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The critical role of interferons (IFNs) in mediating the innate immune response to

cytomegalovirus (CMV) infection is well established. However, in recent years the

functional importance of the IFN-independent antiviral response has become clearer.

IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene

(ISG) regulation in the context of CMV infection was first documented 20 years ago.

Since then several IFN-independent, IRF3-dependent ISGs have been characterized

and found to be among the most influential in the innate response to CMV. These

include virus inhibitory protein, endoplasmic reticulum-associated IFN-inducible (viperin),

ISG15, members of the interferon inducible protein with tetratricopeptide repeats (IFIT)

family, interferon-inducible transmembrane (IFITM) proteins and myxovirus resistance

proteins A and B (MxA, MxB). IRF3-independent, IFN-independent activation of

canonically IFN-dependent signaling pathways has also been documented, such as

IFN-independent biphasic activation of signal transducer and activator of transcription 1

(STAT1) during infection of monocytes, differential roles of mitochondrial and peroxisomal

mitochondrial antiviral-signaling protein (MAVS), and the ability of human CMV (HCMV)

immediate early protein 1 (IE1) protein to reroute IL-6 signaling and activation of STAT1

and its associated ISGs. This review examines the role of identified IFN-independent

ISGs in the antiviral response to CMV and describes pathways of IFN-independent innate

immune response induction by CMV.
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INTRODUCTION

HCMV has a 236 kbp double stranded DNA (dsDNA) genome, 165 genes (1) encoding up to
751 protein products (2), a 45–100% seroprevalence in the adult population (3–7), and remains
a significant human pathogen particularly in those with an underdeveloped or suppressed immune
system. Just as HCMV infection can profoundly alter the overall adaptive immune response (8–13),
it also generates a powerful innate response. Key mediators of this innate response are IFNs. There
are three types of IFN: type I (α, β, κ, ω, τ , and ε), type II (γ), and type III (λ1, λ2, λ3, λ4). Type I
and II IFNs are the best characterized in the context of HCMV and their induction, antiviral roles
as well as the viral antagonism of these processes have been extensively reviewed (14–19). A role for
type III IFNs, in the innate response to HCMV and murine CMV (MCMV), whose pathogenesis
closely parallels that of HCMV (20), has recently been elucidated (21–27).
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The innate response to both HCMV and MCMV infection is
initiated when virus is detected by pattern recognition receptors
(PRRs) including toll-like receptors (TLRs) TLR2 (28–31) and
TLR9 (32–34). Once virus has bound and entered cells, HCMV
and MCMV can be detected by cytosolic DNA sensors such
as IFI16 (35, 36), ZBP1/DAI (37–39) and cGAS (32, 40) that
signal through the stimulator of IFN genes (STING). Each of
these pathways culminates in activation and dimerization of
IRF3 resulting in production of type I IFN (41–44). Type I IFN
production is subsequently enhanced by upregulation of IRF7,
an ISG that is also capable of dimerizing and activating the type
I IFN promoter (45). HCMV and MCMV infection both trigger
production of type II IFN from CD8+ T cells, CD4+ T cells and
natural killer (NK) cells (46–48). HCMV even remodels the IFNγ

locus (IFNG) for sustained IFNγ expression in NKG2Chi NK
cells (49, 50). IFNλ production is induced by HCMV andMCMV
infection (22) and these type III IFNs are themselves ISGs with
production stimulated by IFNα and IFNβ treatment (51).

Key antiviral mediators of all IFN types are ISGs (52).
Interferome, a database dedicated to chronicling all genes
significantly regulated by IFN (changes ≥ 2-fold), identifies
12614 ISGs (53). Type I IFNs alone can trigger expression ofmore
than 2,000 genes in humans, many of which are antiviral (54).
Canonical induction of ISGs by type I, II, and III IFNs occurs
by JAK/STAT signaling downstream of the type I IFN receptor
(IFNAR1 + IFNAR2), the IFNγ receptor (IFNGR1 + IFNGR2)
and the IFNλ receptor (IFNLR1 + IL10R2), respectively. The
type I and II IFN receptors are widely expressed but type III
IFN receptor expression is limited to epithelial cells (55, 56).
ISGs stimulated by type I and III IFN contain an IFN stimulated
response element (ISRE) in their promoter region that is bound
by the activated transcription factor IFN stimulated gene factor 3
(ISGF3), comprised of phosphorylated STAT1 and STAT2 with
IRF9 (55, 57–62), or by STAT2 homodimers associated with
IRF9 (63–65). IFNγ induced ISG promoters contain γ-activated
sequences (GAS) that are bound by STAT1 homodimers (66–70).
However, upregulation of some ISG mRNAs in the early stages
of HCMV infection (prior to DNA replication) are not inhibited
by IFN neutralization (71, 72). Since this discovery, the body of
literature demonstrating ISG induction independent of canonical
IFN signaling pathways has been steadily expanding and those
discussed in this review are summarized in Figure 1.

IFN-INDEPENDENT ISG PRODUCTION

Initial differential display analyses compared the susceptibility
of genes upregulated early vs. late in infection to inhibition
by IFN neutralizing antibodies and/or protein synthesis
inhibitor cyclohexamide (CHX) (72). Three of these
genes: IFIT2/ISG54/p54/cig42, IFIT3/ISG60/p60/cig49 and
viperin/cig6, were upregulated by HCMV at 8 h post infection
(hpi) and even accumulated following exposure to replication-
incompetent ultraviolent-irradiated HCMV (UV-HCMV) (72).
Blocking type I IFN with neutralizing antibodies failed to
inhibit IFIT2, and IFIT3 induction, demonstrating that their
upregulation was both IFN-independent and could be triggered

by viral binding entry alone (72). A subsequent, broad mRNA
analysis using oligonucleotide arrays found that levels of 258
mRNAs were altered more than 4-fold prior to initiation of
HCMV DNA replication (71). IFIT2 and IFIT3 were among
these quickly detected ISGs as were MxA, MxB, and ISG15 (71).
The immediacy of this induction suggests a direct mechanism
requiring few intermediary steps, indeed IFIT2, IFIT3, ISG15
(73) and viperin (72) upregulation can be detected 6 hpi with
HCMV in the absence of de novo host and viral protein synthesis
(cyclohexamide (CHX) treatment). This is also the case for
IFIT1/ISG56/p56 (73) and indicates that this subset of ISGs
may be induced/upregulated independently of IFN during
HCMV infection.

IFN-Independent, IRF3-Dependent ISG
Production
When searching for a mechanism underpinning IFN-
independent ISG induction during CMV infection, initial
studies turned to the powerful transcriptional regulator involved
in IFN production, IRF3. Expression of constitutively active IRF3
in the absence of any viral stimulus could induce transcription
of a subset of ISGs including IFIT1, IFIT2, IFIT3, ISG15,
and viperin (74). IRF3-independent expression of these same
ISGs was also observed during infection with other viruses:
single stranded RNA (ssRNA) Newcastle disease virus (NDV)
upregulated IFIT1, IFIT2 and ISG15 in cells that could respond
to but were unable to produce type I IFN (75) and IFIT1
expression could be induced during ssRNA Sendai virus (SeV)
infection by IRF3 nuclear translocation in cells unable to respond
to type I IFN (76).

Studies using herpes simplex virus type 1 (HSV-1)
demonstrated that IFIT1 expression could be driven by infection
even in the presence of CHX in human fibroblasts (HFs) but
could not be detected in the human epithelial osteosarcoma
cell line U2OS (77). U2OS cells can respond to IFN but have
defects in the STING signaling pathway (78) involved in IRF3
activation and dimerization in response to DNA sensing by
IFI16, ZBP1/DAI, and cGAS (79–82). Furthermore, HSV-1
infection of IRF3−/−, IRF3−/−IRF9−/−, and IRF1−/− murine
fibroblasts revealed that IRF3 was essential for generation of an
antiviral state and IFIT2 expression in response to UV-HSV-1
(83). In the case of IFIT1, expression was directly induced by an
IRF3-containing complex binding to its promoter region (77, 84).

In the context of HCMV infection, initiation of IFIT2
transcription was found to occur independently of STAT1
nuclear localization (85) and in the presence of CHX (86). Soon it
emerged that expression of IFIT1, IFIT2, IFIT3 and ISG15 during
HCMV could be IFN-independent but always required IRF3
activation (42, 73, 87). Subsequent studies revealed that viperin
expression could be driven directly by HCMV glycoprotein B
(gB), in an IFN-independent, IRF3/IRF1 dependent manner (88,
89). This aligns with data demonstrating that IRF3 translocation
to the nucleus is a requirement for the IFN-independent
induction of an antiviral state in response to UV-HCMV (87).
In contrast, another transcription factor implicated in type I IFN
production NFκB (90), remains cytosolic (91).
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FIGURE 1 | Induction and subversion of the innate IFN response by HCMV. (A) Sensing of HCMV by components of the innate immune response initiates production

of IFNs and proinflammatory cytokines. HCMV is sensed by PRRs on the cell surface (TLR2) and in endosomes (TLR3, TLR4, and TLR9). Signaling from TLR2, TLR3,

and TLR4 is through MyD88 and results in the activation and nuclear translocation NFκB, a transcription factor that stimulates expression of proinflammatory

cytokines such as TNF, IL-8, IL-12, and IL-6. TLR9 and TLR4 signal through TRIF which causes activation by phosphorylation of IRF3 via TBK1/IKKε, activated IRF3

dimerizes and enters the nucleus to stimulate production of type I IFNs. HCMV infection can also be recognized by viral nucleic acid detectors in the cytoplasm; DNA

sensors ZBP1, IFI16 and cGAS signal through ER-resident STING to activate TBK1/IKKε whilst the viral RNA sensor RIG-I activates TBK1/IKKε by signaling via MAVS

located on the mitochondria or peroxisomes. The end result of both of these pathways is IRF3 phosphorylation, dimerization, nuclear translocation and production of

type I IFNs. (B) IFN-dependent and IFN-independent pathways of ISG induction during HCMV infection. For IFN-dependent induction of ISGs to occur type I, type II

and type III IFNs must bind to their cell surface receptors. Type I and III IFN receptors signal through various combinations of JAK proteins to phosphorylate STAT1 or

STAT1 and STAT2 which form a complex referred to as ISGF3 with IRF9. ISGF3 then translocates to the nucleus where it binds to the ISRE to induce ISG production.

The type II IFN receptor utilizes both JAK1 and JAK2 to phosphorylate STAT1, leading to its dimerization and nuclear translocation. Once in the nucleus, activated

STAT1 dimers bind to GAS and stimulate ISG production. The three key pathways of HCMV-mediated IFN-independent ISG induction are indicated in red. Firstly,

HCMV can directly activate IRF3; additionally, HCMV can sequester STAT3 and redirect the activated JAK1, created by IL-6 receptor binding, to phosphorylate STAT1;

and finally peroxisomal MAVS may be able to trigger IFN-independent ISG expression at early times following infection. Black line = canonical IFN-dependent ISG

induction pathway, red line = HCMV-induced, IFN-independent ISG induction pathway.
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To interrogate the IFN-independent, IRF3-dependent
response to HCMV HFs have been engineered (92, 93) to lack
either IRF3 through expression of the nPro protein of bovine
viral diarrhea virus (BVDV) (nPro/HFs) which binds and
degrades IRF3 (94) or STAT1, by expression of the parainfluenza
virus type 5 (PIV-5) V protein (V/HFs) which targets STAT1
for proteasomal degradation (95). These nPro/HFs and V/HFs
were recently utilized, alongside IRF3 KO CRISPR/Cas9 HFs,
to demonstrate that expression of viperin, ISG15, IFIT1, IFIT2,
IFIT3, Mx1, and Mx2 mRNA during infection with HCMV can
be induced in an IRF3-dependent, STAT1-independent manner
(96). In fact, mRNA levels of IFIT1, IFIT2, and IFIT3 were
as highly elevated in the absence of STAT1-mediated IFNAR
signaling as in the parental HFs (96) underlining the capacity of
such IFN-independent mechanisms to profoundly regulate ISG
expression. Many of these IFN-independent, IRF3-dependent
ISGs are among the most potently induced by CMV infection
and examining the roles these genes play in the innate response
to CMV is essential to understanding the ramifications of this
non-canonical regulation.

Viperin

Viperin inhibits the egress and replication of many viruses (97–
102). However, in the context of HCMV, viperin upregulation is
proviral, initiated by infection to manipulate cellular metabolism
and cause the accumulation of cytosolic lipids for use in
production of the viral envelope (103). In trophoblasts, a cell
type of particular clinical relevance due to their role in the
transmission of congenital HCMV (104–106), viperin is required
for efficient expression of immediate early viral genes (107).
Viperin is also known to enhance type I IFN production in
plasmacytoid dendritic cells (pDCs) by localizing to lipid rafts
and acting as a scaffold for recruitment of interleukin-1 receptor-
associated kinase 1 (IRAK1) and TNF receptor associated factor
6 (TRAF6) (108).

In addition, viperin has been identified to act in its capacity
as a member of the radical S-adenosyl-L-methionine (SAM)
superfamily of enzymes to facilitate conversion of cytidine
triphosphate (CTP) to 3′-deoxy-3′,4′-didehydro-CTP (ddhCTP)
(109). Thus far, ddhCTP is known to act as a terminator of
RNA synthesis by viral (Dengue and Zika) RNA-dependent
RNA polymerases (109) and so investigations into its interaction
with the HCMV encoded viral DNA polymerase are warranted.
The viperin gene (RSAD2) lies in close proximity to the gene
encoding cytidylate monophosphate kinase 2 (CMPK2) in the
genome, suggesting a potential functional link to this pathway
(109). Expression of CMPK2 is so closely linked to viperin
that, following stimulation by IFN, viperin, CMPK2 and a
long non-coding RNA (lncRNA) called lncRNA-CMPK2 are all
co-transcribed (110). Interestingly, lncRNA-CMPK2 acts as a
negative regulator of ISG expression (including ISG15, IFIT3
and IFITM1) (110). If IFN-independent, CMV-induced viperin
upregulation also enhances expression of lncRNA-CMPK2, this
could be a novel mechanism utilized by the virus to dampen the
antiviral ISG response.

Furthermore, viperin has been demonstrated to be important
for replication of Kaposi’s sarcoma-associated herpesvirus

(KSHV), a function attributed to the ability of viperin to catalyze
oxidation of methionine in the viral DNA helicase, enhancing its
expression and function (111). In this context, IFN-independent
viperin upregulation by HCMV may be a way to ensure viral
replication proceeds with maximum efficiency and thus the
potential of viperin to modify the HCMV viral helicase-primase
complex should be considered for further study. Overall, IFN-
independent upregulation of viperin by HCMV seems to be a
process initiated by the virus very early in infection to prepare
the cell for its role as a virus-producing factory.

ISG15

ISG15 is a small ubiquitin-like protein that exists in three
forms: (1) unconjugated within the cell, (2) conjugated within
the cell (112, 113), and (3) secreted into serum (mainly by
granulocytes) where it promotes NK maturation and IFNγ

production (114). During HCMV infection accumulation of
both free and conjugated ISG15 can be partially inhibited by
interfering with the canonical IFNAR signaling pathway with a
JAK inhibitor (115) but some IFN-independent, IRF3-dependent
expression remains (96). Whilst the mechanisms by which ISG15
regulates CMV infection are currently unknown, it appears
to possess antiviral activity as blocking ISG15 accumulation
enhances viral replication (115) and HCMV antagonizes both the
production of unconjugated ISG15 and ISGylation (115–118).

On the other hand, it is interesting to note that whilst in
murine studies ISG15−/− mice are generally more sensitive to
disseminated viral infections (119) human patients presenting
with primary immunodeficiencies associated with defects in
ISG15 expression are not (120). In fact, ISG15−/− fibroblasts
isolated from such patients and primed with type I IFN were
less susceptible to infection with HCMV than controls. This was
attributed to the elevated levels of antiviral ISGs in these cells,
a result of ISG15s ability to bind and stabilize the E3 ubiquitin
ligase-like protein USP18, which acts as a negative regulator of
the type I IFN response (120, 121).

It is also possible that HCMV manipulates levels of ISG15
to shift monocytes toward the mixed M1/M2 macrophage
phenotype that is observed during infection (122) and
hypothesized to enhance viral dissemination and persistence
(123, 124). This is because in the absence of infection, ISG15
plays a role in the maintenance of mitochondrial homeostasis
(125). Specifically, ISGylation of mitochondrial components can
control mitochondrial function: reducing the rate of oxidative
phosphorylation (OXPHOS) and causing a corresponding
decrease in mitochondrial reactive oxygen species (ROS) (126).
A reduction in levels of mitochondrial ROS alters macrophage
polarization, shifting these cells toward a mixed M1/M2
phenotype (126).

IFITs

IFITs are ISGs with antiviral capabilities against flaviviruses,
poxviruses, coronaviruses and papillomaviruses (127–130). A
pan-viral mechanism of host defense mediated by IFITs is the
sequestration of eukaryotic initiation factor (eIF3) by IFIT1
which slows the overall rate of cellular protein synthesis (76,
84, 131). A more specific strategy depends on the recognition
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and binding of viral RNA lacking 2′-O methylation of the 5′

RNA cap by IFIT1 (132). This binding ability is enhanced by
association with IFIT2 and IFIT3 (133). Despite the fact that
CMV replication takes place wholly within the nucleus, export
of viral mRNAs does occur (134) and these may be sensed
by IFITs. Another possibility is that IFITs may directly bind
essential CMV proteins in the cytoplasm, as IFIT1 does to inhibit
human papilloma virus (HPV) infection (135, 136). Although
the mechanisms of the IFIT-mediated antiviral response to
HCMV are still unclear, a significant reduction in titer has been
reported when the virus is grown in IFIT1 overexpressing fetal
astrocytes (137).

IFITMs

IFITM proteins are also implicated in the antiviral response
against a wide range of viruses: orthomyxoviruses, flaviviruses,
filoviruses, and coronaviruses often by blocking membrane
fusion (127, 138–140). However, overexpression of IFITM1,
IFITM2 and IFITM3 does not inhibit HCMV infection but rather
results in a modest increase in the percentage of infected cells
(141, 142). Short hairpin RNA (shRNA) knockdown of IFITM1
alone or in combination with IFITM2 and IFITM3 inhibits
HCMV infection as they are required for successful formation
of the HCMV virion assembly complex (vAC) and production
of infectious progeny virions (142). It is interesting to note
that despite this proviral role, IFITM proteins are noticeably
downregulated at later stages of infection (48–72 hpi) (142).

Direct induction of IFITMs by HCMV may also contribute
to the severe consequences of congenital infection as IFITM
expression can inhibit the fusion of cytotrophoblast cells
into the multinucleated syncytiotrophoblast, a structure at the
interface between maternal and fetal tissue, essential for placental
development (143).

MxA and MxB

The Mx proteins MxA and MxB are a family of dynamin-
like GTPases first reported for their antiviral activity against
influenza and are now well characterized in response to other
viruses (144, 145). MxA is found in the cytosol and inhibits
influenza virus infection through retention of the viral genome
(146). On the other hand, MxB localizes to the cytoplasmic
face of nuclear pores (147) and is able to inhibit HIV-1
replication by blocking nuclear viral genome accumulation (148,
149). Both MxA and MxB are highly upregulated by HCMV
infection (73, 150) and it has recently been discovered that MxB
overexpression inhibits replication of HSV-1, HSV-2, Kaposi’s
sarcoma-associated herpesvirus (KSHV), MCMV, and HCMV
(151, 152). HSV-1 and MCMV inhibition manifested in a similar
way to that of HIV-1, a block in the delivery of viral genome to
the nucleus (151). However, in terms of the regions of protein
at play, this mechanism was found to differ substantially with a
requirement for GTP binding but not GTP hydrolysis (152, 153).
Knockdown of MxB has also been implicated in stalling cell cycle
progression (147) and it has been suggested that the HCMV
virion protein pUL69 that contributes to the cell cycle arrest (154)
does so via an interaction with MxB (155).

ALTERNATE IFN-INDEPENDENT
PATHWAYS OF INNATE RESPONSE
INDUCTION

Direct ISG induction by IRF3 is not the only pathway associated
with the IFN-independent response to CMV. In human
monocytes, IFN-independent, biphasic activation of STAT1 with
differential phosphorylation at early (30min) compared to late
(24 h) time points post-HCMV infection appears to influence
motility, migration, differentiation and polarization (156).

Regulation of mitochondrial activity is emerging as
another IFN-independent innate response mediator. A
number of years ago it was discovered that HCMV DNA
could induce ISG expression in an IRF3-dependent, TLR-
independent manner that involved TANK-binding kinase
1 (TBK1), IκB kinase epsilon [IKKε; originally called IKK-
inducible (IKKi)], and mitochondrial antiviral-signaling
protein (MAVS) (157). More recently, peroxisomal MAVS
has been implicated in rapid type-I IFN-independent ISG
(viperin, Mx2, IFIT3, IFIT2) expression (158). Conversely,
mitochondrial MAVS appears to be involved in IFN-dependent
ISG production (158). HCMV actively impairs mitochondrial
MAVS signaling through the viral mitochondria-localized
inhibitor of apoptosis (vMIA) and reduces type I IFN
production (159). vMIA has also been found to localize to
peroxisomes and induce their fragmentation by interaction
with the cytoplasmic chaperone protein Pex19, hijacking
the transport machinery of peroxisomal membrane proteins
(160). This suggests that disabling IFN-independent ISG
transcription induced by peroxisomal MAVS contributes to
efficient CMV infection.

The HCMV immediate early gene 1 (IE1) is also capable
of inducing expression of ISGs in the absence of IFN
production. HCMV IE1 induces expression of IL-6 (161)
which usually signals through JAK and STAT3 (162).
However, IE1 binds and sequesters STAT3 (163), leaving
JAK, already activated by IL-6, free to phosphorylate
STAT1. Thus IE1 re-routes IL-6 signaling to activate
STAT1 resulting in transcription of ISGs independently of
IFN (164).

FUNCTIONAL IMPORTANCE OF
IFN-INDEPENDENT INNATE RESPONSES

Early studies examining IFN-independent induction of an
antiviral state showed that treatment of human embryonic
lung fibroblasts (HELFs) with UV-HCMV rendered these
cells resistant to subsequent viral infection in the absence
of detectable IFN production (91). Intriguingly, whilst high
multiplicity of infection (MOI) UV-HCMV also induced an
antiviral state in the HELFs, this required IFN production
(91). Paladino et al. (91) proposed a model by which, when
cells are exposed to limited numbers of virus particles (low
MOI), induction of an internal antiviral state is sufficient to
control infection, however, when many virus particles are
present (high MOI), cells secrete IFN to protect neighboring
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cells too. The ability to induce an antiviral state in the
absence of IFN production may be important in cells
such as neurons, where inflammation is undesirable. In
this respect, neurotropic arboviruses have been shown to
induce protective type I IFN-independent, IRF3-dependent
responses (165).

Recently, the power of IFN-independent innate responses
to CMV has been illustrated by the finding that human
macrophages co-cultured with HCMV-infected retinal pigment
epithelial cells (RPEs) can limit viral replication and spread
in a cell-cell contact dependent manner that could not be
blocked by vaccinia-derived type I IFN binding protein B18R,
nor by neutralizing antibodies against either IFNγ or TNFα
(166). It has also been shown that HCMV virus particles pre-
treated with HCMV-specific antibodies that do not replicate,
nor express IE antigens, can enter human macrophages
and induce an antiviral state that renders these cells less
susceptible to subsequent HCMV infection independently of IFN
production (167).

IFN-independent ISG induction can also be used to
regulate the development of cells key to viral persistence and
dissemination. In human monocytes infected with HCMV, ISGs
are upregulated independently of IFN (4 hpi) that function to
enhance monocyte motility and migration (156). This occurs in
a STAT1-dependent manner that also suppresses transcription of
anti-inflammatory M2-associated cytokines (IL-10 and CCL18),
promoting polarization of macrophages toward a mixed M1/M2
phenotype (156). ISG15 was among the ISGs found to be
upregulated in monocytes 4hpi with HCMV (156). ISG15 may
contribute both directly and indirectly to the mixed M1/M2
macrophage phenotype, causing monocyte-specific upregulation
of IL-10 (168) whilst simultaneously inducing production of
M1 macrophage-stimulating cytokine IFNγ by NK and T
cells (114).

CONCLUDING REMARKS

When considering the innate response to CMV infection,
IFN and the ISG-mediated induction of an antiviral state
are important first elements. The intention of this review
has been to highlight the substantial body of literature
accumulating around IFN-independent innate responses to
CMV. IFN-independent induction of ISGs is an important
phenomenon and ISGs produced via this pathway appear to
play both pro- and anti-viral roles during infection. This
complicates direct interrogation of the IFN response during
viral infection and necessitates careful consideration of kinetics,
as particular ISG may be upregulated directly by the virus,
independently of IFN, to play a proviral role early in infection
but later on, when IFN-dependent expression dominates, may
antagonize infection.

When examining plaque number and size at 7 days post
infection, we reported no difference in rates of CMV replication
nor spread between cells unable to produce IFN (IRF3 degraded)
and those that could not respond to IFN (lacking STAT1)

(92), even though the latter cells still allowed viral induction
of IFN-independent ISGs (96). Focusing on earlier time
points, before loss of IFN production/signaling becomes the
overwhelming factor affecting infection efficiency, may reveal
more subtle differences conferred by abrogation of either IRF3
or STAT1 signaling.

A deeper understanding of the various functions of IFN-
independent ISGs may enable their relative abundance to
serve as a predictor of disease progression. For example, high
levels of IL-6 have been correlated with CMV reactivation
and poor prognosis for transplant patients (169–171); perhaps
this is because ISGs produced by IE1 re-routing the IL-
6 response to enhance infection. If this were the case,
interference with STAT1 homodimer-mediated ISG expression
may improve prognosis.

Since CMV infected, polarized macrophages are key
mediators of T cell activation and proliferation (172), if IFN-
independent ISGylation influences macrophage polarization
then levels of ISG15 induced directly by CMV early in infection
may provide an indication as to whether or not a robust T cell
response will be generated.

It is also important to note that many of these ISGs,
including viperin, IFIT2, IFIT3, Mx1 and ISG15 are defined
as part of the 28 core mammalian ISGs i.e., produced in
all nine mammalian species tested (54). It would therefore
be prudent to determine whether their IFN independence is
also conserved across species especially since rhesus CMV
does not induce IRF3 activation nor the associated ISG
expression (173).

Finally, with the IFN-independent nature of these ISGs
becoming clear, caution should be exercised when using these
ISGs as surrogate readouts for interferon signaling, as it is clear
that they are also induced directly by viral infection.
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