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Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus associated with

a robust systemic infection and an acute inflammatory rheumatic disease. A high

fiber diet has been widely promoted for its ability to ameliorate inflammatory

diseases. Fiber is fermented in the gut into short chain fatty acids such as

acetate, propionate, and butyrate, which enter the circulation providing systemic

anti-inflammatory activities. Herein we show that mice fed a high fiber diet show

a clear exacerbation of CHIKV arthropathy, with increased edema and neutrophil

infiltrates. RNA-Seq analyses illustrated that a high fiber diet, in this setting, promoted a

range of pro-neutrophil responses including Th17/IL-17. Gene Set Enrichment Analyses

demonstrated significant similarities with mouse models of inflammatory psoriasis and

significant depression of macrophage resolution phase signatures in the CHIKV arthritic

lesions from mice fed a high fiber diet. Supplementation of the drinking water with

butyrate also increased edema after CHIKV infection. However, the mechanisms involved

were different, with modulation of AP-1 and NF-κB responses identified, potentially

implicating deoptimization of endothelial barrier repair. Thus, neither fiber nor short

chain fatty acids provided benefits in this acute infectious disease setting, which is

characterized by widespread viral cytopathic effects and a need for tissue repair.

Keywords: chikungunya, immunopathology, arthritis, fiber, diet

INTRODUCTION

A beneficial anti-inflammatory role for a high fiber diet is well-described for a large range of largely
non-infectious disease settings in murine models (1–7). The use of high fiber diets to ameliorate
human diseases is thus being actively pursued (8, 9), in particularly for autoimmune conditions
(10, 11). Some evidence for benefit in humans has emerged, although results have often been
inconclusive (12).

A high fiber diet changes the gut microbiome, with a number of studies in mice (3, 13, 14) and
humans (15, 16) detailing the changes in bacterial species compositions. Bacterial fermentation
of fiber (primarily undigested and/or indigestible carbohydrate) results in the production of short
chain fatty acids (SCFA) such as acetate, propionate and butyrate, which enter the circulation and
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are believed to be the key players in dietary fiber-mediated
systemic anti-inflammatory activities (8, 10, 17). SCFAs mediate
effects on a number of cells including T cells (18, 19) particularly
regulatory T cells (20), macrophages (21–23) and endothelial
cells (24). Butyrate in particular has been shown to provide anti-
inflammatory activities in a range of settings (5, 25–27), including
non-infectious arthritic diseases (28–30). SCFAs are transported
into cells via a series of receptors, with butyrate believed to act as
an intracellular inhibitor of histone deacetylases (HDACs), with
NF-κb (31), and AP-1 also targeted in some settings (32–34).

Chikungunya virus (CHIKV) belongs to a group of mosquito-
borne arthritogenic alphaviruses that include the primarily
Australian Ross River and Barmah Forest viruses, the African
o’nyong-nyong virus, the Sindbis group of viruses, and the
South American Mayaro virus (35). The largest documented
outbreak of CHIKV disease ever recorded caused more than 10
million cases and began in 2004 in Africa and reached more
than 100 countries in Africa, Asia, and the Americas, with
small outbreaks also seen in Europe (36). Symptomatic infection
of adults with CHIKV is nearly always associated with acute
and often chronic polyarthralgia and/or polyarthritis, which can
be debilitating and usually lasts weeks to months, occasionally
longer. Other common symptoms include fever, rash, and
myalgia (36). At present, no particularly effective drug or licensed
vaccine is available for human use for any of these alphaviruses;
although paracetamol/acetaminophen and non-steroidal anti-
inflammatory drugs can provide relief from rheumatic symptoms
and several CHIKV vaccines are in development (36).

CHIKV infection usually results in a 5–7 days long viremia,
which is primarily controlled by a rapid type I IFN response
(37, 38) and subsequently by anti-viral antibodies (36). A large
range of cell types are infected in vivo including fibroblasts,
muscle cells, endothelial cells, and macrophages (39). CHIKV
infection usually results in cell death or cytopathic effects
(CPE), mainly apoptosis and to a lesser extent necroptosis
and pyroptosis, with connective tissue damage also evident
during the viremic period in humans (36, 40). Infection drives
a systemic pro-inflammatory response with the up-regulation
of multiple mediators (36, 41, 42). CHIKV arthropathy is
generally viewed as an immunopathology (43–45), with the pro-
inflammatory arthritogenic response sharing similarities with
rheumatoid arthritis (46). The inflammatory arthropathy is
triggered by viral infection of joint tissues and is associated
with a robust mononuclear cell infiltrate comprised primarily
of monocytes, macrophages, NK cells, and T cells (47, 48).
CD4T cells are important for driving CHIKV arthritis (36),
with Tregs associated with disease amelioration (49, 50).
Macrophages/monocytes also play an important role in the
arthritic immunopathology (36), with the pro-inflammatory
response to CHIKV infection in peripheral blood shown to
be monocyte centric (41, 51). However, macrophages are also
required for resolution of inflammation, both generally (52–54)
and specifically for CHIKV arthritic inflammation (45).

We have developed an adult C57BL/6J (wild-type) mouse
model of acute and chronic CHIKV infection and hind foot
arthritis that recapitulates many aspects of human disease (47,
55). RNA-Seq and bioinformatics studies in CHIKV patients (41)

has also illustrated that this mouse model largely recapitulates
(42) many of the inflammatory signatures seen in humans.
CHIKV is able to replicate to high titers in humans with viremias
up to 2.9 × 108 pfu/ml (56) and even higher in the elderly
(1010 viruses per ml of blood) (57). Similar titers are reached
in the feet in the mouse model (47), with up to 8% of the
polyadenylated RNA in the infected feet being of viral origin
(42). The mouse model has been widely exploited for testing
new interventions (43, 58–65), and is used herein to determine
the potential for modulating CHIKV arthropathy with high fiber
diet and SCFAs. Only a few studies (66, 67) have addressed the
question of whether high fiber diet and/or SCFAs can provide
anti-inflammatory benefits in infectious disease settings.

MATERIALS AND METHODS

Mice and CHIKV Infection
C57BL/6J mice (6–8 weeks) were purchased from the Animal
Resources Center (Canning Vale, WA, Australia). Female mice
were inoculated with 104 CCID50 of the Reunion Island isolate
(LR2006-OPY1) in 40 µl of medium (RPMI1640 supplemented
with 2% fetal calf serum), s.c. into both hind feet as described
previously (47, 55). The virus (GenBank KT449801) was
prepared in C6/36 cells (55). Serum viremia was determined
by CCID50 assay using C6/36 and Vero cells as described (37,
55). Foot swelling was measured using digital calipers and is
presented as a group average of the percentage increase in foot
height times width for each foot compared with the same foot on
day 0 (55).

qRT PCR
qRT PCR was undertaken as described (55) using CHIKV E1
primers. Each sample was analyzed in duplicate and normalized
to RPL13A mRNA levels.

Diet and Water Supplementation
High and no fiber diets were supplied by Specialty Feeds
(Glen Forrest, WA, Australia); the formulations are shown
Supplementary Figures 1, 2 and were formulated to have similar
digestible energy contents. Water for these later groups was
acidified to pH 3–4 as per standard animal house practice.
Drinking water was adjusted to pH 7 and supplemented with
200mM of the sodium salt of the indicated SCFA (Sigma Aldrich,
St Louis, MO, USA) (19, 68, 69). Drinking water was changed
every 2–3 days. Mice were fed these diets and/or had SCFA
supplementations in their drinking water for at least 3 weeks
prior to CHIKV infection.

RNA Isolation for RNA-Seq Analyses
C57BL/6 mice were infected with CHIKV as described above,
and whole feet (cut above the ankle) harvested on day 6.5 post
infection. Tissues were placed in RNAlater (Life Technologies,
Carlsbad, CA, USA) overnight at 4◦C and then homogenized into
TRIzol (Invitrogen) and RNA extracted as described (42). There
were four groups; high fiber and no fiber diets (water pH 3–4),
and butyrate and water (pH 7) no fiber diets. For each group
three biological replicates were created by pooling equal amounts
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of RNA from 3 to 4 feet from 3 to 4 mice. A total of 12 pooled
RNA samples were DNase treated using RNAse-Free DNAse Set
(Qiagen, Hilden, Germany), purified using an RNeasy MinElute
Kit following the manufacturers’ instructions.

RNA-Seq Analyses
Library preparation and sequencing were conducted by the
Australian Genome Research Facility (Melbourne, Australia).
cDNA libraries were prepared using a TruSeq RNA Sample Prep
Kit (v2) (Illumina Inc. San Diego, USA), which included isolation
of poly-adenylated RNA using oligo-dt beads. cDNA libraries
were sequenced from both ends (100 bp) using Illumina HiSeq
2000 Sequencer (Illumina Inc.). The CASAVA v1.8.2 pipeline was
used to separate the bar-coded sequences and extract 100 base
pair, paired end reads into FASTQ files.

Differentially Expressed Genes
The read counts were used to determine gene expression and
identify differentially expressed genes (DEGs) using R packages
(R version 3.2.0) “edgeR” (3.18.1) and “limma” (3.32.7). (https://
bioconductor.org/packages/release/bioc/html/edgeR.html). The
default TMM normalization method of edgeR was used to
normalize the counts. The GLM model was used to perform
differential expression comparison between the groups. Genes
that had >1 CPM in at least three samples were retained for
further analysis. Differentially gene expression was considered
significant if the Benjamini–Hochberg corrected p-value (i.e.,
FDR or q value) was <0.05. DEGs (q < 0.05) were analyzed
by Ingenuity Pathway Analysis and Integrated System for Motif
Activity Response Analysis (ISMARA) (70) as described (42,
71). ISMARA was undertaken by uploading the RNA-Seq fastq
files, identifying the replicates (allowing averaging, n = 3) and
undertaking pair-wise comparisons; high vs. no fiber (normal
water) and butyrate vs. water (no fiber diet).

Gene Set Enrichment Analyses (GSEAs)
Psoriasis Signatures
Enrichment analyses were performed using GSEA from fgsea
(v1.10.0) R package (72), using up and down-regulated DEGs
from the high fiber vs. no fiber diet comparison. The program
limma (v3.40.2) R package (73) was used to determine the fold
change (in all the genes) in datasets from murine models of
inflammatory psoriasis models (GSE27628). These gene sets were
ranked by log2 fold-change and considered as gene ranks in
the GSEA.

Macrophage resolution phase signature. The microarray data
(Gene Express accession number E-MEXP-3189) posted by
Stables et al. was analyzed as described (52) to determine
DEGs up-regulated in resolution phase macrophages (rM)
when compared with naïve macrophages and inflammatory
macrophages (Stables et al. provided a list of rM DEGs, but not
the direction of expression change). The 146 up-regulated DEGs
in rM were used in a GSEA with the 27,537 gene set (ranked
by log2 fold-change) obtained by RNA-Seq analysis comparing
feet day 7 post CHIKV infection with feet from mock infected
mice (42). The up-regulated DEGs in rM were also used in a
GSEA with the 34,624 gene set (ranked by log2 fold-change)

obtained by RNA-Seq comparing CHIKV arthritis in mice fed
a high and no fiber diet (feet day 6.5 post CHIKV infection)
(Supplementary Table 1a).

Histology and Immunohistochemistry
Histology, immunohistochemistry and quantitation were
performed as described previously (45, 47, 71). Briefly, feet
were fixed in paraformaldehyde, decalcified and embedded in
paraffin, and sections stained with hematoxylin and eosin (H&E).
Sections were scanned using Aperio AT Turbo (Aperio, Vista,
CA) and analyzed using Aperio ImageScope software (v10) and
the Positive Pixel Count v9 algorithm. Strong blue divided by
total red pixels (default settings) represents a measure of cellular
infiltration as leukocytes have a high nuclear to cytoplasmic
area ratio.

For immunohistochemistry, sections were stained with
rat anti-mouse Ly6G (catalog number NMP-R14; Abcam,
Cambridge, MA, USA), with detection using Warp Red
Chromogen Kit (Biocare Medical, Concord, CA, USA).

Statistics
Statistics were performed using IBM SPSS Statistics (version
19). For mouse data the t-test was used if the difference in the
variances was<4, skewness was>-2, and kurtosis was<2.Where
the data was non-parametric and the distributions were similar
the Kruskal–Wallis test was used, otherwise the Kolmogorov–
Smirnov test was used. The Related Samples Wilcoxon Signed
Rank test was used instead of a paired t-test as the paired data
being compared was non-parametric.

RESULTS

Fiber and Butyrate Exacerbate Peak Foot
Swelling After CHIKV Infection
To investigate the effects of a high fiber diet on CHIKV arthritis,
adult C57BL/6J mice were fed a high fiber, standard and no fiber
diet for 3 weeks and were then infected with CHIKV as described
(42, 47). Foot swelling was significantly higher in mice on a
high fiber diet than in mice on a low fiber diet, with mice on a
standard diet showing an intermediate phenotype (Figure 1A).
Viremia in these groups of animals was not significantly different
(Figure 1B).

Dietary fiber is fermented into SCFA, with supply of SCFA
in drinking water frequently used to try and recapitulate the
anti-inflammatory effects of a high fiber diet (28–30). Butyrate
supplied in the drinking water to animals on a standard diet
significantly increased foot swelling, with propionate and acetate
being less active (Figure 1C). Again viremia was unaffected
(Figure 1D). A similar effect on foot swelling was observed when
mice on a no fiber diet were given butyrate to drink (Figure 1E),
with viremia again not significantly affected (Figure 1F). When
butyrate and a high fiber diet were combined no overt
additive effects were observed (Figure 1G); the increase in mean
maximum foot swelling (on day 6) mediated by butyrate was
about 30% in Figures 1C,E and was also about 30% in Figure 1G.
Viremia was again unaffected (Figure 1H).

Frontiers in Immunology | www.frontiersin.org 3 November 2019 | Volume 10 | Article 2736

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Prow et al. Modulation of Chikungunya Immunopathology by Diet

FIGURE 1 | Diet affects foot swelling but not viremia. (A) Mice (C57BL/6J) were fed on either a high fiber diet, a standard diet or a no fiber diet for 3 weeks and were

then infected with CHIKV and maintained on the same diet for the duration of the experiment. Foot swelling was measured over time and was higher in the high fiber

group compared with the no fiber group; ***p < 0.001, **p = 0.008 (Day 7 approached significance p = 0.051), t-tests; n = 28–30 feet from 14 to 15 mice, with data

from two independent experiments shown. (B) Viremia for the mice described in (A). (C) Mice were fed on a standard diet and water was supplemented with 200mM

of the indicated SCFA for the duration of the experiment. Foot swelling was measured over time. Mice drinking butyrate had significantly increased foot swelling than

control mice (standard water); ***p < 0.001, **p ≤ 0.003, *p < 0.04, t-tests; n = 12 feet from six mice. (D) Viremia for the mice described in (C). (E) Mice were fed on

a no fiber diet and the drinking water was supplemented with butyrate, or were fed a no fiber diet and supplied water for the duration of the experiment. After 3 weeks

mice were infected with CHIKV and foot swelling measured. Butyrate significantly increased foot swelling; ***p < 0.001, **p = 0.01, *p < 0.04, t-tests; n = 22–24 feet

from 11 to 12 mice, with data from two independent experiments shown. (F) Viremia for the mice treated as described in (E); n = 6 mice, one experiment. (G) Mice

were fed on a high fiber diet and the drinking water was supplemented with butyrate, or mice were fed on a no fiber diet and supplied unsupplemented water. After 3

weeks mice were infected with CHIKV and foot swelling measured. Butyrate/high fiber showed significantly increased foot swelling; ***p < 0.001, *p < 0.04, t-tests; n

= 24 feet from 12 mice, with data from two independent experiments shown. (H) Viremia for mice treated as described in (G); n = 6 mice, one experiment.

Overall the most consistent statistically significant increase
in foot swelling mediated by fiber or butyrate was on day 6,
with days 6–7 usually representing the period of peak foot
swelling that corresponds with a pronounced inflammatory
infiltrate (45, 47).

Viral Titers in Feet Were Unaffected by
Fiber or Butyrate
To determine whether the effects of fiber and butyrate on foot
swelling were mediated by differences in viral loads in the foot
tissues, CHIKV RNA levels were determined in feet by qRT PCR.
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CHIKV RNA levels were not significantly altered by a high fiber
diet (Figure 2A) or butyrate in the drinking water (Figure 2B).
This was true for both acute arthritis (day 6.5) and chronic
arthritis, nominally measured on day 30 post infection (55)
(Figures 2A,B). The differences in foot swelling seen in Figure 1

could thus not be accounted for by differences in viremia or viral
loads in the feet.

Anti-CHIKV Antibody Responses Are
Similar After Fiber or Butyrate
Mice fed a high fiber diet showed no significant differences
in their anti-CHIKV IgG2c or IgG1 responses post infection,
when compared with mice fed a no fiber diet (Figure 2C).
Although the IgG1 levels [associated with Th2 (74)] appeared
a little lower (Figure 2C, IgG1), this did not reach significance
when 50% end point titers in the two groups were compared.
SCFA supplementation in the water supply also had no
significant impact on anti-CHIKV IgG2c or IgG1 antibody titers
(Figure 2D). These data failed to provide evidence of a significant
effect of a high fiber diet or drinking butyrate on antibody
responses and the Th1/Th2 balance in this CHIKV infection
setting. These observations contrast with non-infectious disease
settings where butyrate enhanced Th1 responses (75–77).

High Fiber Diet Increases Edema and
Neutrophil Infiltrates
CHIKV arthritis is characterized by a pronounced infiltrate of
mononuclear cells into joint tissues (35, 45, 47, 78). The extent
of the infiltrate can be quantified using the Aperio Positive Pixel
Count Algorithm on digital scans of H&E stained foot sections,
with infiltrating leukocytes having a higher blue (nuclear)
to red (cytoplasmic) ratio (42, 55). As expected, substantial
and significant infiltrates were evident after CHIKV infection;
however, the high fiber and no fiber groups were not significantly
different (Figure 3A). A clear increase in edema was, however,
evident by H&E staining in the high fiber group (Figure 3B;
other examples are shown in Supplementary Figure 3). This
increase in edema likely accounts for the increased foot swelling
seen in this group (Figure 1A). CHIKV-induced edema around
peripheral joints is well-described in humans (79–82) and is
recapitulated in this adult wild-type mouse model (47).

A characteristic feature of alphaviral arthritides is the general
paucity of neutrophils in the arthritic lesions (45, 83, 84). In
contrast, neutrophils are a prominent feature of autoimmune
arthritides, such as rheumatoid arthritis (85). We have previously
reported that in CCR2−/− mice CHIKV arthritis is exacerbated
by an increase in infiltrating neutrophils (45). As neutrophils
can promote edema in various settings (86–89), foot sections
from arthritic feet of CHIKV-infected mice fed high and no fiber
diets were analyzed by immunohistochemistry (IHC) using anti-
Ly6G staining [a neutrophil specific marker (45)]. Sections were
digitally scanned and analyzed by Aperio Positive Pixel Count
Algorithm. Significantly more anti-Ly6G staining was evident in
the feet of mice (on day 6.5 post infection) fed a high fiber diet
when compared to feet of mice fed a no fiber diet (Figure 3C,
Day 6.5). No significant difference between groups was seen on

day 30 post infection (Figure 3C, Day 30). Examples of the anti-
Ly6G staining (red) from the high fiber group are shown for
muscle (Figure 3D, top left), subcutaneous tissues (Figure 3D,
bottom left) and synovium (Supplementary Figure 4). Fewer
anti-Ly6G staining cells were observed in the no fiber group;
this was clearly evident even when viewing areas containing
high numbers of infiltrating cells (Figure 3D, green arrows, right
hand panels).

Anti-Ly6G staining of feet of mice fed a high fiber diet also
revealed occasional blood vessels with intramural neutrophils
and indications of parietal necrosis (Figure 3E, Ly6G); such
features were not seen in feet of mice fed a no fiber diet.
Consistent with this observation were areas of hemorrhage in feet
of mice fed a high fiber diet (Figure 3E, H&E), which were much
less apparent in feet of mice fed a no fiber diet.

The High Fiber Diet Promoted
Pro-Neutrophil Responses
RNA-Seq was undertaken using mRNA from feet taken day
6.5 post CHIKV infection for mice fed high and no fiber diets.
Quality assurance data for the RNA-Seq data are shown in
Supplementary Figure 5. The full RNA-Seq gene counts are
shown in in Supplementary Table 1a and differentially express
genes (DEGs) with false discovery rate (FDR) <0.05 (q<0.05)
are listed in Supplementary Table 1b. This DEG list (with a
q < 0.05 filter) was used for all subsequent bioinformatics
treatments, unless stated otherwise. Amongst these 571
DEGs were a series of up-regulated cytokines/chemokines
associated with neutrophil recruitment, survival and/or
activation (Table 1; Supplementary Table 1b). The DEG list was
analyzed using the Ingenuity Pathway Analysis (IPA) Upstream
Regulator (USR) feature. The top USR by positive activation
z-score was CEBPA (CCAAT/enhancer binding protein alpha)
(Supplementary Table 1c), a transcription factor that induces
neutrophilic differentiation (granulopoiesis) (90) (Table 1).
The top USR by negative activation z-score was TP73 (p73)
(Supplementary Table 1c), a p53-related protein, with p73−/−

mice showing massive neutrophil infiltrates and edema (112)
(Table 1).

Rora (RORα) was present in the DEG list
(Supplementary Table 1b), and represents a transcription
factor this is associated inter alia with differentiation of Th17
cells (103) (Table 1).

The overall T cell infiltrate densities as measured by IHC for
CD3 were not significantly different for high and no fiber groups
(Supplementary Figure 6), arguing that Rora differences are not
associated with differences in T cell recruitment. IL17A also
identified as an USR when the IPA USR analysis was expanded
to include both direct and indirect USR activities (Table 1,
Supplementary Table 1e). IL-17 is a key cytokine that links T-
cell activation to neutrophil mobilization and activation (117),
with IL-17 playing an important role in promoting rheumatoid
arthritis (115). The IPA USR analysis (direct and indirect) also
returned (i) IL-1 and TNF, two cytokines known to increase
endothelial permeability and edema (118–120) and (ii) PI3K
and ERK, two kinases involved in survival and migration of
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FIGURE 2 | Viral loads and antibody responses. (A) Mice were fed on a high fiber or a no fiber diet for 3 weeks and were then infected with CHIKV (or left uninfected

as controls). On day 6.5 and day 30 post infection feet were analyzed for CHIKV RNA by qRT PCR. Diet did not significantly affect CHIKV RNA levels (n = 4 mice and

feet per group). (B) Mice were fed on a standard fiber and water was supplemented with butyrate or left unsupplemented (Water) and after 3 weeks mice were

infected with CHIKV (or left uninfected as controls). Butyrate did not significant affect CHIKV RNA levels (n = 6 mice and feet per group). (C) Mice fed as for (A) with

serum taken on day 30 post infection and assayed by ELISA for anti-CHIKV IgG2c or IgG1 antibody levels (n = 6 per group). (D) Mice with water supplementation as

in (B), with serum taken on day 30 post infection and assayed by ELISA for anti-CHIKV IgG2c or IgG1 antibody levels (n = 6 per group).

neutrophils, including SCFA-induced chemotaxis (113) (Table 1,
Supplementary Table 1e). These analyses support the IHC data
(Figures 3C,D) and suggest that a range of inflammatory
mediators and pathways that promote neutrophil-mediated
inflammation were increased in mice fed a high fiber diet.
Given the identification of IL17A as a USR (Table 1), the gene
counts for the six IL-17 genes (IL-17a,b,c,d,f, and IL25) might
be viewed as surprisingly low; although overall IL-17 counts
were significantly higher for the high fiber group than the no
fiber group (Supplemental Table 1a, see yellowed section, two
way ANOVA, p = 0.028). The low counts may be due to an
inherent feature of read alignment programs, which disregard
reads that map to more than one gene. Although this process
is important for accurate quantitation of transcripts, it results in
loss of read counts for genes like IL-17 that exist as a family of
homologous genes.

Skin and Hair Genes, and Psoriasis
Signatures After a High Fiber Diet
The RNA-Seq analysis showed down-regulation of 61
keratin and keratin-associated-protein genes (Figure 4A,
Supplementary Table 1f, n = 61) amongst the 402 down-
regulated DEGs identified in feet during peak CHIKV-arthritis
in mice fed a high fiber diet (Supplementary Table 1b). Most
of these genes are expressed in skin, hair follicles and hair
(Supplementary Table 1f). About half of these genes were

previously shown to be down-regulated in the same setting
in mice fed normal chow (42), perhaps consistent with the
intermediate phenotype seen in Figure 1A.

Analyses of the down-regulated DEGs using Enrichr
Disease Perturbations from GEO, suggested similarities with
mouse models of psoriasis (Supplementary Table 1g). Gene
Set Enrichment Analyses (GSEAs) were thus undertaken
to compare both up and down-regulated DEGs from high
vs. no fiber diet (Supplementary Table 1b) with publically
available microarray data (GSE27628) from mouse models of
inflammatory psoriasis (122). Genes up and down-regulated
in CHIKV-infected mice fed a high fiber diet were also up
and down-regulated in four mouse models of inflammatory
psoriasis, respectively. All comparisons were highly significant
by adjusted p-values (Figure 4B, Supplementary Table 1g). A
high fiber diet thus increased skin inflammation after CHIKV
infection with a signature similar to that seen in mouse models of
inflammatory psoriasis.

Down-regulation of hair follicle genes
(Supplementary Table 1f) is perhaps consistent with hair
follicles being located next to areas of subcutaneous
edema (Figure 3B, Supplementary Figure 7A) and
adjacent to neutrophil infiltrates (Figure 3D, bottom left)
(Supplementary Figure 7B). The presence of neutrophils in
the epidermis or in the hair follicles, as has been described for
psoriasis (123, 124), was not observed in our studies.
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FIGURE 3 | Histology and IHC of feet from CHIKV-infected mice fed high and no fiber diets. (A) Mice were fed with high fiber or no fiber diet and infected with CHIKV

or left uninfected (No infection control) (as in Figure 1A). On day 6.5 and day 30 feet from separated groups of mice were examined by histology and H&E staining.

Aperio pixel count was used to determine the ratio of strong blue (nuclear) to red (cytoplasmic) staining; a measure of the cellular infiltrate. Statistics by Kolmogorov

Smirnov test (p = 0.037, n = 4 feet and mice per group) and Kruskal–Wallis test (p = 0.034, n = 3/4 feet and mice per group). There were no significant differences

between any groups on day 30 post infection (n = 4 feet and mice per group). (B) Examples of H&E staining of mice examined in (A). Black ovals indicate areas of

high density infiltrates in muscle tissues. Asterisks (*) indicate areas of edema. (C) Feet from groups of mice as in (A) were analyzed by IHC and the neutrophil-specific

anti-Ly6G antibody. Anti-Ly6G staining was detected using Warp Red, with red staining quantified by Aperio pixel count. Statistics by Kolmogorov Smirnov test (Day

6.5, p = 0.008, n = 4–9 feet and mice per group). There were no significant differences between any groups on day 30 post infection (n = 5/6 feet and mice per

group). (D) Examples of anti-Ly6G IHC (Red) in muscle (top panels) and subcutaneous tissues (bottom panels). M, a muscle bundle; K, keratinocyte epidermal skin

layer; S, Sebaceous gland. (E) Anti-Ly6G IHC (Red) showing a blood vessel (black oval) with intramural neutrophils and indications of parietal necrosis. H&E staining

showing hemorrhage (extravascular red blood cells indicated by arrows) and edema (*).
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TABLE 1 | Neutrophil signatures in DEGs and IPA USRs.

DEG (q < 0.05) Fold change FDR Activity

Cxcl2 2.42 3.1E-02 ↑ neut. recruitment (91, 92)

IL-6 1.93 4.9E-02 ↑ neut. survival and migration (93, 94)

IL-1β 1.71 4.0E-04 ↑ neut. recruitment, survival, and activity (95–98)

Cyr61 1.52 1.2E-03 ↑ neut. infiltration (99)

Ccr1 1.37 1.5E-02 ↑ neut. migration/recruitment (100, 101)

Ccl7 1.37 2.7E-02 ↑ neut. chemotaxis (102)

RORα 1.30 1.8E-02 ↑ Th17 development (103)

IPA USR (direct only) Activation z-score p-value Activity

CEBPA 3.26 2.36E-05 ↑ granulopoiesis (90, 104)

HMGB1 1.755 2.00E-03 ↑ neut. mediated injury (105)

SMAD3 1.688 1.45E-04 ↑ neut. activation (106)

IRF-1 1.482 1.07E-02 ↑ granulopoiesis (107)

STAT4 1.136 1.04E-04 ↑ neut. activation (108)

EGR1 1.158 1.98E-04 Activated neuts. (109)

HIF1A 1.052 2.74E-04 ↑ neut. survival (110)

DLX3 −2 3.39E-04 Dlx3−/− ↑ skin IL-17 (111)

TP73 −2.809 2.69E-04 p73−/− ↑ neut. infiltration and edema (112)

IPA diseases or functions annotation (direct only) Activation z-score p-value

Accumulation of neutrophils 1.969 1.22E-03

Th17 immune response 1.698 2.18E-05

Polyarthritis 1.574 2.87E-06

Inflammation of joint 1.085 8.39E-04

Infiltration by neutrophils 0.528 2.78E-04

IPA USR (direct and indirect) Activation z-score p-value Activity

IL-1β 2.962 4.84E-03 ↑ neut. recruitment/survival/activity (95–98)

PI3K/ERK 2.7/2.1 2.7E-03 ↑ neut. SCFA-induced chemotaxis (113) and survival (114)

3.1E-04

IL-17A 1.946 5.33E-06 ↑ neut. recruitment and survival (114, 115)

IL-10 −0.818 1.22E-03 ↓ anti-inflammatory (116)

DEGs from RNA-Seq analysis of feet of CHIKV-infected mice (day 6.5 post infection) comparing high fiber diet with no fiber diets (Supplementary Table 1b), were analyzed by Ingenuity

Pathway Analysis (IPA) upstream regulator (USR) feature (Supplementary Tables 1c,d). Selected DEGs and USRs associated with neutrophils (neuts.) are listed. FDR, false discovery

rate (or q-value); ↑, increased; ↓, decreased.

Down-Regulation of Histone Genes and
Increased Tissue Damage Signatures
Another prominent feature of the RNA-Seq data was down-
regulation of 29 histone genes (mean fold change −1.75) in the
high fiber group (Figure 4C, Supplementary Table 1h). Butyrate
has been shown in several settings to promote cell-cycle arrest
in G0/G1 via p21 and/or p15 (125), the former often via
a p53-independent mechanism (126, 127). Such an activity
would reduce transcription of many histone genes during S-
phase (128). A p53-independent mechanism may also operate
in the current setting, as overall p53 activity was decreased
(Supplementary Table 1c, TP53). Two other SCFAs, propionate
and valerate, can also promote cell-cycle arrest in G0/G1
in certain settings (129–133). The IPA Diseases or Functions

Annotations showed multiple epithelial and connective tissue
proliferation and growth annotations with negative z-scores
(Figure 4C, Supplementary Table 1d), consistent with G1 arrest.

CHIKV infections generate high levels of type I IFNs (37, 42, 71),

which can also promote cell cycle blockage at G0/G1 (134);
however, these cytokines were not differentially regulated in the
high fiber vs. no fiber groups.

The IPA Diseases or Functions Annotations suggests that

the high fiber diet promoted tissue damage during peak

CHIKV arthritis (Figure 4C, right) (Supplementary Table 1d).

Neutrophil infiltration may account for the latter, as we have
previously shown that recruitment of neutrophils into joints
in CHIKV-infected CCR2−/− mice promotes cartilage damage
(45), with neutrophils also associated with tissue damage in
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FIGURE 4 | Additional changes mediated by a high fiber diet. (A) Skin and hair changes. The RNA-Seq data shows a significant down-regulation of 61 keratin and

keratin associated proteins (Supplementary Table 1f). When the DEG list (Supplementary Table 1b, q < 0.05) was analyzed by IPA (direct only) using the Diseases

or Functions Annotation feature, a range of annotations associated with skin and hair were identified (Supplementary Table 1d); the top four skin and hair

(Continued)
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FIGURE 4 | annotations by p-value are shown. (B) Gene Set Enrichment Analyses was performed for up and down-regulated DEGs from high vs. no fiber diet

(Supplementary Table 1b) and compared with gene sets pre-ranked by log2FC of inflammatory psoriasis mouse models (microarray study GSE27628): K14-Areg,

over-expression of human amphiregulin in the basal epidermal layer (tail and skin); K5-Stat3c, basal keratinocyte-specific over-expression of a constitutively active

mutant of signal transducer and activator of transcription 3; K5-TGFβ over-expression of the latent form of transforming growth factor β1 in basal keratinocyte. NES,

Normalized Enrichment Score; q, FDR adjusted p-value. (C) Histone, proliferation and tissue destruction signatures. The RNA-Seq data shows a significant

down-regulation of 29 histone genes in the high fiber group (Supplementary Table 1h). Formation of nucleosomes was the top Diseases or Functions Annotation by

p-value (IPA analysis as in A), with a series of proliferation and growth annotations also returned with negative z-scores. The same analysis also returned a series of

annotations associated with tissue destruction (right hand table) (Supplementary Table 1d). SCFAs (butyrate, propionate and valerate) can promote G1 cell cycle

arrest and may thus inhibit proliferative replacement and repair of damaged tissues. CPE would contribute to tissue damage and neutrophils may also promote tissue

destruction. (D) Skeletal muscle. H&E of skeletal muscle in feet of mice fed a high and no fiber diet day 6.5 post CHIKV infection are shown (three images from three

mice per group). Muscle fibers (staining red/pink) appeared more extensively replaced by nuclear blue/purple staining of infiltrating inflammatory leukocytes in the no

fiber group, with the latter also containing larger areas of dense blue/purple staining (dashed black ovals). (E) Left bar graph; mouse skeletal muscle myosin heavy

chain and actin gene mean read counts (using read counts from Supplementary Table 1a). Numbers above the bars are fold change. No individual gene reached

significance (q < 0.05); Myh1 approached significance by p-value. However, taken together significance was reached; statistics by Related Samples Wilcoxon Signed

Rank Test. Right bar graph: skeletal muscle genes reported to be up-regulated by butyrate (121) were also up-regulated in the high fiber group, although only Mef2c

reached significance. Taking the 5 genes together, differences between high fiber and no fiber reached significance; statistics by Related Samples Wilcoxon Signed

Rank Test. For both graphs, SDs were derived from three biological replicates (Supplementary Table 1a).

other settings (54). However, the overt histologically detectable
cartilage damage seen in CCR2−/− mice was not observed
herein, with CCR2−/− mice perhaps representing an extreme
scenario given the complete absence of monocytes/macrophage
infiltration during CHIKV arthritis (45). The tissue damage
annotations (Figure 4C, right; Supplementary Table 1d) are
unlikely to reflect differences in viral CPE, as viral loads were
not different in the high fiber vs. no fiber groups (Figure 2B).
However, given the high viral loads in feet (42, 47) extensive
CPE would be expected in both groups, with reductions in cell
proliferation in the high fiber group (Figure 4C, left) perhaps
contributing to reduced proliferative tissue repair.

Reduced Skeletal Muscle Damage in Mice
Fed a High Fiber Diet
H&E staining of muscle tissues in the feet of CHIKV-infected
mice fed a no fiber diet showed denser, more focal, inflammatory
infiltrates in skeletal muscle tissues, when compared with
CHIKV-infected mice fed a high fiber diet (Figure 4D, dashed
black ovals). In these areas the red/pink staining of the muscle
fibers was largely lost indicating more extensive muscle fiber
degeneration in the no fiber group (Figure 4D). No compelling
muscle signatures emerged from the bioinformatics analyses of
the DEG list (Supplementary Table 1b). However, extracting
mouse skeletal muscle myosin heavy chain (Myh1, 2, 3, 4,
7, 8, 13) and actin (Acta1) gene read counts from the full
gene list (Supplementary Table 1a), illustrated that the mean
read counts for these genes were always higher in the high
fiber group; and taking all genes together, expression was
significantly higher in the high vs. no fiber group (Figure 4E,
left bar graph). Greater amounts of muscle specific mRNA
species thus correlated with less muscle destruction in the
high fiber group. Decreased skeletal muscle damage in the
high fiber group, runs counter to the increased tissue damage
or reduced tissue repair suggested by the analyses shown in
Figure 4C. However, a recent report illustrated that butyrate
supplementation promoted skeletal muscle formation in mice
and up-regulated the expression of skeletal muscle genes,
specifically, Myh1 and Myh2, myoglobin (Mb), and troponin-
I, as well as the myocyte enhancer factor-2C (Mef2c), a key
transcription factor for myogenesis (121). Extracting these genes
from the full gene list (Supplementary Table 1a) illustrated that

all these genes had higher mean read counts in the high fiber
diet group, although only Mef2c reached significance (q= 0.045)
(Figure 4E, right bar graph). When all five genes were taken
together, their expression in the high fiber group was significantly
higher (Figure 4E, right bar graph). Taken together, these results
suggest that a high fiber diet is mildly myoprotective/myogenic
in this CHIKV infection setting.

The High Fiber Diet Modulates the
Macrophage Resolution Phase Signature
Tissue injury usually results in inflammation and neutrophil
recruitment, with subsequent resolution of inflammation and
initiation of tissue repair requiring an active process that involves
adoption of a resolution phase phenotype by macrophages.
The resolution phase is usually characterized by apoptosis
of neutrophils, the removal of apoptotic neutrophils by
macrophages (efferocytosis), the prevention of further neutrophil
recruitment and the initiation of tissue repair (53, 54, 135). In
contrast to autoimmune diseases (85), the cellular infiltrates in
alphaviral arthritides usually have few neutrophils (45, 83, 84),
perhaps arguing that a resolution phase phenotype is present
during peak arthritis. In this model viremia peaks days 1–3 and is
usually over by day 5 post infection, with peak arthritis occurring
days 6–7 post infection (47).

To determine whether a resolution phase macrophage (rM)
signature is present during peak CHIKV arthritis, a Gene Set
Enrichment Analysis (GSEA) was undertaken to determine
whether genes up-regulated in rM (52) were significantly
represented during peak arthritis in feet of CHIKV-infected
mice fed a normal diet (42). Using the microarray data
posted by, and the methods described in, Stables et al.
(52), we identified 146 genes that were up-regulated in rM
(when compared with naïve macrophages and inflammatory
macrophages) (Supplementary Table 1i). These DEGs were used
in a GSEA using a pre-ranked (log2 fold change) list of the 18,517
genes obtained by RNA-Seq analysis of feet day 7 post CHIKV
infection vs. mock infected feet (42) (Supplementary Table 1i).
The GSEA provided a NES score of 3.57 and a high level of
significance (q < 0.001), with 69/146 genes identified as core
enriched genes (Figure 5A, Supplementary Table 1i). Genes up-
regulated in rM were thus generally also up-regulated in arthritic
feet day 7 post CHIKV infection, when compared with mock
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infected feet (Figure 5B). This analysis indicates that a significant
rM signature is present in the feet of mice fed normal chow
during peak CHIKV arthritis, perhaps explaining (at least in part)
why there is a paucity of neutrophil infiltrates.

To determine whether the rM signature is modulated by a
high fiber diet, a GSEA was undertaken using the same 146
genes up-regulated in rM and the pre-ranked 33,054 genes
from CHIKV-infected feet from the high fiber vs. no fiber diet
group (Supplementary Table 1i). The GSEA again providing a
high level of significance, with 128/146 genes identified as core
enriched genes (Figure 5C, Supplementary Table 1i). However,
the NES score was negative (−2.69), with ≈35% of the genes
up-regulated in rM down-regulated in feet of mice fed a high
fiber diet (Figure 5D). Thus, the high fiber diet was associated
with a significant down-modulation of the rM gene signature
during peak CHIKV arthritis, which might explain (at least
in part) the delayed clearance of neutrophils in the high fiber
group (Figure 3C).

Th2 Tissue Repair Signature
The type 2 immunity genes associated with tissue repair
(IL-4, IL-13, IL-25, IL-5, TSLP, IL-33, TGFB1, and IL-10)
(136) were not significantly lower in the high fiber group
(Supplementary Table 1b). The IPA USR actually suggested
an up-regulation of TGFB1 activity (Supplementary Table 1e,
activation z-score 1.1, p = 0.0014), although this analysis did
show down-regulation of IL-10 (Table 1). The first five genes in
the aforementioned list also showed very low expression levels
(Supplementary Table 1a), consistent with the dominant Th1
bias associated with CHIKV infection in this model (45, 47).
That fiber has no significant effect on Th1/Th2 is supported
by Figure 2C.

CHIKV Rheumatic Disease After Drinking
Butyrate
The effects of high fiber diet are often associated with butyrate,
with butyrate substitution in the drinking water (like high
fiber diet) also able to exacerbate CHIKV-induced foot swelling
significantly (Figures 1C,E,G). As observed after a high fiber diet
(Figure 3A), drinking butyrate did not significantly increase the
levels of cellular infiltrates in feet 6.5 days after CHIKV infection
compared to drinking unsupplemented water (Figure 6A). This
remained true whenmice drank butyrate and were fed a standard
diet (Figure 6B). Similar to the observations made for the
high fiber diet group (Figure 3B), increased edema was again
discernible by H&E in the feet of CHIKV-infected mice drinking
butyrate (Figure 6C).

IHC staining for neutrophils illustrated very low levels of
neutrophils in both butyrate and water (no fiber) groups, with
marginally more neutrophils in the butyrate group, but this was
not significant (Supplementary Figure 8).

RNA-Seq of Butyrate vs. Water
RNA-Seq was undertaken using mRNA from feet of mice
harvested on day 6.5 post CHIKV infection after mice were given
either butyrate or unsupplemented water to drink; both groups
were on a no fiber diet (drink and diet conditions also used
for Figures 1E, 6A). Quality assurance data for the RNA-Seq
are shown in Supplementary Figure 5. The full RNA-Seq gene
counts are provided in Supplementary Table 1j and differentially
express genes (DEGs) with false discovery rate (FDR) q < 0.05
are listed in Supplementary Table 1k and were used for all
subsequent bioinformatics treatments, unless stated otherwise.

The number of DEGs for butyrate vs. water was only 68
(compared with 571 for high vs. no fiber diet, q < 0.05 for both),
illustrating that the perturbations in CHIKV rheumatic disease

FIGURE 5 | Macrophage resolution phase signature. The gene lists used in this figure are provided in Supplementary Table 1i. (A) A Gene Set Enrichment Analysis

(GSEAs) comparing the 146 up-regulated DEGs associated with rM with the expression profile obtained from RNA-Seq analysis of feet day 7 post CHIKV infection vs.

mock infected feet (18,517 genes pre-ranked by log2 expression). A normalized enrichment score (NES) and false discovery rate (q) is shown. (B) Heat map illustrating

that the 69 core enriched genes identified by the GSEA (out of the 146 genes up-regulated in rM) are generally also up-regulated during peak CHIKV arthritis (day 7

post infection). (C) A GSEA comparing the up-regulated DEGs associated with rM with the expression profile obtained from RNA-Seq analysis of feet of mice fed a

high fiber diet vs. feet of mice fed a no fiber diet day 6.5 post CHIKV infection (33,054 genes pre-ranked by log2 expression). (D) Heat map illustrating that the 126 core

enriched genes identified by the GSEA (out of the 146 genes up-regulated in rM) are generally down-regulated during peak CHIKV arthritis in mice fed a high fiber diet.
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FIGURE 6 | The effects of butyrate on CHIKV rheumatic disease. (A) Mice were fed a no fiber diet and given water supplemented with and without butyrate as in

Figure 1E. On the indicated day, feet were examined by H&E and Aperio pixel count as in Figure 3A. Statistics by t-tests, n = 6 mice and feet per group. (B) As for

(A), but mice were fed on a standard diet as in Figure 1C. Statistics by Kolmogorov–Smirnov tests n = 3–6 feet and mice per group. (C) H&E images of foot sections

of mice treated as in (A). *Edema. (D) Bar graph of fold change of all 571 DEGs (q < 0.05) for high fiber vs. no fiber (green) and 68 DEGs for butyrate vs. water

(yellow). Full data sets available in Supplementary Tables 1b,k. (E) IPA USR and Diseases or Functions Annotation analyses (direct only) of the 68 butyrate DEGs.

Full data sets available in Supplementary Tables 1l,n.

mediated by drinking butyrate were substantially less widespread
than those engendered by a high fiber diet (Figure 6D). This
observation is perhaps consistent with the more complex role
played by fiber, which inter alia produces a range of different
SCFAs (18, 137). In addition, drinking butyrate resulted in
only two genes with a fold change (FC) >2.8 (log2 of 1.5)
and a maximum fold change of 6.5 (log2 of 2.71). In contrast,
a high fiber diet resulted in 144 genes with FC>2.8 and a

maximum fold change 118 (log2 of 6.88). The overall magnitude
of transcriptional perturbations were thus also substantially
lower for butyrate (Figure 6D).

There was no overlap in DEGs identified for “butyrate vs.
water” and “high vs. no fiber” when a FDR q < 0.05 filter was
applied to both. When the significance filter for “butyrate vs.
water” was reduced to p < 0.05 (i.e., a p-value filter without FDR
adjustment), only a small overlap of six genes for up-regulated
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genes (with 169 DEGs for high fiber q < 0.05 and 692 genes for
butyrate p < 0.05) and 46 genes for down-regulated genes (402
DEGs for high fiber q < 0.05 and 1,220 genes for butyrate p <

0.05) became apparent. IPA USR analyses illustrated an overlap
of (i) 2 USRs (FOS and JUN) for the 9 USRs (for butyrate vs.
water) and the 34 USRs (for high vs. no fiber) with positive z-
scores, and (ii) an overlap of 8 USRs (NOTCH1, CEBPB, STAT3,
FOXO3, TP53, CREM, CTNNB1, KLF4, and PPARG) for the 45
USRs (for butyrate vs. water) and the 29 USRs (for high vs. no
fiber) with negative z-score (Supplementary Tables 1c,l).

The “Integrated System for Motif Activity Response Analysis”
(ISMARA) (70) provides an independent analysis of the
RNA-Seq data and generates an activity score for usage
of known transcription factor binding sites as determined
from the promoter regions of genes identified by RNA-Seq.
ISMARA provides a Z-value, with higher Z-values suggesting
more significant differences between the two groups. ISMARA
identified differential use (with Z > 1.5) of 11 transcription factor
binding sites for “butyrate vs. water” and 60 for “high vs. no
fiber.” Three of these sites were shared and showed the same
direction of change (Supplementary Table 1m). Thus, although
both butyrate and high fiber increased peak foot swelling
and promoted edema after CHIKV infection, the mechanisms
involved appear to be largely different.

Butyrate Modulates AP-1 and NF-κB
During CHIKV Arthropathy
Analysis of the 68 DEGs (Butyrate vs. Water;
Supplementary Table 1k) using the USR feature of IPA
(direct only), indicated that butyrate consumption up-regulated
(positive z-score) pathways associated with FOSL1 (FRA-
1), FOS (c-FOS), and JUN during peak CHIKV arthritis
(Figure 6E, Supplementary Table 1l). c-JUN, JUNB and JUND,
and c-FOS, FOSB, FRA-1 and FRA2 combine to form AP-1
transcription factor complexes, that can also include Maf and
ATF family members (138). Modulation of AP-1 complexes
was further supported by down-regulation of JUNB, FOSB,
and FOS amongst the 68 DEGs (Supplementary Table 1k),
with ATF4 down-regulation also identified by the IPA USR
(Supplementary Table 1l). ISMARA also suggested modulation
of AP-1 activities, although only Junb-Jund reached, and
Fosl2 approached, significance (Supplementary Figure 9,
Supplementary Table 1m). Butyrate has been shown to
modulate AP-1 activities in several settings (32–34), with AP-1
modulation previously associated with edema (139, 140) and
inflammation (141). Both FOS and JUN were also identified
(with positive z-scores) in the IPA USR analysis of high vs. no
fiber DEGs (Supplementary Table 1c).

The IPAUSR analysis suggested that several NF-κB, STAT, and
IRF pathways were down-regulated during peak CHIKV arthritis
in mice drinking butyrate (Supplementary Table 1l). NF-κB
inhibition was quite marked and highly significant (Figure 6E),
consistent with this pathway being a major target of butyrate
activity (31, 142). NFKBIA (NF-κB inhibitor alpha) was also

identified (with positive z-score) in the IPA USR analysis of high
vs. no fiber DEGs (Supplementary Table 1c).

Using the Diseases or Functions Annotation feature of IPA,
significant annotations for inflammation and rheumatic disease
were returned (Figure 6E), consistent with Figures 1E, 6C.
However, the dominant signature (with multiple annotations;
Supplementary Table 1n) was cell cycle arrest, reduced growth
and/or reduced proliferation (Figure 6E, right hand table); an
observation consistent with the ability of butyrate to promote
cell cycle arrest (125–127). However, the lack of histones in the
DEG list (Supplementary Table 1k) suggests this effect was less
substantial than that seen after a high fiber diet, consistent with
Figure 6D.

Anti-Viral Activity Was Unaffected by Fiber
or Butyrate
The IPA USR analysis (direct only) suggested the activities
of several transcription factors associated with type I IFN
responses (42, 71) are changed in the arthritic feet of mice
fed high fiber diet, although activation z-scores were generally
low (e.g., IRF8, STAT1, STAT3, NF-κB family, CTNNB1, ATF3;
Supplementary Table 1c). No USRs central to the anti-CHIKV
innate responses were identified [e.g., IRF3, IRF7, IFNAR (37)]
and the DEG list (Supplementary Table 1b) had few, if any,
effectors known to mediate anti-viral activity against CHIKV
(42). These results are consistent with the lack of significant
changes in viremia (Figure 1B) or viral loads in feet (Figure 2A).
In addition, RNA-Seq reads can be mapped to the CHIKV
genome (42), with the number of reads similar for high fiber verse
no fiber groups (Supplementary Figure 10).

Butyrate substitution in the drinking water also did not
affect viremia (Figure 1F) or viral loads in feet (Figure 2B)
or RNA-Seq reads mapping to the CHIKV genome
(Supplementary Figure 10). However, a number of innate
genes/activities associated with antiviral activity against CHIKV
(42) were down-regulated by butyrate (i) Mx1 (143), ≈1.5 fold
down-regulated (Supplementary Table 1k), (ii) IRF3 and STAT1
activities by IPA USR analyses (Supplementary Table 1l, z-score
−1.85 and −1.33, respectively), and (iii) Irf2_Irf1_Irf8_Irf9_Irf7
site usage (Supplementary Figure 9A, down in butyrate,
Z-value 3.29). In contrast, the negative regulator of type I
IFN responses, OASL1 (144) was down-regulated ≈1.5 fold
(Supplementary Table 1k). The low magnitude of changes
(Figure 6D), the counter-regulatory affects mediated by OASL1
and/or IRF2, and/or redundancy in the type I IFN system, may
explain the lack of an effect on CHIKV loads.

DISCUSSION

To the best of our knowledge this paper represents the
first study investigating the role of a high fiber diet and
SCFAs on alphaviral rheumatic disease. Although a large
body of work in non-infectious disease settings would argue
that a high fiber diet should ameliorate inflammation, we
illustrate herein that a high fiber diet modulated the CHIKV
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rheumatic immunopathology with increased edema, Th17/IL-
17 activities, neutrophil infiltration, and psoriasis-like signatures,
but reduced muscle damage. Although imbibing butyrate
has also been shown to ameliorate inflammation outside
the gut in multiple non-infectious disease settings (145–
147), herein we show that butyrate consumption increased
edema during CHIKV infection. Neither the high fiber
diet nor drinking butyrate affected viral loads or anti-viral
antibody responses; however, both clearly exacerbated CHIKV
arthritic immunopathology.

The most dramatic change to CHIKV immunopathology
mediated by a high fiber diet was the increase in edema and
infiltrating neutrophils during peak arthritis. The high fiber diet
mediated a range of changes to the CHIKV arthritic signature
that supported neutrophil recruitment, survival, and activation
(Table 1). Key drivers of neutrophil mediated inflammation
are Th17 cell and IL-17, and although we have not formally
demonstrated increased Th17 cells or IL-17 protein levels
in the feet of CHIKV infected mice fed a high fiber diet,
bioinformatic analyses suggest both are up-regulated in the
high fiber group (Table 1, Supplementary Table 1a). Perhaps
the most compelling bioinformatics support (for a fiber-
mediated increase in pro-inflammatory and IL-17-mediated
immunopathology after CHIKV infection) comes from the
significant similarities between CHIKV arthritis in mice fed a
high fiber diet and mouse models of inflammatory psoriasis
(122) (Figure 4B). Although this was an unexpected and
novel finding, there are salient parallels between CHIKV
infection and psoriasis; (i) CHIKV after a high fiber diet
and psoriasis both involve neutrophil recruitment (148), (ii)
psoriasis can cause alopecia (149), and can have follicular
involvement (124), with alopecia frequently reported by CHIKV
patients (150–153) and also seen in some CHIKV mouse
models (154, 155), (iii) although distinct from psoriatic lesions,
skin manifestations (usually maculopapular rashes) are well-
described for arthritogenic alphavirus infections in humans,
but are rarely overt in mouse models, although they can be
detected by IHC in certain settings (156), and (iv) perhaps
most cogent, both psoriasis and CHIKV are associated with
arthritis (157). The changes in skin immunopathology seen
herein are consistent with the well-described ability of the
gut microbiome to influence immunity in the skin via the
so-called gut-skin-axis (158). A role for IL-17 in psoriasis
has been established (159) and several studies in humans
have also found an association between gut microbiota and
Th17 responses (160, 161). Promotion of systemic Th17/IL-17
responses by acetate was also reported in another infectious
disease setting where mice were infected orally with the gram-
negative enteric bacteria Citrobacter rodentium (19). In addition,
HDAC1 inhibition [an activity of butyrate (162)] has been
shown to promote IL-17 transcription in human T cell lines
in vitro (163). Whether a high fiber diet would predispose
to more severe skin or rheumatic manifestations in humans
after CHIKV infection remains to be determined, and any
study seeing to establish a link would need to control for inter
alia the multiple ways in which diet might affect arboviral
infections (164).

The mechanisms whereby the high fiber diet would mediate
the neutrophil-promoting changes during CHIKV arthritis are
likely to be complex given the interaction of various SCFAs with
multiple cell types (10, 18, 24, 66, 113), the infection of different
cell types by CHIKV, and the complex interplay of anti-viral
and inflammatory responses seen post infection (36, 41, 42, 51).
Nevertheless, a likely key contributing mechanism highlighted
herein is the down-modulation in the rM gene signature seen
in feet during peak CHIKV arthritis in mice fed a high fiber
diet (compared with peak CHIKV arthritis in mice fed a no
fiber diet) (Figure 5). Adoption by infiltrating macrophages of
a resolution phase phenotype is usually associated with loss of
neutrophils and initiation of tissue repair (53, 54, 135). Both
the presence of neutrophils and the GSEA argue that adoption
of a rM phenotype is delayed in CHIKV arthropathy in mice
fed a high fiber diet. A high fiber diet is believed generally
to provide anti-inflammatory activities (10, 18) and anti-
inflammatory drugs have been associated with delayed wound
healing and/or tissue repair in a number of settings (165–167).
Although a high fiber diet provided beneficial effects in influenza
infections in mice, the mechanism also involved modulation
of neutrophil-mediated tissue damage via the reshaping of
macrophage functionality by SCFAs (66), perhaps arguing this
is an important pathway whereby fiber mediates its effects
on immunopathology.

Butyrate consumption increased edema during CHIKV
arthritis, but the mechanisms involved appeared to be different
from those seen for the high fiber diet. Bioinformatic analyses
of RNA-Seq data suggested modulation of AP-1 and NF-
κB activities and/or promotion of cell cycle arrest may be
involved. The RNA-Seq and IHC analyses did not suggest
any increases in pro-inflammatory cytokines (e.g., TNF, IL-
1, and VEGF) or altered cellular infiltrates that might be
associated with increased edema. Instead, we speculate that
butyrate is promoting edema (at least in part) by acting on
endothelial cells (24, 168). CHIKV infects endothelial cells
in vivo (37, 169) and edema is a well-known symptom of
CHIKV infection (47, 82). Endothelial barrier repair requires
NF-κB activation (170, 171) and a NF-κB to AP-1 transition
(172). Herein we provide evidence that butyrate promoted
certain AP-1 activities and markedly inhibited canonical NF-
κB pathways, consistent with previous studies on butyrate
(31–34, 142). Such modulation of these key pathways may
deoptimize endothelial barrier repair during CHIKV infection
leading to increased edema. Cell cycle arrest may also play
a role in promoting edema (both for butyrate Figure 6E and
high fiber diet Figure 4C), as edema is a well-known side-
effect of rapamycin (173, 174), a drug that also induces
G1 arrest.

Perhaps curious is (i) the inability herein to recapitulate
the effects of the high fiber diet with butyrate and (ii) the
relatively minor effect butyrate had on transcription when
compared with the high fiber diet (Figure 6D). For instance,
butyrate has been widely reported to mediate G1 cell-cycle
arrest via HDAC inhibition (125–127, 175). However, herein
we see a more pronounced cell-cycle arrest signature in the
high fiber group, as indicated by a widespread down-regulation
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of histone mRNAs (Supplementary Table 1h) that was not
observed in the butyrate group (Supplementary Table 1k).
The bioavailability of butyrate in vivo is actually quite low,
so the circulating concentrations required for systemic
HDAC inhibition may not be efficiently reached after
drinking butyrate (175, 176). The more pronounced cell-
cycle signature seen in the high fiber group may thus
be due to additional or complimentary cell-cycle arrest
activities mediated other SCFAs such as propionate and
valerate (129–133).

There are a number of limitations for the studies described
herein. Tissue levels of SCFAs were not assessed as part of
this study; analyses which might provide some insights into
the bioavailability issues discussed in the previous paragraph.
RNA-Seq was also not performed on uninfected mice from the
different dietary groups, limiting the interpretation of which
changes in the transcriptome are caused by diet alone, and
which are the result of the interplay of infection and diet. In
addition, the different dietary regimens may mediate indirect
effects on CHIKV arthritis, conceivably via changes in food/water
uptake or altered physiology. We have also not addressed
the question of whether a high fiber diet might change bone
marrow neutrophil development or differentiation, or whether
a high fiber diet affects circulating neutrophil numbers or
differentiation states or the CHIKV infection-mediated transient
leukopenia (169).

Arguably the most concerning aspect of CHIKV disease is
the chronic arthralgia (joint pain), which can be protracted
and is often difficult to manage with existing medications
(36). We show herein that the significant differences in
neutrophil infiltrates seen during peak arthritis (Figure 3C, Day
6.5), were not apparent during chronic arthritis [nominally
deemed to be day 30 post infection in this model (55)]
(Figure 3C, Day 30). Viral CPE and tissue damaging processes
are largely over by the time the chronic phase of disease
manifests (55), with the anti-inflammatory activity of fiber
conceivably able to provide benefit during this later stage of
CHIKV disease. Animal models of chronic arthralgia have not
been established and so investigating the potential benefits
of a high fiber diet for chronic alphaviral arthralgia would
likely require human studies. Although chronic alphaviral
arthralgia likely involves inflammatory pain, the arthralgia
can have neuropathic characteristics (36), which are not
usually considered to be effectively managed with anti-
inflammatory interventions.

The observations made herein for acute CHIKV rheumatic
immunopathology contrasts markedly with most reports in the
field that describe disease amelioration by high fiber diets and
SCFAs. However, the majority of such studies were conducted in
non-infectious disease settings, with the role of fiber and SCFAs
in infectious diseases largely unexplored, especially in scenarios
where there is a robust systemic infection and widespread tissue
damage, with a need for tissue repair. Some other studies have
also shown deleterious effects from fiber and SCFAs (68, 177),
reinforcing the notion that the health benefits of fiber and SCFAs
may often be quite setting dependent.
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