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In addition to its role in calcium homeostasis and bone formation, a modulatory

role of the active form of vitamin D on cells of the immune system, particularly T

lymphocytes, has been described. The effects of vitamin D on the production and action

of several cytokines has been intensively investigated in recent years. In this connection,

deficiency of vitamin D has been associated with several autoimmune diseases,

including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), antiphospholipid

syndrome (APS), Hashimoto Thyroiditis (HT), and multiple sclerosis (MS). In a successful

pregnancy, the maternal immune response needs to adapt to accommodate the

semiallogeneic fetus. Disturbances in maternal tolerance are implicated in infertility

and pregnancy complications such as miscarriages (RM) and preeclampsia (PE). It is

well-known that a subset of T lymphocytes, regulatory T cells (Tregs) exhibit potent

suppressive activity, and have a crucial role in curtailing the destructive response of the

immune system during pregnancy, and preventing autoimmune diseases. Interestingly,

vitamin D deficiency is common in pregnant women, despite the widespread use of

prenatal vitamins, and adverse pregnancy outcomes such as RM, PE, intrauterine growth

restriction have been linked to hypovitaminosis D during pregnancy. Research has shown

that autoimmune diseases have a significant prevalence within the female population,

and women with autoimmune disorders are at higher risk for adverse pregnancy

outcomes. Provocatively, dysregulation of T cells plays a crucial role in the pathogenesis

of autoimmunity, and adverse pregnancy outcomes where these pathologies are also

associated with vitamin D deficiency. This article reviews the immunomodulatory role of

vitamin D in autoimmune diseases and pregnancy. In particular, we will describe the role

of vitamin D from conception until delivery, including the health of the offspring. This

review highlights an observational study where hypovitaminosis D was correlated with

decreased fertility, increased disease activity, placental insufficiency, and preeclampsia in

women with APS.
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INTRODUCTION

First, we will briefly summarize the enzymes and precursors involved in the synthesis of the active
form of vitamin D (Figure 1). Vitamin D3 (cholecalciferol) is taken in the diet or is synthesized in
the epidermis from 7-dehydrocholesterol by exposure to ultraviolet irradiation (UV) (1). In order
to be biologically active, vitamin D must be converted to its active form.
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FIGURE 1 | Synthesis of active form of vitamin D (1,25(OH)2D3).

Vitamin D is transported in the blood by the vitamin D
binding protein (DBP). In the liver vitamin D is hydroxylated
at C-25 by cytochrome P450 vitamin D 25 hydroxylases,
resulting in the formation of 25-hydroxyvitaminD3 (25(OH)D3).
CYP2R1 is the key enzyme required for 25 hydroxylation of
vitamin D (1). 25(OH)D3 is then hydroxylated in the A ring
at carbon 1, resulting in the biological active form of vitamin
D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). The cytochrome
P450 monooxygenase 25(OH)D 1α hydroxylase (CYP27B1;
1α(OH)ase) is present in the kidney and other extrarenal sites
such as the placenta, macrophages, lungs, and brain. Despite
normal dietary vitamin D intake, mice with mutations in the
1α(OH)ase gene develop vitamin D dependency rickets (VDDR)
type 1, highlighting the importance of this enzyme. In this review,
we will use the term vitamin D to describe the active molecule
1,25 (OH)2D3 unless we specify the vitamin D metabolite or
precursor particularly investigated.

EFFECTS OF VITAMIN D ON THE IMMUNE
SYSTEM

Historical Evidence of the Role of Vitamin
D on the Immune System
A hundred years ago, the observations of Mellanby suggested
a relationship between vitamin D and the immune system. An
increase incidence of respiratory infections in rachitic children
and dogs was reported in his study (2). Interestingly, vitamin D
has been empirically used to treat infections such as tuberculosis
(TB) before the discovery of antibiotics. Sunlight exposure and
being outdoors was recommended for patients with TB based on
the ability of UV to kill bacteria (3). Vitamin D-rich fish liver
oil has also been used to treat TB patients. At the time, these
observations were attributed to vitamin D deficiency leading to
weakness and malnutrition instead of the effect of vitamin D
on the immune system. The mechanism of action of vitamin
D on the immune system was better understood with the help
of molecular biology. We now know that the protective role

of vitamin D on the immune system played an important
role behind these old therapies to treat TB (4). In this line,
present data favor ultraviolet (UV) irradiation and consequent
suppression of local and systemic immune responses to reduce
the severity of some inflammatory and immune diseases such as
psoriasis, multiple sclerosis and asthma (5–7).

Interestingly, recent data demonstrate a link between
vitamin D and TB. In this line, patients suffering from TB
have shown either vitamin deficiency or vitamin D receptor
(VDR) polymorphisms. Furthermore, vitamin D can suppress
intracellular growth ofM. tuberculosis in vitro (8, 9). In addition,
the vitamin D-stimulated expression of antimicrobial peptides
such as cathelicidin, involved in the first line of defense in TB
patients, might be responsible for its protective effect in TB (10).

Immunoregulatory Effects of Vitamin D
The expression of vitamin D receptor (VDR) in immune cells has
highlighted an interesting role of vitaminD in immunity. Today a
compelling body of experimental evidence indicates that vitamin
D plays a fundamental role in regulating both innate and adaptive
immune systems (11). Vitamin D displays a local immune effect
via intracellular vitamin D receptors (VDR), that are known to
be present in monocytes/macrophages, T cells, B cells, natural
killer cells (NK), and dendritic cells (DCs). After binding to
its receptor VDR (a member of nuclear receptor superfamily),
vitamin D forms a heterodimer with retinoid X receptor (RXR).
This complex engages vitamin D Response Element (VDRE) and
recruits activators and enzymes with histone acetylation activity.
Therefore, the structural changes in chromatin induced by this
complex results in the regulation of targeted gene (12).

Vitamin D and Innate Immunity
The innate immune system is differentially regulated by vitamin
D signaling, where it modulates the synthesis of antimicrobial
peptides (AMPs) including, cathelicidin and defensins (13). In
this line, promoters of the human genes for cathelicidin, and
defensin β2 contain VDRE. NKT cells are thymically derived
cells of the innate immune system that produce high amounts
of cytokines including IL-4 and IFN-γ. Vitamin D through
its interaction with VDR regulates the normal development
and function of NKT cells. In this line, NKT cells isolated
from VDR knock out mice exhibited diminished secretion of
IL-4 and IFN-γ. In addition, vitamin D induced activation
in NK cells (14). Recently, Chen et al. studied the effect of
vitamin D supplementation on innate immune cells. They
observed an enhanced production of IL-1beta and IL-8 by both
neutrophils and macrophages, whereas the phagocytic capacity
was suppressed in these cells (15) (Figure 2). Other studies have
similarly revealed that vitamin D suppresses the activation of
macrophages resulting in an anti-inflammatory M2 macrophage
phenotype (16). Notably, activation of human monocytes
using CD40 ligand and interferon gamma (IFN-γ) have been
found to induce VDR and CYP27B1-hydroxylase expression,
resulting in enhanced autophagy and antimicrobial peptide
synthesis (17). Whereas, vitamin D increases phagocytosis and
bactericidal activity of pathogens such as M. tuberculosis and P.
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FIGURE 2 | Immunomodulatory effects of vitamin D (1,25(OH)2D3) on multiple immune cell lineages. NK, natural killer; DC, dendritic cell; R, receptor; VDR, vitamin D

Receptor; M8, macrophage.

aeruginosa by macrophages (8, 18). Furthermore, the immune-
modulating effects of vitamin D and its analogs have been
well-characterized in dendritic cells (DCs), which are known
to stimulate lymphocytes through antigen presentation. Recent
research showed a robust vitamin D-dependent inhibition of
maturation, differentiation, and survival of DCs (19). Several
in vitro and in vivo studies have demonstrated a decreased
expression level of costimulatory molecules (CD80, CD40,
CD86), major histocompatibility complex (MHC) class II, and
other maturation-induced surface markers, resulting in impaired
maturation of DCs (20) (Figure 2). In response to inflammatory
signals, vitamin D strongly impairs themigration andmaturation
of DCs, which culminates in reduced antigen presentation
capacity and activation of T cells. Furthermore, cytokine shift
with reduced interleukin-2 (IL-2) production, and increased IL-
10 expression, leads to suppression of T helper 1 (Th1) phenotype
(Figure 2). Therefore, by maintaining DCs in an immature
phenotype, vitamin D and its analogs contribute to an induction
of a tolerogenic state (21, 22).

Vitamin D and Adaptive Immunity
Early studies have shown that the VDR is highly expressed post-
activation in both B and T lymphocytes (23). Among the main
functions of vitaminD in the adaptive immune system, the effects
of vitamin D on T cells deserve special attention. By binding to
the VDR on T cells, vitamin D modulates the differentiation and
activation of CD4+ lymphocytes (24).

Tregs, a subset of CD4+ lymphocytes suppress the immune
response and mediate immune tolerance. Several studies have
shown that vitamin D promotes proliferation and effector
functions of immunosuppressive Foxp3+ Tregs (25–27). In
humans, vitamin D mediates regulation of suppressive T

cells in complicated pregnancies (28). In addition, vitamin D
signaling enhances the numbers of Tregs both in patients with
inflammatory diseases and healthy controls (29). Interestingly,
Vitamin D suppresses T lymphocytes proliferation by reducing
IL-2 gene transcription, and inhibiting the production of
pro-inflammatory Th-cytokines including, IFN-γ, IL-2,
and IL-17 (30) (Figure 2). In agreement with prior studies,
immunophenotyping of naïve and memory T lymphocytes
in children has revealed an association between vitamin
D and risk of infections. In this line, higher vitamin D
levels were associated with protection due to increased
number of memory T lymphocytes (31). Similarly, a recent
study has demonstrated that reduced levels of vitamin D
were associated with altered activation of T-lymphocytes
in neonates. In particular, measurement of neonates and
mothers’ cord blood had revealed lower levels of naïve CD4+

T cells, CD4+ T-helper, and CD8+ cytotoxic T lymphocyte
in the vitamin D deficient group. In addition, one out of
every six infant that presented with sepsis was deficient
in vitamin D, suggesting a higher risk of infection in this
group (32). Additionally, single-nucleotide polymorphism
(SNP) analysis has identified T cell activation RhoGTPase
activating protein (TAGAP) and IL-2RA as vitamin D
responsive genes of CD4? T cells in patients with multiple
sclerosis (33).

It also appears that vitamin D suppresses proliferation and
immunoglobulin production in B cells. In addition, it also
suppresses the differentiation of B cells into plasma cells (34, 35).
Naïve B cells express very low levels of VDR. However, following
activation VDR expression in B cells is increased. Vitamin D
signaling potentiates apoptosis of activated B cells in presence
of relevant stimuli. Moreover, vitamin D inhibits memory B cell
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formation and secretion of immunoglobulins IgG and IgM in
activated B cells (36).

Vitamin D and Autoimmunity
Autoimmunity
In view of the immunomodulatory effects of vitamin D on the
adaptive immune response, we will discuss next the significance
of vitamin D levels in autoimmune disorders. Autoimmune
diseases are characterized by self-tissue destruction via the
adaptive immune responses which evade immune regulation. As
described above, vitamin D has been defined as a natural immune
modulator. Vitamin D regulates the differentiation and activity of
CD4+ T cells, resulting in a more balanced Th1/Th2 response
that limits development of self-reactive T cells preventing
inflammation and autoimmunity (37–39). Therefore, a role for
vitamin D deficiency in the pathogenesis of autoimmune diseases
has been proposed. Several population-based and molecular
studies reinforced this observation (34, 40, 41).

As previously described (Figure 2), vitamin D modulates
adaptive immune cell functions explaining the significant
association between vitamin D deficiency and autoimmune
diseases, such as rheumatoid arthritis (RA), systemic
lupus erythematosus (SLE), antiphospholipid syndrome
(APS), Hashimoto’s thyroiditis (HT), and multiple sclerosis
(MS) (42–49).

In animal models for MS and SLE, administration of
vitamin D either prevented or improved autoimmunity
(50). Furthermore, studies performed in mouse models with
abrogated vitamin D signaling (dietary or genetic manipulation)
demonstrated increased susceptibility to autoimmunity (51–53).

Rheumatoid arthritis (RA)
Rheumatoid arthritis (RA) is an autoimmune disorder with a
very complex pathophysiology. It is believed to be initiated
by a Th1 type response resulting in joint destruction by
immune cells (54). The presence of 1α hydroxylase and VDR
on macrophages, chondrocytes, and synovial cells in the joints
suggest that vitamin Dmight have a role in RA pathogenesis (55).
Accordingly, it has been shown that vitamin D downregulates
the production of proinflammatory cytokines IL-1β, IL-6, and
TNF-α in macrophages in synovial tissue (42). Therefore, it
has been suggested that vitamin D deficiency may increase the
risk for the development of RA (56, 57). Consistent with this
hypothesis, an inverse correlation between the risk to develop
RA and vitamin D levels was described in a large population-
based study comprising of almost 30 thousand women (58).
Furthermore, evidence continues to accumulate supporting a role
of VDR polymorphisms in the pathogenesis of RA (59). TaqI and
FokI vitamin D receptor polymorphisms have been associated
with an increase RA risk (60).

Systemic lupus erythematosus (SLE)
Among patients with autoimmune diseases, a higher prevalence
of vitamin D deficiency was observed in systemic lupus
erythematosus (SLE) (61). Patients with SLE have multiple risk
factors for vitamin D deficiency. Increased photosensitivity,
responsible for lower sun exposure, leads to a diminished

production of vitamin D in the skin. In patients with lupus
nephritis, the affected kidney may fail to carry out effective
hydroxylation step of 25(OH)D. On the other hand, vitamin D’s
ability to modulate the immune suggests that hypovitaminosis D
might lead to loss of tolerance and production of autoantibodies
by B cells (62). In addition, vitamin D insufficient levels
exacerbate autoantibody production and disease activity in
SLE (63).

Antiphospholipid syndrome
Antiphospholipid syndrome (APS) is a systemic autoimmune
disease characterized by thrombosis and obstetric complications.
Thirty to forty percent of patients with SLE develop
antiphospholipid antibodies. These antibodies may activate
a cross talk between inflammation and thrombosis leading
to adverse clinical events (64). An active crosstalk between
inflammation and coagulation involving the complement system
and tissue factor (TF), showed to be directly involved in APS-
associated pregnancy complications in both mice and women
(65–67). Vitamin D has shown not only immunomodulatory but
also anti-thrombotic properties. In a study by Agmon-Levine
et al., vitamin D deficiency was documented in almost 50%
of APS patients vs. one third of controls and was significantly
associated with thrombosis (68). In in vitro studies, vitamin
D inhibited the expression of TF induced by antiphospholipid
antibodies. A recent in vitro study in vascular smooth muscle
cells demonstrated that vitamin D modulates tissue factor
and protease-activated receptor 2 (PAR-2) expression (69).
Provocatively, TF/PAR-2 signaling has been involved in the
pathogenesis of adverse pregnancy outcomes in a murine model
of APS (65).

As previously mentioned, complement activation plays a
crucial role in adverse pregnancy outcomes in APS in mice
and women (70–75). Interestingly vitamin D showed to increase
expression of complement inhibitor CD55 (decay accelerating
factor) in human monocytes and the associated inhibition
of complement activation led to the prevention of preterm
birth, adverse pregnancy outcome observed in APS (76).
Reinforcing the role of vitamin D in pregnancy in APS,
pravastatin that prevented pregnancy complications in APS
in mice and women (65, 77) was shown to increase plasma
concentrations of 25(OH)D and vitamin D in a rat model (78).
Therefore, indicating that vitamin D might also contribute to
the protective effects of pravastatin in obstetric APS (OAPS).
Vitamin D deficiency is common among APS patients (52)
and is also associated with placental dysfunction and adverse
pregnancy outcomes (79). Therefore, vitamin D deficiency
might contribute to the abnormal placental development and
to the adverse pregnancy outcomes observed in OAPS [see
Observational Study: Vitamin D levels inWomenWith Obstetric
Antiphospholipid Syndrome (OAPS)].

Autoimmune thryroiditis—hashimoto thyroiditis (HT)
Vitamin D serum levels has been associated with the onset
and progression of several autoimmune diseases including HT
(80). In this line, higher serum 25OHD levels were associated
with decreased risk of Hashimoto thyroiditis (HT). In this
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study, the authors found that vitamin D supplementation leads
to a significant decrease in the risk of developing HT (81).
Interestingly, a meta-analysis showed a significant correlation
between certain VDR gene polymorphisms and HT (82).
Animal studies have shown a protective role of vitamin D
in the development of experimental autoimmune thyroiditis
(83). Vitamin D supplementation, improved inflammation
of the thyroid gland by suppressing autoantibodies and
proinflammatory cytokines production in mice (83, 84).
Interestingly, several studies reported a significant association
between vitamin D deficiency with the risk of HT (85, 86). On the
other hand, a few studies did not find any link between vitamin
D deficiency and the risk of Hashimoto thyroiditis (87, 88).

Multiple sclerosis
Multiple sclerosis (MS) is a demyelinating autoimmune
condition targeting the central nervous system (CNS) (89).
There is a large body of evidence suggesting an association
between lack of vitamin D early in life and development
of MS (90). Furthermore, a nearly two-fold increased risk
of MS was reported in the offspring of mothers that were
vitamin D deficient (<30 nmol/L) during early pregnancy (90).
Interestingly, UVB-induced vitamin D has shown protective
effects in MS patients by upregulating Tregs and tolerogenic
DCs (91). Similarly, these effects have also been observed in the
experimental autoimmune encephalitis (EAE) mouse model of
MS in which vitamin D induces tolerance via Tregs and IDO+
dendritic cells leading to reduced disease severity (92). Notably,
vitamin D showed protective effects in a mouse model through
the modulation of tight junction proteins in the BBB and nuclear
factor kappa B (NFκB) activation (93). The anti-inflammatory
effects of vitamin D toward a Th2 immune response may also
contribute to its protection of the CNS (37). It is still debatable
if the immunomodulatory effects of vitamin D can be used for
clinical benefit in MS.

ROLE OF T CELLS IN PREGNANCY AND
ITS COMPLICATIONS

In the last decade, an integrated mechanism, acknowledging
both the innate and adaptive immune systems have been
described to explain the maternal immune tolerance required
to avoid rejection of the conceptus (94). It is established
that during implantation, an active immune suppression is
required to prevent an immune response against developing
embryo. In this context, Tregs play a central role by repressing
cytotoxic T cells, Th1 cells, macrophages, DC and NK cells
leading to immune quiescence (95). Hence, both a maternal
and fetal immune symbiotic relationship is created to allow
a conducive environment for fetal growth and development.
Several mechanisms support the maternal immune tolerance
at the fetal–maternal interface. First, the adaptive immune
response is curtailed by immune suppressive pathways or
skewed toward immune tolerance. Second, the immune system
contributes to the tissue remodeling necessary for placental
development and function. In this context, uterine NK cells

(uNK) have a special role facilitating trophoblast migration and
the consequent development of the spiral arteries in contrast with
peripheral cytotoxic NK cells (96). These uNK cells developed
under the influence of IL-15 signaling that is expressed widely
in the decidua and placenta (97). Furthermore, macrophages
and DCs contribute to the immune tolerance in the gravid
uterus. This unique immunological environment, important in
maintaining a tolerant maternal–fetal interface is sustained by
soluble molecules such as cytokines, chemokines, hormones,
and prostaglandins (97). Crucial cell surface proteins, involved
in induction of tolerance, are immune checkpoint inhibitors
such as programmed death-1 (PD-1) and PD1 ligand (PD-
L1). The importance of PD-1/PD-L1 has been demonstrated
with an augmentation of this immunosuppressive pathway
in normal pregnancies (98). The cytotoxic capacity of CD8+

T subset in the decidua is significantly lower compared to
peripheral CD8+ T cells (99). In line with the importance of
immune checkpoint inhibitors in favorable pregnancy outcomes,
increased Tregs, have been observed in mouse models (100).
In addition to expression of immune checkpoint inhibitors,
Tregs secrete immuno-suppressive cytokines TGF-β and IL-
10 (101). Complete abrogation of TGFβ signaling leading to
Tregs deficiency results in non-viable mice (102). Restoring
TGFβ signaling rescues this phenotype (103). In addition, partial
TGFβ signaling leads to recurrent pregnancy loss (102). Decidual
cytotoxic CD8+ T cells are regulated in part via Tregs and
relative expression of immune checkpoints (98). The loss of these
regulatory mechanisms lead to enhanced CD8+ T cell responses
and adverse pregnancy outcomes (104).

THE ROLE OF VITAMIN D IN PREGNANCY:
FROM CONCEPTION TO PARTURITION

In recent years, “pleiotropic” effects of vitamin D beyond its
skeletal regulator functions have been demonstrated. Vitamin
D autocrine, paracrine and endocrine functions have been
described in numerous organs and systems, in particular the
reproductive system. Several studies underscore the role of
vitamin D in conception, placentation, progression of pregnancy
and pregnancy outcomes including the offspring’s health.

Vitamin D deficiency is common in women of reproductive-
age (105). In a recent cohort study performed in Norway
pregnant women from different ethnic groups showed
hypovitaminosis D. Circulating vitamin D levels (<25 nmol/L)
were found during pregnancy in women from South Asia
(45%), Middle East (40%) and Sub-Saharan Africa (26%)
(106). Hypovitaminosis D is a risk factor for infertility and
several adverse pregnancy outcomes (107, 108). Furthermore,
pre-pregnancy vitamin D levels higher than 75 nmol/L were
associated with increased likelihood of pregnancy, reduced
pregnancy loss and increased number of livebirths (109).

For many decades it was thought that metabolism of
25(OH)D3 only took place in the kidney. However, metabolism
of 25(OH)D3 was demonstrated in many other organs including
the reproductive tract. 25(OH)D3 and VDR are present in a
variety of female reproductive organs such as pituitary glands,
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hypothalamus, uterus, oviducts, ovaries, mammary glands, and
the placenta (110). In this line, α-hydroxylase expressed in the
decidua and placenta highlights the role of vitamin D synthesis
in the fetomaternal interface (111, 112). Altogether, vitamin
D supports placental development and function by regulating
placental calcium transport, and by exerting immunomodulatory
effects, critical for pregnancy maintenance (113, 114).

Role of Vitamin D in Fertility
Vitamin D in Female Fertility
Reduced mating success and fertility was observed in female rats
with vitamin D deficiency. Vitamin D-deficient diet caused a
reduction of up to 70% in the ability to conceive and a significant
reduction in the number of viable pups (115). In agreement with
the role of vitamin D in mammalian fertility, synergistic effects
of vitamin D and progesterone have been observed in ovum
implantation in rabbits (116).

While the diminished fertility in mice can be attributed to
inadequate calcium levels to induce oocyte maturation, direct
effects of vitamin D on the ovaries and hypothalamic–pituitary
axis, including brain neurotransmitters such as serotonin,
dopamine, and endogenous opioids should be acknowledged
(108). In this line, vitamin D biosynthesis and signaling systems
were demonstrated in primate ovarian follicles (117). A recent
study demonstrated that vitamin D supplementation promoted
survival and growth of antral follicles as well as oocytematuration
(117). Correlations between fertility, seasonal variations and
geographical regions, have also been observed. It is now clear that
these variations are due to changes in vitamin D-levels dependent
on UV exposure (118).

Therefore, it is tempting to speculate that vitamin D deficiency
might play a role in infertility, a common and distressing issue
that affects around 10% of all couples. Consistent with this, a
recent systematic review showed an association between serum
vitamin D levels and the number of live births in women
undergoing assisted reproductive technology (ART) (119). This
study suggests that deficiency and insufficiency of vitamin D
could be important factors to treat, particularly in women with
compromised fertility to improve ART outcomes.

Vitamin D and Male Reproductive Physiology
The male reproductive tract is among the widespread systems
affected by vitamin D. Expression of VDR, activating enzymes
(CYP2R1, CYP27A1, CYP27B1), and inactivating enzymes
(CYP24A1) have been demonstrated in the spermatozoa, seminal
vesicle, prostate, epididymis including the human testis (120,
121). In addition, vitamin D deficiency has been associated
with abnormal spermatogenesis and fertility in animal studies
(122). In rats, a significant diminution (73%) was observed
in the pregnancy rate when wild type females were mated
with diet-induced vitamin D deficient males compared to
females mated with vitamin D sufficient-males (122). In support
of the observation that vitamin D is required for male
fertility, oligoasthenospermia was described in α-hydroxylase
CYP27B1 null mice. In this connection, men with vitamin
D deficiency also exhibited altered sperm motility (123).
Moreover, these α-hydroxylase CYP27B1 null mice also showed

hypergonadotrophic hypogonadism suggesting a modulatory
role for vitamin D signaling in gonadal function (124).
Hypocalcemia has been shown to compromise capacitation
and acrosomal reactions, crucial steps in fertilization (125).
Therefore, hypocalcemia and hypophosphatemia secondary to
vitamin D deficiency may also play an important role in male
infertility. Furthermore, diets rich in calcium and phosphorous
rescue male fertility in VDR knock-out mice and in male rats on
a vitamin D deficient diet (126).

Role of Vitamin D in Conception
The rapid induction of VDR and α-hydroxylase CYP27B1
in decidua and placenta early in pregnancy highlights a
fundamental role of vitamin D in conception, including
implantation and the development of the placenta itself
(110, 127).

It has been demonstrated that vitamin D binding to VDR
upregulates key target genes, such as HoxA10 crucial for
endometrial development, uterine receptivity and implantation
(128). The importance of vitamin D in the process of
implantation has been further highlighted by studies using
knockout mouse models. Both VDR and α-hydroxylase
CYP27B1 knock out female mice present with uterine hypoplasia
and infertility (129, 130). Injection of vitamin D has been shown
to increase uterine weight and promote decidualization of the
endometrium in pseudo-pregnant rats suggesting that vitamin D
contributes to a crucial step in blastocyst implantation (131).

In addition to its direct role in the decidualization and
placentation, vitamin D may also influence implantation and
placentation indirectly via its immunomodulatory actions. The
immunosuppressive effects of vitamin D during pregnancy and
in particular during implantation were postulated many year ago
and might contribute to preventing a maternal immune response
against the paternal genes-carrying embryo (127). Therefore,
throughout pregnancy, decidual synthesis of vitamin D has the
potential to modulate uNK cells, DCs, macrophages and T-cells
leading to immune tolerance (132, 133). It is well-established that
vitaminD inhibits Th1 cytokines while promoting Th2 cytokines,
therefore it may favor the process of implantation (133).

Pregnancy Complications and Vitamin D
Preeclampsia (PE)
Fetal cytotrophoblast and differentiated extravillous trophoblasts
(EVT) invasion of the maternal decidua and myometrium in the
first trimester of pregnancy is key for placentation and successful
pregnancy. Interactions between trophoblasts, decidual stromal,
and immune cells facilitate implantation and maintenance of
pregnancy. Importantly, defective invasion of EVT can cause
abnormal placentation and important pregnancy disorders such
as miscarriage, PE, intrauterine growth restriction (IUGR),
preterm birth (PTB) and stillbirth. Vitamin D deficiency has been
associated with increased incidence of pregnancy complications
(134). A recent meta-analysis demonstrated an increased risk of
PE in women with hypovitaminosis D (135).

Abnormal expression of 1α-hydroxylase has been observed in
syncytiotrophoblastic cells from preeclamptic pregnancies (136).
Even more, low levels of vitamin D have been found in women
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that developed severe early onset preeclampsia and vitamin D
supplementation showed a protective effect against recurrent PE
(137, 138). That PE is characterized by defective placentation
at early stages of pregnancy and that hypovitaminosis D is
frequently found in women with PE, suggest a potential role
for vitamin D as a crucial molecule in normal placentation. An
association between VDR FokI polymorphism and the risk of
PE has also been reported, suggesting that the interaction of
vitamin D with its receptor is required for placenta development
and function (139). It has also been suggested that low levels
of vitamin D may disrupt the immune balance leading to
overexpression of Th1 cytokines and failure of immunological
tolerance toward embryo implantation (133). In this line, higher
expression of Th1 cytokines have been described in placentas of
preeclamptic pregnancies, suggesting a protective role of vitamin
D at the feto-maternal interface (140).

That both abnormal trophoblast invasion and maternal
hypovitaminosis D are associated with abnormal placentation
and adverse pregnancy outcomes, suggests a link between
vitamin D and EVT migration. Interestingly, vitamin D has
been described as a modulator of cellular motility and invasion
in cancerous cells (141). In this line, ex vivo studies have
shown that vitamin D promotes migration and invasion of
human EVT isolated from first trimester pregnancies, through
enhanced expression of matrix metalloproteinases MMP2 and
MMP9 (142).

The molecular mechanisms behind the regulatory effects of
vitamin D on cell migration and invasion are not completely
understood. Vitamin D has been shown to regulate the actin
cytoskeleton in numerous cell types, including trophoblasts
(143). In addition, vitamin D restored mobility in umbilical vein
endothelial cells (HUVEC) derived from pregnancies affected
by PE and gestational diabetes (144). Vitamin D may also
exert indirect effects on trophoblast invasion by stimulating
the secretion of human chorionic gonadotrophin (hCG) and
progesterone (145).

In addition to the detrimental effects in placentation and
potential causative effects in PE development, vitamin D
deficiency might also contribute to hypertension, a characteristic
sign of PE. It is known that suboptimal levels of vitamin D
are associated with unfavorable effects on the cardiovascular
system. Vitamin D deficiency has been shown to activate the
renin-angiotensin-aldosterone system (RAAS) and to induce
endothelial dysfunction, both contributing to hypertension
(146). In support of the role of vitamin D on the RAAS
system, VDR knockout mice displayed disrupted renin
expression and angiotensin II production (147). Vitamin D
deficiency might also play a role in endothelial dysfunction,
a crucial feature in the pathogenesis of PE. 1α-hydroxylase
is present in the endothelial and vascular smooth muscle
cells protecting the vascular walls through generation of
vitamin D (148). Furthermore, vitamin D inhibits endothelial
cell activation by cytokines as well as adhesion molecules
expression that involves TNF-α (149, 150). Therefore, it has been
hypothesized that vitamin D supplementation might help protect
endothelial function and control blood pressure in preeclamptic
patients (151).

Vitamin D in Obesity in Pregnancy
Obesity is a major contributing factor to vitamin D status in
pregnancy. While there is no difference between non-obese
and obese individuals regarding the synthesis of vitamin D
in the skin, the vitamin D concentration in plasma is 57%
less in the obese than in the non-obese subjects (152). In this
line, it has been demonstrated that excessive adipose tissue
causes a decrease in the release of endogenously synthesized
vitamin D into the circulation (152). Obesity, a health issue
with serious cardiovascular risk also results in higher incidence
pregnancy complications associated with increased maternal
and fetal morbidity. Studies performed in a large cohort of
Chinese couples of reproductive age showed that increases
in pre-pregnancy maternal and paternal body mass index
(BMI), both independently and combined, increases the risk of
adverse pregnancy outcomes such as PTB, low weight birth,
and stillbirth (153). The likelihood of conception decreases in
a linear fashion with increases in BMI (4% decrease per 1
kg/m2 weight gain, starting from a BMI of 29 kg/m2) (154).
Diminished bioavailability of vitamin D in obese pregnant
women leading to reduced immunomodulatory effects at the
fetal–maternal interface might explain the adverse pregnancy
outcomes in these women. Limited sunlight exposure and
nutrient-poor but hypercaloric diets might exacerbate the
vitamin D deficiency observed in obese pregnant women,
affecting both the mother and the developing fetus. It has
been suggested that supplementation with vitamin D might be
beneficial in obese patients (155).

Preterm Birth (PTB)
PTB, is a major public health concern as it is the main cause of
neonatal morbidity and mortality, with an estimated prevalence
of 10.6% of live births (156). Epidemiologic studies suggested
an association between maternal hypovitaminosis D during
pregnancy and PTB (157). It has been suggested that low levels of
maternal circulating vitamin D could increase PTB risk and that
vitamin D supplementation during pregnancy might help reduce
this risk (158).

The onset of labor is caused by an inflammatory response
that not only involves the resident immune cells but also the
recruitment of inflammatory cells into the reproductive tissues.
Of note, there is a significant amount of cytokines/chemokines
released at the feto-maternal interface (159). Untimely,
premature activation of these inflammatory pathways leads to
preterm labor, which can result in PTB. It has been suggested that
T cell activation participates in these proinflammatory responses
at the fetomaternal interface and cervix during preterm labor.
Moreover, T cells with a Th1 phenotype were found in the
cord blood of preterm but not in term infants (160). That
lower levels of vitamin D are observed in women that delivered
preterm, suggests that vitamin D may play an important role in
suppressing the maternal immune response and Th1-mediated
inflammatory pathways that lead to the onset of labor. In
line with vitamin D effects on Tregs, a significant correlation
between Tregs and blood vitamin D levels was observed in
term and preterm parturition (161). A recent meta-analysis that
included 15 trials and 2,833 pregnant women, concluded that
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supplementation with vitamin D reduced the risk of PTB by
65%, PE by 48% and low birthweight (lower than 2,500 g) by 60%
compared with no intervention or placebo (162).

MATERNAL VITAMIN D DEFICIENCY
ASSOCIATION WITH FETAL ORIGIN OF
ADULT DISEASE (FOAD)

The surrounding environment affects our health in countless
ways. Provocatively, the effects of the environment begin early
in life; the maternal womb being the first environment to
which the organism is exposed. During the intra-uterine life, the
developing fetus is particularly vulnerable to insults, not limited
to malnutrition (163).

The placenta is formed at gestational week 4 allowing
nutrients to reach the developing fetus. From this time
until delivery 25(OH)D3 easily crosses the placenta reaching
concentrations in fetal cord blood equivalent to 87% of the
maternal blood levels (164). The biological active vitamin D does
not cross the placenta (Figure 3). Interestingly, the placenta and
fetal tissues express 1α-hydroxylase leading to bioactive vitamin
D in the fetal circulation. Therefore, the fetus depends fully
on maternal 25(OH)D3 supply and hypovitaminosis D during
pregnancy may affect fetal development and future health of
the offspring in agreement with the concept of fetal origins of
adult disease (FOAD), that Dr. David Barker first popularized
(165). The FOAD hypothesis proposes that “events during
early development have a profound impact on one’s risk for
development of future adult disease.” Low birth weight resulting
from poor fetal growth and nutrition, is associated to several
adult diseases such as, hypertension, obesity, coronary artery
disease and insulin resistance (163). It is now well-recognized
that the phenotype of an individual can be determined by
the nutritional status of the mother. Poor nutrition can lead
to hypovitaminosis D. In this context, during “developmental
programming” lack of vitamin D during a critical window of
development can lead to permanent alterations in physiological
processes. In addition, obesity, that is also characterized by
diminished vitamin D availability has been associated with
adverse health effects not only in the mother but the developing
child and offspring later in life (166). Several prospective
birth cohort studies followed long-term health outcomes after
complicated pregnancies (167).

Epigenetic modification, defined as non-heritable changes
in gene expression that are not mediated by alterations in
DNA sequence may occur in utero (168). In utero epigenetic
fetal programming may activate specific genes that control
fetal development increasing disease risk. Recent studies
demonstrated that epigenetic changes of vitamin D catabolism
play an important role in increasing vitamin D bioavailability
at the fetomaternal interface (169). In addition, it has been
shown that maternal vitamin D modifies the expression of the
genes encoding placental calcium transporters, influencing bone
mineral accrual in the neonate (170). Maternal supplementation
with vitamin D during pregnancy significantly reduces the risk of
infantile rickets and hypocalcemia (171).

Vitamin D Deficiency During Pregnancy
and the Health of the Offspring—Does
Fetal Vitamin D Compromise the
Offspring’s Immune Function?
Vitamin D and Asthma
According to the World Health Organization (WHO), “asthma
is the most common chronic disease among children” (172).
Several studies demonstrated that prenatal vitamin D status plays
a role in the offspring’s susceptibility to develop asthma later
in life (173, 174). Recent data has suggested a crucial role for
vitamin D in reprogramming CD8+ T-cells to induce an IL-
13-secreting signature, suggesting vitamin D as a promising
regulator in asthma (175). That VDRs are present in immune
cells and the airways, support this hypothesis (176). Interestingly,
polymorphisms in VDR and vitamin D metabolism genes are
associated with childhood asthma susceptibility (177).

An association between reduced risk of wheeze in the offspring
and high dietary vitamin D intake during pregnancy have
been shown by two meta-analyses (178, 179). However, the
conclusions of these observational studies are still controversial
and randomized control clinical trials are necessary to determine
the appropriate levels of vitamin D supplementation during
pregnancy on maternal, fetal and perinatal outcomes.

Vitamin D, Fetal Neurodevelopment, and

Neurocognitive Function
VDR and 1α-hydroxylase have been identified in the fetal brain
highlighting the role of vitamin D in brain development (180).
In the fetus, serum 25(OH)D3 and vitamin D can cross the BBB
(Figure 3) bind to VDR and stimulate a wide range of responses,
genomic and non-genomic. Furthermore, activated microglial
cells in vitro have been shown to actively synthesize the active
metabolite, 1,25(OH)2D3 (181). In addition, in vitro studies
demonstrated that activated microglia increased the expression
of the VDR and 1α-hydroxylase, enhancing their responsiveness
to vitamin D. Furthermore, activated microglia incubated with
vitamin D showed a reduced expression of pro-inflammatory
cytokines, IL-6, IL-12, and TNFα, and increased expression of IL-
10, indicative of a immunosuppressive effects of vitamin D in the
CNS (182).

Vitamin D has also been shown to regulate neurotrophic
signaling, including glial derived neurotrophic factor (GDNF)
and nerve growth factor (NGF), critical for the survival
and migration of developing neurons in the brain (183).
Low concentrations of 25(OH)D3 during critical stages of
development have the potential to affect the reprogramming
of the brain tissue structure and function. It has been shown
that vitamin D-deficiency leads to fetal mouse brain abnormal
morphology and expression of genes related to neuronal survival
(184). The ability of vitamin D to regulate neurotrophic factors
and modulate inflammation has led to the suggestion that
vitamin D is indeed neuroprotective (185). Furthermore, pre-
treatment with vitamin D can decrease glutamate-mediated cell
death in cultures of cortical, hippocampal and mesencephalic
neurons (186). These neuroprotective effects have been recently
highlighted in a study showing the inhibitory effect of vitamin
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FIGURE 3 | Diagram summarizing the placental transport and role of 25(OH)D3 and 1,25(OH)2D3 on the placental function and fetal development. Vitamin D during

pregnancy is important for placentation (trophoblast migration and remodeling of spiral arteries), immune tolerance, maintaining maternal calcium homeostasis and

therefore for fetal development, including the skeletal system and the brain. Low levels of vitamin D during pregnancy can result in abnormal placentation, placental

insufficiency and abnormal fetal development leading to compromised health after birth, in agreement with the FOAD concept.

D on reactive oxygen species (ROS) toxicity by increasing the
synthesis of antioxidantmolecules in both glia and neurons (187).

In line with the neuroprotective effects of vitamin D,
hypovitaminosis D during the fetal life was associated with
greater susceptibility to MS and greater severity of MS symptoms
later in life (89). In vitro studies in cell culture demonstrated that
vitamin D protects neurons from injury induced by modulating
T cell activity (188).

On a tissue level, maternal hypovitaminosis D in rats alters
the fetal brain morphology leading to psychological disorders in
the developing offspring (189). The changes in brain morphology
observed in the offspring born to vitamin D-deficient mothers,
thinning of neocortex, and ventricle overgrowth, are similar
to the ones observed in brains of schizophrenic children
suggesting that maternal hypovitaminosis D may be a risk factor
for schizophrenia (190). Epidemiological evidence supporting
the association between vitamin D exposure in early life and
schizophrenia has also been described (191).

Recent studies suggest that maternal vitamin D insufficiency
during early pregnancy is also associated with attention-
deficit / hyperactive disorder (ADHD)-like symptoms in
offspring at age 4 (192). An association between lower first
trimester maternal circulating concentration of 25(OH)D3

and an increased risk of developing autism in offspring
at age 3–7 has been reported in the Chinese population
(193). A positive association between lower levels of serum
25(OH)D3 (<25 nmol/L) and risk of autism spectrum disorder
(ASD) in children was also described in studies performed
in Sweden and Iran (194, 195). Moreover, a recent study
demonstrated a correlation between mid-gestation vitamin
D deficiency and the risk of developing clinical ASD with
severe intellectual impairment (196). While results from
the latest epidemiological studies support the concept that
prenatal vitamin D status impacts the neuropsychological
development of children, further research is needed to confirm
these observations.

Taking into consideration the important protective effects
of vitamin D in fetal development and the future health
of the offspring, screening of vitamin D levels during the
preconception period and the first trimester of pregnancy should
be recommended in women with high risk of hypovitaminosis
D, such as women with high body max index, dark skin or
autoimmune diseases in order to implement appropriate
treatment to prevent adverse pregnancy outcomes, fetal
developmental abnormalities and future compromise of the
offspring’s health in general.
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OBSERVATIONAL STUDY: VITAMIN D
LEVELS IN WOMEN WITH OBSTETRIC
ANTIPHOSPHOLIPID SYNDROME (OAPS)

The association between hypovitaminosis D and dysregulation
of the immune system, in particular T cells, leading to
autoimmunity and adverse pregnancy outcomes prompted us
to investigate the levels of vitamin D in women with OAPS.
Knowing that T cells play a crucial role in conception and
maintenance of pregnancy, we hypothesized that there is a
correlation between vitamin D levels and fertility and pregnancy
outcomes in women with OAPS. We also determined the
association between vitamin D levels and markers of disease
activity (presence of flares and complement C3 consumption)
in women with OAPS. Co-presence of autoimmune disease
Hashimoto thyroiditis (HT) was also investigated.

Patients and Laboratories Determinations
This observational study, was performed at the Perigenesis,
Institute of Obstetric Hematology, Thessaloniki, Greece. All
studies in women were performed in strict agreement with the
Greece National Bioethics Commission. All patients gave written
informed consent.

Antiphospholipid syndrome (APS) was defined by the
presence of clinical and laboratory criteria described in the
“International consensus statement on an update of the
classification criteria for definite antiphospholipid syndrome”
(APS) (197). Clinical criteria included one or more clinical
episodes of thrombosis and pregnancy morbidity. Pregnancy
morbidity was defined as one or more unexplained fetal deaths
at or beyond the 10th week of gestation or one or more
premature births before the 34th week of gestation due to
placental insufficiency such as PE or three or more unexplained
consecutive spontaneous abortions before the 10th week of
gestation. The laboratory criteria for APS includes the presence
of lupus anticoagulant (LA) and/or anticardiolipin (aCL) and/or
β2 glycoprotein-I IgG or IgM antibody in plasma or serum on
two or more occasions, at least 12 weeks apart (197).

Seventy-six women met the criteria for OAPS before the
current pregnancy. All women received conventional low dose
aspirin plus low molecular weight heparin (LDA+LMWH)
treatment since the beginning of pregnancy (198). Median age
for the patients was 37.5 years (IQR 33–40.5).

Vitamin D levels were measured in all women during the first
trimester of pregnancy using ELISA tests. Testing for vitamin
D is part of standard patient care in Greece. Vitamin D levels
were classified as normal (>30 ng/mL) and hypovitaminosis
D (<30 ng/mL). Hypovitaminosis D was further classified as
deficiency (20.1–29.9 ng/mL) and insufficiency (<20 ng/mL).
None of the 76 women received vitamin D supplementation.

Complement activation plays a key role in the
pathophysiology of OAPS (70–75). In addition, measuring
complement C3 serum levels is a routine practice to monitor
disease activity in patients with autoimmune diseases. Therefore,
levels of C3 in OAPS women were determined by ELISA.
The values of complement component C3 were grouped in

three categories (normal: 60–150 mg/dl, low and high). All
laboratory tests were performed in the first trimester of the
current pregnancy.

Pregnancy complications were classified as follows:
Preeclampsia (PE) was classically defined as a systemic

syndrome characterized by new-onset of hypertension and
proteinuria in pregnancy. Early onset PE was defined as PE
that develops before 34 weeks of gestation. Preterm birth
was defined as any birth before 37 completed weeks of
gestation. Placental insufficiency refers to placental dysfunction
characterized by increased resistance of uteroplacental blood
vessels resulting in increased uterine arteries pulsatility
index (>95thcentile).

Implantation failure was defined as the inability to achieve
a clinical pregnancy after transfer of at least four good-quality
embryos in a minimum of three fresh or frozen cycles.

Flares were defined as the relapse of symptoms that
can compromise the skin, the joints, or any other
compromised organ.

Hashimoto’s disease diagnosis was based on blood tests
showing lower serum T3 (triiodothyronine) and T4 (thyroxine)
levels (<10% of the reference values) with normal thyroid-
stimulating hormone levels and the presence of antithyroid
antibodies [anti-TPO (anti-thyroid peroxidase) and anti-Tg
(anti-thyroglobulin) antibodies].

Statistical Analysis
All analysis were conducted with GraphPad Prism statistical
software (GraphPad Software Inc.). Absolute and relative
frequencies were calculated. Fisher’s exact test was performed.
Two tailed p-values were calculated. P < 0.05 was considered
statistically significant.

Exploratory Data Analysis
Data from seventy-six pregnant women with OAPS were
analyzed. In agreement with the literature (45, 84, 199,
200), a high percentage (77.6%) of these patients showed
hypovitaminosis D (Table 1). Within this group, 64.4% of
the women were vitamin D deficient and 35.6% vitamin D
insufficient in the first trimester of pregnancy. Only 17 out of
the 76 patients (22.4%) showed vitamin D levels within the
normal range. Of note, wearing sunscreen, limited exposure to
sun light, dark skin and dairy products not supplemented with
vitamin D in Greece might contribute to hypovitaminosis D in
this geographic area.

Around 50% of women with hypovitaminosis D conceived
after IVF (57.1% in the deficient group and 39.5 in the insufficient
group) and a higher incidence, though not statistically significant,
of implantation failure was also observed in this group,
suggesting an association between lower levels of vitamin D and
compromised fertility in OAPS patients.

In accordance with previous studies, low levels of
complement C3 were observed in 28% of all OAPS patients
(45, 199, 200). Interestingly, 39.5% of the patients in the
vitamin D deficient and 57.1% in the vitamin D insufficient
presented low levels of C3, suggesting an association between
lower levels of vitamin D and lower levels of C3, indicative
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TABLE 1 | Vitamin D levels, fertility and pregnancy outcomes, complement levels,

disease activity and co-presence of Hashimoto Thyroiditis in OAPS patients.

OAPS patients (N = 76)

Vitamin D

levels

Normal

N = 17 (24.3%)

Hypovitaminosis D N = 59 (77.6%)

Deficiency Insufficiency

N = 38 (64.4%) N = 21 (35.6%)

Implantation

failure

1 (5.9%) 8 (21%) p = 0.2469 6 (28.6%) p = 0.2204

14 (23.7%), p = 0.1669

IVF 2 (11.8%) 15 (39.5%) p = 0.0584 12 (57.1%)*p = 0.0063

27 (45.8%)*, p = 0.0116

Low C3 levels 1 (5.8%) 12 (31.6%)* p = 0.0452 8 (38%)*p = 0.0263

20 (33.9%)* p = 0.0297

Flares 0 8 (21%)*p = 0.0479 14 (66.7%)*p = 0.001

**p = 0.0008

22 (37.3%)*, p = 0.0020

Hashimoto

thyroiditis

0 17 (44.7%)*p = 0.0005 10 (47.6%)*p = 0.0008

27 (45.8%)* p = 0.003

Placental

insufficiency

0 6 (15.8%) p = 0.1615 8 (38.1%) *p = 0.0047

14 (23.7%), *p = 0.0308

PE (%) 0 6 (15.8%) p = 0.1615 6 (28.6%)*p = 0.0241

12 (20.3%), p = 0.0531

PTB (%) 0 3 (7.9%) p = 1.000 2 (13.3%) p = 0.4922

5 (8.5%), p = 0.5812

Conception after IVF and the presence of implantation failure (inability to achieve a clinical

pregnancy after transfer of at least four good-quality embryos in a minimum of three

fresh or frozen cycles) were investigated as signs of compromised fertility. Placental

insufficiency, preeclampsia and preterm birth were used to evaluate pregnancy outcomes.

Presence of flares, defined as the relapse of symptoms that can compromise the skin, the

joints, or any other compromised organ and complement C3 consumption were used to

evaluate disease activity.

N, number of patients; %, percentage of patients; IVF, in vitro fertilization; PE,

preeclampsia; PTB, preterm birth.

*Different from patients with normal levels of vitamin D.

**Different from patients with deficient levels of vitamin D. P < 0.05 is considered

statistically significant.

of complement consumption/activation by autoantibodies.
While lower C3 levels could be caused by complement
C3 deficiency, none of these patients showed increased
susceptibility to infection, characteristic of the rare, genetic
C3 deficiency.

Monitoring serum levels of C3 to assess for disease activity
is recommended in patients with autoimmune diseases, in
particular APS. In this study, we found a correlation between
decreased levels of C3 and flares in pregnant women with
antiphospholipid antibodies. Thirty-seven percent of the OAPS
patients with hypovitaminosis D showed disease flares in contrast
to none in the group with normal vitamin D levels, emphasizing
the link between hypovitaminosis D and immune dysregulation
previously described.

Strikingly, autoimmune hypothyroidism (Hashimoto disease,
HT) associated with anti-TPO and anti-Tg antibodies was

detected in almost 50% of the patients with hypovitaminosis
D (44.7% in the vitamin D deficient group and 47.6% of
the vitamin D insufficient women). The 17 OAPS patients
with normal vitamin D values were euthyroid. While
several studies have shown a correlation between vitamin
D deficiency and thyroid autoimmunity (84, 201). It is still
unclear whether the hypovitaminosis D is the result of HT
disease or a part of its cause. One patient in the vitamin
D deficient group and one in the vitamin D insufficient
group were also diagnosed with autoimmune disorder
Sjogren syndrome.

Provocatively, knowing the role of the immune system, in
placentation and placental development, the number of cases
of placental insufficiency, determined by decreased uterine
artery flow, was significantly higher in the OAPS women
with hypovitaminosis D compared to vitamin D sufficient
OAPS-women. A bigger number of PE cases was observed in
the vitamin D insufficient group. Abnormal placentation and
pregnancy complications such as PE were not observed in the
OAPS patients with normal vitamin D values. 8.5% of OAPS
women with hypovitaminosis D delivered preterm in contrast
with 0% of the OAPS women with normal vitamin D levels.
However, the difference did not reach statistical significance.
There were no significant associations between lower levels of
vitamin D and other variables such as age, parity and type of
aPL autoantibodies.

In conclusion, hypovitaminosis D (<30 ng/mL) was
documented in almost 80% of OAPS patients during
the first trimester of pregnancy and was associated with
complement activation, increased incidence of flares, presence
of autoimmune thyroiditis, placental insufficiency, and
a higher incidence of preeclampsia. If hypovitaminosis
is the cause or the consequence of autoimmunity and
adverse pregnancy outcomes needs to be addressed in
further studies.

CONCLUSIONS OF THE OBSERVATIONAL
STUDIES

While numerous clinical and experimental evidence suggest
that vitamin D deficiency is an important factor in the
pathogenesis of adverse pregnancy outcomes in APS and
the proven immunomodulatory effects of vitamin D and its
analogs, as previously described, the effects of vitamin D
supplementation in the prevention and treatment of pregnancy
disorders are not completely understood. Only small and non-
controlled studies have been performed in humans; however,
they seem to indicate there is a potential beneficial effect
of vitamin D supplementation in modulating the immune
system, preventing inflammation and protecting maternal
and fetal health. Our small observational study suggests
that subnormal vitamin D levels is another contributing
factor to adverse pregnancy outcomes in women with
APS. The cause-consequence effects and the risks and
benefits of vitamin D supplementation in autoimmunity, in
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particular APS and HT, and high-risk pregnancies needs to be
further investigated.
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46. Tokić S, Štefanić M, Karner I, Glavaš-Obrovac L. Altered expression of
CTLA-4, CD28, VDR, and CD45 mRNA in T cells of patients with
Hashimoto’s thyroiditis – a pilot study. Endokrynol Pol. (2017) 68:274–8.
doi: 10.5603/EP.2017.0020

47. Munger, KL, Levin, LI, Hollis, BW, Howard, NS, Ascherio, A. Serum
25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. (2006)
296:2832–8. doi: 10.1001/jama.296.23.2832

48. Åivo J, Hänninen A, Ilonen J, Soilu-Hänninen M. Vitamin D3
administration to MS patients leads to increased serum levels of latency
activated peptide (LAP) of TGF-beta. J Neuroimmunol. (2015) 280:12–5.
doi: 10.1016/j.jneuroim.2015.01.005

49. Grau-López L, Granada ML, Raïch-Regué D, Naranjo-Gómez M, Borràs-
Serres FE. Regulatory role of vitamin D in T-cell reactivity against myelin
peptides in relapsing-remitting multiple sclerosis patients. BMC Neurol.
(2012) 12:103. doi: 10.1186/1471-2377-12-103

50. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new
aetiological and therapeutic considerations.Ann RheumDis. (2007) 66:1137–
42. doi: 10.1136/ard.2007.069831

51. Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in
autoimmunity: molecular mechanisms and therapeutic potential. Front

Immunol. (2017) 7:697. doi: 10.3389/fimmu.2016.00697
52. Agmon-Levin N, Theodor E, Segal RM, Shoenfeld Y. Vitamin D in systemic

and organ-specific autoimmune diseases. Clin Rev Allergy Immunol. (2013)
45:256–66. doi: 10.1007/s12016-012-8342-y

53. Mathieu C, Van Etten E, Gysemans C, Decallonnee B, Kato S, Laureys
J. In vitro and in vivo analysis of the immune system of vitamin
D receptor knockout mice. J Bone Miner Res. (2001) 16:2057–65.
doi: 10.1359/jbmr.2001.16.11.2057

54. Müller-Ladner U, Ospelt C, Gay S, Distler O, Pap T. Cells of the synovium
in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res Ther. (2007) 9:223.
doi: 10.1186/ar2337

55. Laragione T, Shah A, Gulko PS. The vitaminD receptor regulates rheumatoid
arthritis synovial fibroblast invasion and morphology. Mol Med. (2012)
18:194–200. doi: 10.2119/molmed.2011.00410

56. Kerr GS, Sabahi I, Richards JS, Caplan L, Cannon GW, Reimold A.
Prevalence of vitamin D insufficiency/deficiency in rheumatoid arthritis and
associations with disease severity and activity. J Rheumatol. (2011) 38:53–9
doi: 10.3899/jrheum.100516

57. Grazio S, Naglić łB, Anić B, Grubišić F, Bobek D, Bakula M. Vitamin D serum
level, disease activity and functional ability in different rheumatic patients.
Am J Med Sci. (2015) 349:46–9. doi: 10.1097/MAJ.0000000000000340

58. Merlino L, Curtis J, Mikuls T, Cerhan J, Criswell L, Saag K, et al.
Vitamin D intake is inversely associated with rheumatoid arthritis: results
from the Iowa Women’s Health Study. Arthritis Rheum. (2004) 50:72–7.
doi: 10.1002/art.11434

59. Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Associations between vitamin
D receptor polymorphisms and susceptibility to rheumatoid arthritis and
systemic lupus erythematosus: a meta-analysis. Mol Biol Rep. (2011)
38:3643–51. doi: 10.1007/s11033-010-0477-4

60. Tizaoui K, Hamzaoui K. Association between VDR polymorphisms
and rheumatoid arthritis disease: systematic review and updated meta-
analysis of case control studies. Immunobiology. (2015) 220:807–16.
doi: 10.1016/j.imbio.2014.12.013

61. Müller K, Kriegbaum N, Baslund B, Sørensen O, Thymann M,
Bentzen K. Vitamin D3 metabolism in patients with rheumatic
diseases: low serum levels of 25-hydroxyvitamin D3 in patients with
systemic lupus erythematosus. Clin Rheumatol. (1995) 14:397–400.
doi: 10.1007/BF02207671

62. Mok C, Birmingham D, Ho L, Hebert L, Song H, Rovin B. Vitamin D
deficiency as marker for disease activity and damage in systemic lupus
erythematosus: a comparison with anti-dsDNA and anti-C1q. Lupus. (2012)
21:36–42. doi: 10.1177/0961203311422094

63. Hassanalilou T, Khalili L, Ghavamzadeh S, Shokri A, Payahoo L, Bishak
YK. Role of vitamin D deficiency in systemic lupus erythematosus
incidence and aggravation. Auto Immun Highlights. (2017) 9:1.
doi: 10.1007/s13317-017-0101-x

64. Girardi G. Role of tissue factor in the maternal immunological attack of the
embryo in the antiphospholipid syndrome. Clin Rev Allergy Immunol. (2010)
39:160–5. doi: 10.1007/s12016-009-8187-1

65. Redecha P, Franzke CW, Ruf W, Mackman N, Girardi G. Neutrophil
activation by the tissue factor/factor VIIa/PAR2 axis mediates fetal death
in a mouse model of antiphospholipid syndrome. J Clin Invest. (2008)
118:3453–61. doi: 10.1172/JCI36089

66. Tobaldini LQ, Arantes FT, Saraiva SDS, Mazetto BM, Colella MP, de
Paula EV,. Circulating levels of tissue factor and the risk of thrombosis
associated with antiphospholipid syndrome. Thromb Res. (2018) 171:114–20.
doi: 10.1016/j.thromres.2018.09.058

67. Tedesco F, Borghi MO, Gerosa M, Chighizola CB, Macor P, Lonati
PA. Pathogenic role of complement in antiphospholipid syndrome
and therapeutic implications. Front Immunol. (2018) 9:1388.
doi: 10.3389/fimmu.2018.01388

68. Agmon-Levin N, Blank M, Zandman-Goddard G, Orbach H, Meroni PL,
Tincani A, et al. Vitamin D: an instrumental factor in the anti-phospholipid
syndrome by inhibition of tissue factor expression. Ann Rheum Dis. (2011)
70:145–50. doi: 10.1136/ard.2010.134817

69. Martinez-Moreno JM, Herencia C, Montes de Oca A, Muñoz-Castañeda
JR, Rodríguez-Ortiz ME, Díaz-Tocados JM, et al. Vitamin D modulates
tissue factor and protease-activated receptor 2 expression in vascular smooth
muscle cells. FASEB J. (2016) 30:1367–76. doi: 10.1096/fj.15-272872

70. Oku K, Atsumi T, Bohgaki M, Amengual O, Kataoka H, Horita
T. Complement activation in patients with primary antiphospholipid
syndrome. Ann Rheum Dis. (2009) 68:1030–5. doi: 10.1136/ard.2008.090670

Frontiers in Immunology | www.frontiersin.org 13 November 2019 | Volume 10 | Article 2739

https://doi.org/10.1038/gene.2015.61
https://doi.org/10.1111/nyas.12440
https://doi.org/10.4049/jimmunol.179.3.1634
https://doi.org/10.1210/endo.141.9.7666
https://doi.org/10.3390/nu7043011
https://doi.org/10.1210/jcem-57-6-1308
https://doi.org/10.1007/s12016-013-8361-3
https://doi.org/10.3389/fimmu.2015.00513
https://doi.org/10.1111/imm.12572
https://doi.org/10.1136/ard.58.2.118
https://doi.org/10.1177/0961203314559090
https://doi.org/10.1016/B978-0-12-801917-7.00007-3
https://doi.org/10.1177/0961203312446386
https://doi.org/10.5603/EP.2017.0020
https://doi.org/10.1001/jama.296.23.2832
https://doi.org/10.1016/j.jneuroim.2015.01.005
https://doi.org/10.1186/1471-2377-12-103
https://doi.org/10.1136/ard.2007.069831
https://doi.org/10.3389/fimmu.2016.00697
https://doi.org/10.1007/s12016-012-8342-y
https://doi.org/10.1359/jbmr.2001.16.11.2057
https://doi.org/10.1186/ar2337
https://doi.org/10.2119/molmed.2011.00410
https://doi.org/10.3899/jrheum.100516
https://doi.org/10.1097/MAJ.0000000000000340
https://doi.org/10.1002/art.11434
https://doi.org/10.1007/s11033-010-0477-4
https://doi.org/10.1016/j.imbio.2014.12.013
https://doi.org/10.1007/BF02207671
https://doi.org/10.1177/0961203311422094
https://doi.org/10.1007/s13317-017-0101-x
https://doi.org/10.1007/s12016-009-8187-1
https://doi.org/10.1172/JCI36089
https://doi.org/10.1016/j.thromres.2018.09.058
https://doi.org/10.3389/fimmu.2018.01388
https://doi.org/10.1136/ard.2010.134817
https://doi.org/10.1096/fj.15-272872
https://doi.org/10.1136/ard.2008.090670
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cyprian et al. Vitamin D in Autoimmunity and Pregnancy

71. Breen KA, Seed P, Parmar K, Moore GW, Stuart-Smith SE, Hunt BJ.
Complement activation in patients with isolated antiphospholipid antibodies
or primary antiphospholipid syndrome. ThrombHaemost. (2012) 107:423–9.
doi: 10.1160/TH11-08-0554

72. De Carolis S, Botta A, Santucci S, Salvi S, Moresi S, Di
Pasquo E. Complementemia and obstetric outcome in pregnancy
with antiphospholipid syndrome. Lupus. (2012) 21:776–8.
doi: 10.1177/0961203312444172

73. Reggia R, Ziglioli T, Andreoli L, Bellisai F, Iuliano A, Gerosa M. Primary
anti-phospholipid syndrome: any role for serum complement levels in
predicting pregnancy complications? Rheumatology. (2012) 51:2186–90.
doi: 10.1093/rheumatology/kes225

74. Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D,
et al. Complement C5a receptors and neutrophils mediate fetal injury
in the antiphospholipid syndrome. J Clin Invest. (2003) 112:1644–54.
doi: 10.1172/JCI18817

75. Redecha P, Tilley R, Tencati M, Salmon JE, Kirchhofer D, Mackman N,
et al. Tissue factor: a link between C5a and neutrophil activation in
antiphospholipid antibody induced fetal injury. Blood. (2007) 110:2423–31.
doi: 10.1182/blood-2007-01-070631

76. Izban MG, Nowicki BJ, Nowicki S. 1,25-Dihydroxyvitamin D3
promotes sustained LPS-induced NF-κB-dependent expression of
CD55 in human monocytic THP-1 cells. PLoS ONE. (2012) 7:e49318.
doi: 10.1371/journal.pone.0049318

77. Lefkou E, Mamopoulos A, Dagklis T, Vosnakis C, Rousso D, Girardi G.
Pravastatin improves pregnancy outcomes in obstetric antiphospholipid
syndrome refractory to antithrombotic therapy. J Clin Invest. (2016)
126:2933–40. doi: 10.1172/JCI86957

78. Bełtowski J, Atanassova P, Chaldakov GN, Jamroz-Wiśniewska A, Kula
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