asexual reproduction are followed by the sexual phase, in which zygote
formation takes place that eventually matures into oocysts that are released in the intestinal mucosa
and finally shed into feces (7). The coccidia life cycle is usually short (4–6 days depending on several
different species) and production of sporulating oocysts can easily increase the infectivity of the
parasites in a large population of chickens. After ingesting the sporulated oocysts, excystation of
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oocysts occurs in the gizzard and the sporozoites are released,
invade the intestinal cells, and cause severe damage as the
reproductive cycle of the parasite begins. As a result, symptoms
such as bloody diarrhea and reduced body weight and feed intake
are observed in the birds.

Upon exposure to developing schizonts, anti-Eimeria
immunity develops and is subsequently boosted by multiple
re-exposures to oocysts (7). The immunity to avian coccidiosis
can be categorized as innate and adaptive (8). As a first line of
defense, the innate immune response is activated in response
to the conserved antigens. Innate immune responses include
recognition of conserved pathogen-associated molecular
patterns (PAMPs) by pattern recognition receptors (PRRs) such
as Toll-like receptors (TLRs) (5, 9, 10). A major TLR ligand,
profilin, is expressed in all the developmental stages of the
life cycle of several Eimeria parasites and is conserved (11).
Such ligands induce a robust innate response such as immune
cell proliferation and cytokine production. The cells involved
in innate immune responses to Eimeria parasites at different
phases are natural killer (NK) cells, dendritic cells, epithelial
cells, heterophils, and macrophages. In particular, macrophage
migration inhibitory factor plays a crucial role in mediating
innate immunity in coccidiosis (12).

On the other hand, adaptive immunity is specific and
regulates the antigen-specific immune responses to prevent
colonization and growth of the pathogen inside the host. Like
mammals, two major lymphocyte types, B cells (producing
surface immunoglobulins) and T cells (T cell receptors), are
the major components of adaptive immune responses in birds
(13). Anticoccidial antibodies in serum and mucosal secretions
have been reported in avian coccidiosis (13). Although B cell
depletion studies (14) have revealed that antibodies do not
play a specific role in anticoccidial protective immunity, other
studies have emphasized the importance of passively transferred
humoral immunity in Eimeria infection in chickens (15–18).
Cell-mediated immunity in avian coccidiosis is characterized by
antigen-specific or non-specific activation of several immune
cells such as T cells, NK cells, and macrophages. The CD4+

T helper (Th) cells and CD8+ cytotoxic T lymphocytes
(CTLs) are the two major T-cell subsets that are involved in
anticoccidial immunity (19–22). Although the role of several
T-cell subpopulations in avian coccidiosis remains to be
elucidated, T cells are the most important for protection against
Eimeria infections in birds.

In this article, we reviewed the historical progress of
immunological studies on the host immune response to avian
coccidiosis, with an emphasis on recent findings in the
understanding of the complexity of T-cell immune responses
in avian coccidiosis, especially those mediated by Th17 and T
regulatory (Treg) cells.

DEVELOPMENT OF IMMUNOLOGY IN

AVIAN COCCIDIOSIS

Since the first report of chicken coccidiosis in the cecum in the
late eighteenth century (1), immunity to several Eimeria parasites

has been investigated thoroughly. An important contribution
from Rose and colleagues (23) defined the basic principles of
avian immunity to coccidial parasites in terms of specificity,
wherein one species of Eimeria offers little protection against
heterologous challenge with other species. Over the past few
decades, studies focusing on investigating the role of avian
immunity in response to various coccidial parasites has shown
promising developments toward better understanding of avian
immunity to coccidiosis (20, 24, 25). From all these studies, it
was apparent that out of the two types of immunity, cellular
immunity was more important than humoral immunity in
coccidiosis, as the later offered little protection against the
infection. Early investigations in both mammalian and avian
species have revealed that the cellular immune responses through
T cells and their associated cytokines play an important role
in anticoccidial immunity (2, 26, 27). Acquired immunity to
murine coccidiosis is attributed more to T cells than B cells
(26). Several immune cell types including NK cells, dendritic
cells, and macrophages are involved in innate immune responses
to avian coccidiosis (8, 27). B-cell-deficient chickens have
shown increased oocyst production after primary infection with
Eimeria species. However, secondary infection does not yield
clinical coccidiosis in the bursectomized chickens due to the
protective immunity acquired by the primary infection (8).
This indicates that the anticoccidial immunity acquired after
primary infection is B cell independent. It is also apparent that
chicken coccidiosis can be prevented by adaptive transfer of
peripheral blood lymphocytes and splenocytes from Eimeria-
infected chickens in the syngeneic recipients (28). Subsequently,
the T-cell immunosuppressant cyclosporin A abolished the
protective immunity offered by Eimeria re-infection, thus further
emphasizing the integral role of cellular immune mechanisms in
chicken coccidiosis (14).

The early findings indicated that T cells serve as a key
factor to mediate anticoccidial immunity in chickens (8,
14). Greater numbers of CTLs expressing CD8 cell surface
antigen were predominantly observed in chickens after primary
infection (29–31). Furthermore, the differential role of CD4+

and CD8+ T lymphocytes in offering resistance to primary
and secondary coccidial infection was also reported (32, 33).
Increased populations of T cells are linked to elevated production
of proinflammatory cytokine interferon (IFN)-γ, which has an
immunoregulatory effect (34), as well as inhibiting intracellular
development of the parasite (35, 36). The role of T cells in
mediating host immunity to coccidiosis became more evident
when flow cytometric analysis of intestinal epithelial lymphocytes
(IELs), using lymphocyte-specific immune reagents, revealed
their significance in innate immunity in naïve chickens and
adaptive immunity in previously infected chickens (19, 37, 38).
More studies showed that different IEL subtypes are involved in
anti-Eimeria defense in the gut (39, 40). Research over the past
several years has shown that, as a part of protective immunity
against avian coccidiosis, T cells produce numerous secretions
besides IFN-γ, such as cytokines interleukin (IL)-1, IL-2, IL-4–
6, IL-8, IL-10, IL-12, IL-13, and IL-15–18, tumor necrosis factor
(TNF)-α, lipopolysaccharide-induced TNF-α factor (LITAF),
TNF-α superfamily 15 (TNFSF15), transforming growth factor
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(TGF)-β1–4, and granulocyte–macrophage colony-stimulatory
factor (GM-CSF). All these findings are based on research
oriented toward investigating the immunoregulatory responses
of these molecules after primary and/or secondary coccidiosis
(40–60). More recent work has indicated the involvement of
TLR4 and TLR15 as a part of the innate immune response
to Eimeria infection (61). IL-17 also contributes to host
immunopathology in response to experimental infection (62).
The immunoproteomics analysis of three Eimeria species has
identified several immunodominant antigens from these three
species that could provide a useful breakthrough in exploring
anticoccidial immunity, as some of these molecules cause profuse
inflammatory and cellular immune response that contribute
to pathogenesis and severity of infection (3, 63). Additionally,
research on anticoccidial vaccines and natural alternatives has
explored the immunobiology of coccidiosis in poultry (7). All
these findings show the immunoregulatory effect of vaccines
or several naturally occurring anti-inflammatory products such
as curcumin and Allium hookeri. These findings also provide
a useful insight into immunoregulation in avian coccidiosis,
however, this is outside the scope of this review and has
been reviewed previously (7). Much of this work has focused
on immunomodulation by dietary ingredients in experimental
Eimeria infections (64, 65).

Besides the above information, immunological variation
among the different strains of the same Eimeria species
has also been reported in chickens (66, 67). These findings
show the characteristic intraspecific variations attributed to
the biological features of Eimeria, such as morphology of
oocysts, pathogenicity, and sensitivity to drugs (68). This inter-
and intraspecies variation has been recently defined with the
help of more advanced molecular approaches such as random
amplification of polymorphic DNA–PCR, and restricted or
amplified fragment length polymorphism (69). Analysis of
these variations has led to the identification of several strain-
specific immunoprotective antigens (70, 71). Similarly, more
recent findings have also highlighted the variation in immune
responses to Eimeria tenella infection in genetically distinct
chicken lineages (72).

ROLE OF IFN-γ-MEDIATED IMMUNITY IN

AVIAN COCCIDIOSIS

Among all the cytokines mentioned above, IFN-γ is a major
cytokine that has anticoccidial effects (73). In mammals, parasitic
infections are often characterized by increased levels of IFN-
γ. Similarly, the functional role of this cytokine in Eimeria
infections has been studied thoroughly (34, 74, 75). Until
the cDNA cloning of chicken IFNs revealed the independent
existence of type I (76) (IFN-α) and type II (77) (IFN-γ) IFNs,
most of the findings on the role of IFN-like activity in Eimeria
infections were believed to be associated with IFN-γ. All these
IFN-dependent activities inhibit the invasion or development of
Eimeria in cultured cells in vitro (73, 78). In vivo studies have also
revealed the anticoccidial IFN-like activity in Eimeria-infected

birds (79, 80). The specific involvement of IFN-γ in anti-Eimeria
immunity was later described by Breed et al. who showed that
IFN-γ was produced specifically after stimulation of peripheral
blood lymphocytes from Eimeria-infected birds (31). It was then
discovered that mitogen- or antigen-stimulated specific T cells
circulating in the blood of Eimeria-infected chickens specifically
produced IFN-γ (81). Based on these findings, it was proposed
that T-cell priming might occur at the site of infection, resulting
in production of IFN-γ at the infection site, thus regulating
anticoccidial immunity (81). It was also hypothesized that CD8+

cells produce IFN-γ, which is involved in immunoregulation
in primary coccidiosis (81). These findings were extended by
Rothwell et al. who showed that IFN-γ-producing cells were
present in blood and the spleen and may migrate from the
spleen after secondary infection (82). In situ hybridization has
shown that, following Eimeria challenge, IFN-γ is produced
by the cells (predominantly T cells) at the site of infection
(cecum) and by splenocytes (82). Several studies have shown
the potential application of IFN-γ in protecting against Eimeria
infections (36, 83, 84). Birds immunized with recombinant
IFN-γ show increased body weight gain during infection with
Eimeria acevirulina (36, 83). Also, the development of E. tenella
is inhibited by IFN-γ in vitro (36, 84). When chicken cells are
treated with recombinant IFN-γ, intracellular development of
E. tenella is inhibited, with no significant effect on sporozoite
invasion of the cells (36). Similarly, in vivo administration
of recombinant IFN-γ protects against E. acevirulina
characterized by reduced oocyst production and increased body
weight gain (36, 83).

Besides its immunoregulatory or immunoprotective effect
against chicken coccidiosis, IFN-γ has also been shown to
have an adjuvant effect on coccidial vaccine in Eimeria-infected
chickens (85). The adjuvant effect of IFN-γ is characterized
by enhanced immune response to the vaccine antigen that
induces a microbicidal effect to resolve the parasitic infection,
thus increasing vaccine efficacy (85). Some DNA vaccines
administered with IFN-γ increased the immunity at intestinal
level and protected against avian coccidiosis (36, 86, 87).
Recent studies have also indicated the beneficial effect of IFN-
γ on anticoccidial DNA vaccine (88, 89). A chimeric vaccine
constructed by fusion of genes encoding the E. tenella surface
antigen, and IFN-γ alleviated the cecal lesions and improved
the anticoccidial index in experimentally infected chickens,
further suggesting the adjuvant effect of IFN-γ (89). Thus, all
these efforts indicate the anticoccidial role of IFN-γ, direct,
or as an adjuvant, and underline the significance of IFN-γ in
anticoccidial immunity.

Th17 CELLS AND THEIR CYTOKINES IN

AVIAN COCCIDIOSIS

Besides the response elicited by IFN-γ-mediated Th1 cells against
avian coccidiosis, the other CD4 T-cell subsets have also been
studied since the discovery of their homologs in mammals
(42). A lineage of IL-17-producing CD4+ T helper (Th)17 cells
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that are distinct from the previously well-characterized Th1/Th2
paradigm, has emerged and is involved in proinflammatory
responses in various autoimmune diseases and infections (90).
The biological activities of IL-17 as a signature cytokine of
Th17 cells include recruitment of neutrophils, stimulation of
antimicrobial peptide production, such as β-defensins and
mucins, as well as induction of cytokines and chemokines,
in particular IL-6, CXCL8 and GM-CSF (91). Chicken IL-17
isolated from Eimeria-infected IELs exerts a proinflammatory
role in coccidiosis (8). The exact role of Th17 cells in
chicken is poorly understood due to the lack of immunological
reagents. This section describes studies that focused on the
role of IL-17 as a signature cytokine in Th17 cells in chicken
coccidiosis. Following infection by E. acervulina or E. maxima,
IL-17 mRNA levels were increased in IELs compared to
uninfected controls (40). In E. tenella infection, IL-17 expression
in IELs was downregulated, except in the latter stage of
infection (39). Similarly, Kim et al. reported that chicken IL-
17 expression was downregulated in inflamed intestinal tissue
following E. tenella infection, and treatment with IL-17 or
IL-17F induced expression of proinflammatory cytokines in
chicken fibroblasts (92). These results suggest that chicken
coccidiosis induces IL-17 expression in the gut and is dependent
on the species of Eimeria. Th17 response can play both
protective and pathological roles in protozoan infections. The
cloning of IL-17 receptor A (IL-17RA), which binds IL-17A
and IL-17F in chickens, has revealed that Eimeria infection
downregulates expression of IL-17RA, and modulation of this
receptor facilitates the host to reduce intestinal pathogenesis
amplified by IL-17/IL-17RA signaling. Several authors have
proposed that Th17 cells or IL-17 promote pathogenesis in
leishmaniasis, toxoplasmosis, and Eimeria falciformis infection
(93–95), whereas others have demonstrated that they are
involved in protective immunity against trypanosomiasis,
toxoplasmosis and Pneumocystis carinii infection (96, 97). Recent
evidence seems to support a role for Th17 cytokines in host
immunopathology in coccidiosis in chickens. Treatment with IL-
17 neutralizing antibody in E. tenella infection induces lower
heterophil recruitment, inflammatory cytokine expression, and
parasite burden in the intestinal tract, resulting in enhanced
body weight gain, reduced oocyst production in feces, and
intestinal lesions (62). IL-17 is also involved in the initiation
and migratory response of epithelial cells during intracellular
development, and maturation of parasites, contributing to
pathogenesis in the intestinal tract. Following E. tenella
infection, chickens treated with IL-17 neutralizing antibody
have a reduced number of second-generation schizonts and
cecal lesions (98).

ANTI-INFLAMMATORY IL-10 AND Treg

CELLS IN AVIAN COCCIDIOSIS

Treg cells are a subset of T cells involved in immunosuppression.
Mammalian Treg cells have the phenotype CD4+CD25+FoxP3+

(99). In chickens, the ortholog of mammalian FoxP3 has yet

to be identified, although there is a report of an avian foxp3
gene (100, 101). Thus, CD4+CD25+ T cells in chickens have
been characterized as Treg cells showing suppression of activated
immune cells (102). These cells produce high amounts of IL-10,
TGF-β, CTLA-4, and LAG-3, as in mammals (103). IL-10 showed
29-fold higher expression in CD4+CD25+ cells compared to
CD4+CD25− cells and its immunosuppression in chickens has
been extensively studied (102). In coccidiosis, IL-10 is considered
to play an important role in evasion of the host immune response.
One possible mechanism to explain its role in coccidiosis is that
coccidial parasites have evolved to stimulate Treg cells to express
IL-10, and it helps parasites to facilitate invasion and survival in
chickens through suppression of the IFN-γ-related Th1 response
that is critical for protective immunity against coccidial parasites.
Two inbred lines of chickens that differ in their resistance or
susceptibility to Eimeria infection have revealed that expression
of IL-10 is the major difference between the two lines. Expression
of IL-10 is highly induced in susceptible chickens among the
genes related to different Th lineages, such as IFN-γ for Th1,
IL-4 for Th2, and IL-10 and TGF-β for Treg cells, while IL-10
is suppressed in the age-matched resistant line (46). Eimeria-
infected chickens treated with IL-10 neutralizing antibody show
improved growth rate compared to those with control antibody
but it has no effect on fecal oocyst production (104, 105). Morris
et al. reported that supplementation of vitamin D induced IL-10
expression as well as Treg cells and showed decreased production
losses associated with coccidial infection (106). These results
indicate that regulation of the protective immune response to
Eimeria infection by Treg cells is critical, and IL-10 plays a role
in pathogenesis in chicken coccidiosis. We recently identified
that Treg cells could help to reduce pathology in Eimeria-
infected intestine by suppression of Th17 cells that induce tissue
inflammation. Increased expression of CD4+CD25+ Treg cells
has been found in E. tenella-infected chickens with increased IL-
10 expression. After treatment with aryl hydrocarbon receptor

such as 3,3
′

-diindolylmethane, Treg cells are increased in the
intestine, whereas CD4+IL-17+ Th17 cells are suppressed. We
have also found that generation of Th17 cells is suppressed
by Treg cells, which leads to reduced pathogenicity in chicken
coccidiosis (107).

CONCLUDING REMARKS

It is the consensus that the Th1 response is the most efficient
host response in avian coccidiosis. However, studies on other
aspects like Th17 and Treg responses are also important
because the immune responses are not independent, but
rather they are connected and work together in an integrated
immune system. It is becoming clear that the outcome of
an inflammatory process caused by infection depends on the
balance of responses by several components of the immune
system of particular relevance is the interplay between Treg and
Th17 cells during immunoinflammatory events (108). Compared
to mammalian immunology, little is known about the role
of T cells in chickens, although the number of reports on
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coccidiosis is steadily growing. To understand better immunity
against chicken coccidiosis, it is necessary to know how T cells
are modulated and how they interplay since this intracellular
pathogen predominantly induces a T-cell-associated immune
response that involves several types of T cells. In regard to
controlling coccidiosis, the best way might be development of
alternatives to antibiotics because most effective anticoccidial
drugs that produce resistance or residues will be banned from
the market in the future. Understanding the mechanism of how
chickens respond to Eimeria will lead to new approaches to
control coccidiosis.
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