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Crohn’s disease (CD) and Ulcerative colitis (UC) are grouped as Inflammatory Bowel

Diseases (IBD). The IBD is associated to a multifaceted interplay between immunologic,

microbial, genetic, and environmental factors. Nowadays, the gut microbiota (GM)

dysbiosis has been indicated as a cause in the IBD development, affecting the impaired

cross-talk between GM and immune cells. Moreover, recent studies have uncovered a

crucial role for bacterial post-biotics (metabolites) in the orchestration of the host immune

response, as they could be messengers between the GM and the immune system.

In addition, transgenic mouse models showed that SCFAs (Short Chain Fatty Acids)

and Tryptophan (Trp) post-biotics play important immunomodulatory effects, regulating

both innate and adaptive immune cell generation, their function and trafficking. Here,

we present an overview on the main microbial post-biotics and their effects on the

gut mucosa with specific emphasis on their relevance for IBD. Finally, we discuss the

therapeutic potential of SCFA and Trp post-biotics on IBD through approaches based

on the “immunonutrition,” defined as a modulation of the immune system provided by

specific interventions that modify dietary nutrients.

Keywords: gut microbiota, infammatory bowel disease, immunonutrition, post-biotics, SCFAs, tryptophan,

metabolites

INTRODUCTION

Inflammatory bowel disease (IBD) is amultifactorial chronic inflammatory disorder of the intestine
that can be divided into two principal clinical conditions: Crohn’s disease (CD), which mainly
concerns the colon and small intestine, and Ulcerative colitis (UC) that is restricted to the colon.
The two IBD subtypes are characterized by chronic inflammation of the gastrointestinal tract
with recurrent cycles of remission and relapse. With over 1 million inhabitants estimated to
be affected in the US and 2.5 million in Europe, IBD represents a widespread condition (1).
At present, the complete IBD etiology and pathogenesis remain to be clarified. Meanwhile the
incidence steadily increased worldwide (2). Although UC and CD appear dissimilar in their clinical
presentation, researchers assume that common risk factors could be involved in their pathogenesis
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(3). The association with the host genetic susceptibility
(NOD2, TLR4, CARD9, ATG16L1, IL23R polymorphisms),
immunological abnormalities, the key role of gut microbiota
(GM) and its produced metabolites, and other environmental
factors, have been recently investigated (4).

Impairments in IBD immunological regulation have been
described at different levels, involving epithelial damage,
inflammatory cells infiltrating into the lamina propria and failure
of immune regulation in controlling the inflammatory response.
Regarding the lymphocyte immune response, CD was described
as a Th (T helper)1/Th17 condition, whereas UC is related with
an exaggerated Th2 mediated response (5).

Nowadays, it is recognized the physiological importance of
a mutual interplay between host immune response and GM
(6). A dysbiotic microbiota (a variation from the “healthy” GM
structure and function) has been involved in several diseases
including type 2 diabetes, colon cancer, and obesity (6–9). The
pattern of dysbiosis has an impacting role also in the IBD
pathogenesis and prognosis (10). Of note, the inflammation in
IBD is generally found in the distal ileum or colon that are
the intestinal sites where the microbial abundance is higher. In
addition, a significant difference in the GM of healthy individuals
and IBD patients in terms of diversity and load has been
confirmed (11, 12). An overall reduction in the total number of
species and a decrease in diversity of the GM has been associated
to IBD. In particular, different human studies show a reduced
abundance of commensal bacteria, particularly in Bacteroides and
Firmicutes, and a relative increase of bacterial species belonging
to Enterobacteriaceae (13–17). Other human studies have
confirmed a clear reduction in Firmicutes (especially Clostridium
groups) diversity and an increase in Proteobacteria (18, 19)
alongside a decrease of many other beneficial bacterial species
from the genera Bacteriodes, Lactobacillus, and Eubacterium
(20). Moreover, an increased abundance of Ruminococcus gnavus
and a decrease in Faecalibacterium prausnitzii, Bifidobacterium
adolescentis, Dialister invisus, and an unknown member of
Clostridium cluster XIVa has been demonstrated for CD (21).
Interestingly, Faecalibacterium showed a protective role against
inflammation of the colon mucosa (22). Curiously, increased
levels of Faecalibacterium prausnitzii were found in UC (23).
Besides F. prausnitzii, also A. muciniphila has been associated
with dysbiosis in IBD. The study of Lopez-Siles et al. showed
a slight underrepresentation of A. muciniphila in the colonic
mucosa of CD patients, regardless of disease activity status;
in particular, early onset CD was characterized by a lack of
A. muciniphila (24). In colitis mouse models, A. muciniphila
treatment ameliorated mucosal inflammation either via microbe-
host interactions, which protect the gut barrier function reducing
the levels of inflammatory cytokines, or by improving the
microbial community, suggesting that A. muciniphila may be a
potential probiotic agent for ameliorating colitis (25). Besides
bacteria, recent studies focused on viruses, fungi and archaea
in the IBD scenario. Microbiota comprises both prokaryotic
and eukaryotic viruses, that together compose the gut virome.
A recent work of Ungaro et al. profiled the gut eukaryotic
virome in young treatment-naïve patients with early-diagnosed
IBD and identified the eukaryotic viral communities that

might be involved in IBD onset. In particular, Herpesviridae
family was highly abundant in all the analyzed eukaryotic
gut viromes, although not differentially enriched among the
groups. Hepeviridae-derived proteins may have an impact on
host immunity, eventually triggering intestinal inflammation.
Conversely, other viral families, such as Polydnaviridae and
Tymoviridae in UC, andVirgaviridae in CD, were less enriched in
IBD patients and negatively correlate with the presence of other
viruses; these conditionmight be somehow considered protective
in the human host (26). In addition, a role of the mycobiota (the
fungal component) in IBD, is also indicated by both descriptive
data in humans and mechanistic data in mice. Intestinal or
distal inflammation occurring in diseases associated with an
increased intestinal permeability might be related to β-glucan
translocation (27). Moreover, recent evidence has shown that the
variable prevalence of Archaea methanogens (an ancient domain
of single-celled organisms) could have certain effects on IBD. A
recent human study has shown a reverse association between
Methanobrevibacter smithii bacterial load and susceptibility to
IBD, and this association could be extended to IBD patients in
remission (28). Finally, IBD patients harbor only 25% (fewer) of
the mucosal microbial genes of healthy individuals (29) and the
altered GM profile has been documented in fecal and mucosa
samples (30, 31). Moreover, a recently published human study
demonstrates that the GM and the molecular functional profile
in terms of transcriptome andmetabolome, and the host immune
factors, are crucial to IBD (32).

Although the cited spectrum of published research widely
recognizes the dysbiosis, which occurs in IBD patients, the causal
role of dysbiosis has not yet been established. Nowadays, host-
microbiome relation in IBD has just begun to be uncovered
and so other types of mechanisms could be involved, such as
aberrant cell-to-cell interactions and the production, conversion,
and sensing of bacterial bioactive small molecules, named “post-
biotics.” Post-biotics have recently been proposed as “non-viable”
bacterial products or metabolic byproducts (metabolites) from
probiotic microorganisms that promote biological activity in the
host (33).

The microbiome-modulated post-biotics (MMPBs) may
influence the host cellular pathways involving proliferation,
differentiation, migration and cellular death. In addition,
MMPBs could exert effects on maturation/function of mucosal
and systemic immunity (34). The role investigation of bacterial
post-biotics as messengers between the GM and the immune
system could have a great impact in elucidating impaired
host–microbial interactions in IBD. Further comprehension on
how the GM metabolism can shape the host immune system
(immunomodulation) might improve the translation toward
clinical applications.

In this review, we present the main immune functions
of relevant MMPBs as Short Chain Fatty Acids (SCFA)
and Tryptophan (Trp) catabolites (35) along with recent
observations that could link metabolite misbalances to IBD.
Furthermore, as many IBD patients do not respond adequately
to the therapeutic treatments, or they show acute side effects,
future therapeutic approaches are required: we discuss post-
biotics supplementation as a therapeutic strategy that could
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modulate the host immune response through a recent approach
named “Immunonutrition.”

RELEVANT MICROBIOTA POST-BIOTICS
IN IBD PATHOGENESIS

The commensal gut bacteria produce an extremely various
repertoire of metabolites, including SCFAs, tryptophan
catabolites, essential vitamins (e.g., group B and K vitamins),
phenolic acids and bile acids. The MMPBs play distinct bioactive
functions for the host cells (36), determining thus multiple
pathophysiological effects. A GM comparative evaluation of
healthy individuals and IBD patients demonstrated that the
speciation of the GM (genus-level clades) from healthy vs. IBD
differed by 2%, but the metabolic profiles of the respective GM
differed by 12% (37). This study demonstrated that perturbations
in bacterial composition, although modest, are associated with
major perturbations of GI microbiome function suggesting that
the bacterial production of metabolites might perturb the host
in other manners that are significant for IBD pathogenesis.
Future studies focused on metabolomic characterization will
be needed to additionally define the consequences of the IBD-
associated microbiome dysfunction on the host and the specific
mechanisms by which they are carried out or regulated by
the microbiota.

Several commensal bacteria, including Enterococcus spp,
Enterobacteriaceae, and Lactobacillus spp., can influence the
general MMPBs amount, for example by requiring specific amino
acids as nitrogen sources, or by producing secondary metabolites
(38). In the intestinal tract, the interface between the host and its
GM is composed of a monolayer of epithelial cells that allow the
access and interaction with the metabolites produced by the GM.

SCFAs are the most studied microbial metabolites in
IBD. They are secondary metabolites produced through the
fermentation of dietary substrates, such as proteins, peptides,
resistant starches, and undigested fibers by the GM. So far,
the dysbiotic condition in IBD patients has been associated
with impaired SCFAs-fermentative pathways, which reflects a
decreased number of SCFAs-producing bacteria and a lower
amount of fecal SCFAs (39). Moreover, SCFAs production has
been associated with a reduced IBD risk (40). SCFAs are a
group of fatty acids with less than six carbons (including acetic,
formic, propionic, butyric, and valeric acid) whose production
is influenced by several factors, such as host nutrition, and
GM diversity in terms of presence/absence and concentration
of specific commensal bacteria (41). Propionate and acetate
are produced mainly by Bacteroidetes members, while butyrate
is mostly produced by the Firmicutes phylum. Within the
eukaryotic host, SCFAs can be used as an energy source by
the colonocytes, or they can be conveyed to blood circulation
and other tissues. Interestingly, the main SCFAs (i.e., butyrate,
acetate, and propionate) possess different production ratios and
physiological activities, and the final composition given by these
acids can change throughout the different sites of the whole gut.
In detail, propionate and acetate are observed in both large and
small intestines, while a greater concentration of butyrate was

found in the cecum and colon (42). As for the SCFAs synthesis,
propionate can be produced through the lactate pathway by
Firmicutes, and/or succinate pathway by Bacteroidetes phylum
(43). The recent discovery about the capability of SCFAs to
bind receptors, such as GPR41, GPR43, and GPR109a (usually
expressed on a large number of cell types) allowed clarifying the
regulatory activity of SCFAs in IBD. Beyond the use of SCFAs as
an energy source by intestinal epithelial cells (IECs), the SCFAs
exhibit modulating effects on immune system cells (e.g., T cells,
especially Tregs, neutrophils, and macrophages). In fact, the
SCFAs can affect cytokine production and migration, cytolytic
activity, and epigenetic modulation.

In addition to altered SCFAs concentrations in IBD patients,
metabolomic analyses showed a decreased serum level of Trp
and Trp metabolites (44). The bacterial metabolism of Trp may
involve different pathways being substrate of both the gut mucosa
and GM enzymes (45). Trp derives from dietary substrates and
it is absorbed by SLC6A19/B0AT1 (a sodium-dependent neutral
amino acid transporter) (46). Trp is a precursor for several
MMPBs and can exert different functions on the host, such as
immune homeostasis, but also with inflammatory response. The
Trp availability is essential for the protein synthesis, production
of indole and nicotinamide derivatives via kynurenine, as well as
for the serotonin synthesis (47).

IBD AND THE MMPBS
IMMUNOMODULATING ACTIVITY

Recent studies reveal that the host immune system can “sense”
the MMPBs repertoire, and this recognition can induce (by
several mechanisms) immunomodulation, causing IBD and
the consequent inflammation of the gastrointestinal tract
(48). Given its vast superficial area and continuous exposure
to the host microenvironment, the gut epithelial barrier is
receptive to any potential damage induced by pathogens and
toxins. The interplay immune–microbiota is so complex that
various animal models for colitis need to explore the different
possibilities of inducing chronic inflammation in genetically
predisposed animals. Mucosal cellular subsets, such as IECs,
DCs, macrophages, T cells, and innate lymphoid cells (ILCs),
can express sensing platforms, regulating the mutualistic cross-
talk between GM and the host. Furthermore, GM metabolites
can move to other host organs, such as the central nervous
system, where they can regulate the immune responses (9, 49).
As previously reported, the dysbiotic condition in IBD may
affect the impaired interplay between GM and immune cells
also involving aberrant signaling through immunomodulatory
metabolites. Actually, it is still under debate whether a dysbiotic
microbiota in IBD patients has a primary pathogenetic role or
is secondary to the inflammatory and antimicrobial responses
elicited during the disease course (50). Among MMPBs, SCFAs
might play crucial roles in each phase of the inflammatory
process, regulating the function of almost every type of immune
cells (Figure 1). In particular, butyrate has been demonstrated
to have a complex regulatory role, exerting for example an
anti-inflammatory effect on both immune cells and IECs at
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FIGURE 1 | Immunomodulating effects of SCFAs. SCFAs regulate the gut barrier integrity by promoting intestinal epithelial cell secretion of IL-18, mucin, antimicrobial

peptides, and upregulating the expression of tight junctions. In addition, SCFAs (a) induce neutrophils chemotaxis to inflammatory sites and enhance their ability of

phagocytosis; (b) regulate the T cell functions through both GPCR pathway and inhibition of HDAC (histone deacetylases); (c) regulate the differentiation and

functionality of Th17, Th1, and Tregs; (d) inhibit intestinal macrophage generation of proinflamamtory cytokines through inhibition of HDAC; (e) induce intestinal IgA

production of B cells.

the gut level (51). Notably, SCFAs inhibit stimuli-induced
expression of adhesion molecules, chemokine production,
and consequently they suppress monocyte/macrophage and
neutrophil recruitment, suggesting a potential anti-inflammatory
role in vivo. In addition, several studies with IBD mouse models
revealed a protective role of SCFAs (48). However, there is also
some evidence that suggests a pro-inflammatory action of SCFAs.
This discrepancy may be partially explained by the presence
of microbes causing infections in anaerobic sites where, by the
following loss of intestinal epithelial integrity, there is a high
concentration of SCFAs in loco that may lead toward neutrophil
accumulation and rise of inflammatory processes (52).

SCFAs-mediated immunomodulation could be regulated
through different specific mechanisms: (I) activation of GPCRs,
(II) stimulation of histone acetyltransferase, (III) inhibition of
histone deacetylase (HDAC), and (IV) stabilization of hypoxia-
inducible factors (53–56).

SCFAs are fundamental in preserving mucosal immunity
since they improve the barrier activity of IECs (composed by
mucus-secreting goblet cells, absorptive enterocytes, hormone-
producing enteroendocrine cells, lectins-secreting Paneth
cells, and antimicrobial peptides) that act on tight junction
permeability (57). In vitro model of human cell showed that he

gut epithelial goblet cells are able to promote the transcription
of mucin genes in response to SCFAs stimuli (58). The IL-18 is
involved in antimicrobial peptides synthesis, mucin production
and in the control of the GM composition, has been shown
to prevent a colitogenic phenotype in mouse (59). During the
innate immune responses at mucosal sites, the TLRs of the
different cells (in DCs, IECs, and neutrophils) might recognize
the MMPBs. A mouse study proved that propionate and
butyrate could inhibit maturation of DCs that represent a bridge
between the innate and adaptive immune system (60). TLRs
are strategic innate immune receptors able to detect pathogen-
associated molecular patterns (PAMPs), which represent peculiar
pathogenic “molecular signature.” After the PAMPs stimulation,
the TLRs can initiate the inflammatory responses and erase the
pathogenic invaders. A study showed that SCFAs impact on
pro-inflammatory cytokines production (e.g., IL-6, IL-1β, IL-8,
and TNF-α) in human IECs by increasing NF-κB stimulation
in TLR ligand-responses (61). Notably, the impact of SCFAs
on TNF-α and IL8 production provides another mechanism
by with MMPBs would be expected to influence gut health.
In particular, TNF-α and IL8 are also involved in maintaining
epithelial homeostasis by influencing epithelial to mesenchymal
transition (EMT) and the inverse process (MET) (62). This two
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process (EMT and MET) represents cellular trans-differentiation
programmes by which epithelial cells acquire mesenchymal
features and viceversa (63). Specifically in the context of
intestinal disease, increasing evidence has supported a role for
EMT in the pathogenesis of IBD-associated intestinal fibrosis
(64, 65).

MoreoverSCFAs can modulate the activities of mouse DCs,
which can produce cytokines and interact with T cells. The
exposition of DCs to butyrate has been shown to increase naïve
T-cells differentiation into Tregs, inhibiting the transformation
of the same into IFN-γ-producing T cells (66). Butyrate can
also modulate the macrophages’ activity of colon lamina propria
in mouse, inhibiting the transcription of proinflammatory
molecules (e.g., Nos2, Il6, and Il12), providing a status of
tolerance toward the GM (67).

Furthermore, the chemotaxis of neutrophils is induced by
inflammatory mediators (e.g., IL-17, TNF-α, or chemokines)
and the SCFAs might provoke the movement of neutrophils to
inflammatory sites, increasing also their phagocytic activity. In
detail, SCFAs induce the neutrophils’ chemotaxis by activating
GPR43 (52), in rats, modulating both the phagocytic activity and
the production of reactive oxygen species (ROS) (68).

Regarding adaptive immune responses, SCFAs could also
exert immunomodulating activity in T and B cells. SCFAs
regulate the T cell differentiation that can be mediated with two
types of processes: by indirect regulation of DCs (as previously
reported) and through a direct effect on T cells. Finally, the
induction of Th17, Th1, and Tregs is also modulated by SCFAs
in different cytokine milieu (69).

Compared to healthy controls, IBD patients presented
an augmented concentration of Tregs in gut and especially
in inflammatory lesions (70). In detail, butyrate has been
shown to induce epigenetic modifications, upregulating the
histone H3 acetylation of Foxp3 and inducing the Tregs’
differentiation, acting as an anti-inflammatory mediator (71).
Butyrate might inhibit several zinc-dependent HDACs, leading
to the hyperacetylation of histones. Consequently, the nuclear
chromatin results in an open structure, thus making DNA
accessible to genes transcription. Butyrate can inhibit (NF-kB)
activation, containing the inflammatory response and reducing
the production of proinflammatory molecules (72). Moreover,
the nuclear peroxisome proliferator activated receptor (PPAR)γ,
which could be induced by butyrate, is exerting an anti-
inflammatory activity through NF-kB antagonism in murine
cell culture (73). Products operating as HDAC inhibitors may
be an efficient treatment for IBD and other pro-inflammatory
cytokine-related diseases.

Conversely, different cell observations showed that butyrate
can induce other epigenetic modifications, as hyperacetylation
of non-histone proteins (74), histone methylation (75),
selective inhibition of histone phosphorylation (76), and DNA
methylation (77). In addition, HDAC inhibitory activity of
butyrate stimulates gene expression alterations also in mouse
DCs, including the suppression of IL-6, IL-12, and Relb, which
influence the polarization of Tregs (78). In addition, in vitro
studies demonstrated that the SCFAs could also influence human
leukocyte function through inhibition of HDAC activity leading

to NF-kB inactivation and suppression of proinflammatory
cytokines and nitric oxide (79).

Most favorable immunomodulating roles of SCFAs in the
gastrointestinal tract are mediated by the direct activation of
its GPCR receptor (80). GPR109A acts also as receptor for
bacterial-derived nicotinic acid (NA). On macrophages, IECs
and DCs (isolated from mice), both the butyrate and NA could
link GPR109A leading to the production of respectively IL-18
from IECs, and IL-10 from macrophages and DCs, which further
induce the suppression of inflammation as IL-10 might promote
the Tregs differentiation (81).

It has also been shown that in B cells, the SCFAs might favor
the IgA secretion in mice (82). Plasma B cell differentiation
could be promoted also by SCFAs, as they could modulate the
gene expression that is necessary for antibody generation in
a SCFAs receptor-independent manner (83). On the contrary,

FIGURE 2 | Microbiome-modulated post-biotics in IBD. The commensal

bacteria produces an extremely diverse metabolite repertoire

(microbiome-modulated post-biotics “MMPBs”) including SCFAs and

tryptophan from dietary fiber fermentation. The MMBPs show

immunomodulating effect (especially on the inflammation of the mice

gastrointestinal tract), inducing the IL-22 secretion involved in pathogen

resistance and mucosal protection. Altered levels of MMBPs have been also

associated with IBD pathogenesis. Direct human evidence is lacking.
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acetate could induce IgA production with GPR43-dependent
way (84). GPR43 could have a role in the modulation of
gut inflammation, which may be related cytokine production
and neutrophil recruitment. In colitis’ mouse models, lacking
GPR43, the mice develop exacerbated inflammation due to a
greater generation of inflammatory effectors and an augmented
enrolment of immune cells (85).

Elucidating the multifaceted molecular processes underlying
the anti-inflammatory activity of SCFAs, it has been
challenging because they could act together with different
signaling compound. As the effects of SCFAs are sometimes
combinatorial, diverse, and indirect, future investigations
will have to explain their therapeutic prospective in
clinical aspects.

Another prominent paradigm of how the microbiota can
affect the tissue-level immune maturation is the microbial
metabolism of tryptophan. Trp metabolites have been
identified in experimental colitis or IBD patients to have
immunomodulatory activity (86). The aryl hydrocarbon receptor
(AhR) is a cytoplasmic transcription factor found in several
types of immune cells, as macrophages, DCs, IECs, B cells,
and T cells (87). Kynurenine is a metabolic product derived
from tryptophan that could be an endogenous AhR ligand
(88). It is involved in the modulation of innate lymphoid cells
expansion, intraepithelial lymphocytes, inflammatory, and
immune reactions and contributes to the maintenance of normal
mucosal function in the intestine (89). Diet-derived AhR ligands
induce the IL-22 secretion (81, 90), which in turn favors the
production of mucin and antimicrobial peptides in the gut, thus
conferring pathogen resistance and mucosal protection (91). A
division of commensal bacteria employs Trp as an energy source
and produces the indole-3-aldeyde, which further activates AhR
in ILCs, inducing the IL-22 secretion (Figure 2). This process
affects both mucosal healing and the anti-microbial peptides
repertoire including lipocalin-2, S100A8, and S100A9 in mice
(92). Indole reduces the expression of inflammatory genes
and up-regulates the expression of tight junction proteins (93)
interacting with the AhR (94). In mice, the AhR activation, using
tryptophan metabolites reduces dextran sulfate sodium-induced
colitis (95).

The gut microflora of mice lacking caspase recruitment
domain family member 9 (CARD9) was unable to metabolize
Trp, the products of which would otherwise stimulate AhR.
These mice models presented a reduced number of colonic IL-
17A and IL-6 as well as fewer IL-22-producing innate lymphoid
cells in the colon lamina propria (96). Conventionalization of
germ free mice with the GM from CARD9 defective mice
increased their susceptibility to develop colitis. Interestingly, gut
inflammation in these mice was ameliorated with both AhR
agonist supplementation and three Lactobacillus strains capable
of metabolizing tryptophan. Furthermore, GM obtained from
IBD patients were less able to produce AhR ligands (97). These
results indicate that also Trp metabolites are bioactive mediators
that modulate the crosstalk between GM ecosystem and the host
immune response (98).

IMMUNONUTRITION AS A NOVEL IBD
THERAPEUTIC APPROACH?

Immunonutrition refers to the effects that specific dietary
factors, as reported above, can have on different aspects of
the immune system as well as on the microbiota. However,
the role showed by these specific dietary factors in the
pathophysiology of many metabolic disorders, specifically in
promoting inflammation, raises the possibility that in IBD
pathogenesis a heightened susceptibility to environmentally
driven dysregulated intestinal immunity (i.e., that caused by a
Western-style diet or by other factors of microbial dysbiosis)
plays a prominent role. It was observed that the number
of dominant SCFAs producing bacteria (i.e., Faecalibacterium
prausnitzii and Roseburia intestinalis) decreased in IBD patients,
consequently affecting the differentiation and expansion of
Tregs as well as the growth of bowel epithelial cells (99). In
this case, a counter-regulatory measure based on a dietary
immunomodulation, clinically known as immunonutrition,
could help to re-balance the inflamed bowel toward a neutral
condition. Even if immunonutrition, to be adopted in the short-
term perioperative course, is actually recommended (in recent
surgical guidelines) to prepare oncologic patients for tumor
removal (100), in IBD few studies on this topic are available
in literature (101). In particular, the role of SCFAs and Trp
post-biotics has been poorly evaluated as a novel therapeutic
approach in CD or in UC, both in the perioperative period or
in the long-term post-operative course. In experimental models,
it was evaluated that GPR109a−/− mice are at higher risk of
developing colonic inflammation and cancer, and that niacin
induces anti-inflammatory and anti-carcinogenic environment
in the bowel via GPR109, demonstrating the therapeutic potential
for this receptor (102). On the other hand, in individuals with
mild to moderate UC in a Phase 2 randomized, double-blind,
placebo-controlled clinical trial, GLPG0974, a GPR43-specific
antagonist, even reducing the inflammatory response in vitro, did
not change clinical outcomes of patients over a short period of
time (103). Disagreeing data regarding the role of these receptors
in either promotion or suppression of disease are still present,
and how combinations or single specific SCFAs and Trp post-
biotics contribute to beneficial or pathogenic effects in the host
is still largely to be clarified (104).

Studies in which SCFAs were provided by different forms
including oral administration and use of enemas were performed
to investigate their various positive effects on IBD models in
rats. In humans, although SCFAs or compounds (i.e., dietary
fibers) that increase the availability of SCFAs, present beneficial
in vitro effects in intestinal inflammation, the real life clinical
positive effect is not consensual (105). In particular, it has been
reported that SCFAs enemas increase mucosal generation, crypt
length, and DNA content of the colonocytes, improving the
UC symptoms in patients and rats injected with trinitrobenzene
sulfonic acid (106). However, in UC patients in clinical remission
daily administering 60ml rectal enemas, containing 100mM
sodium butyrate (n = 17) or saline (n = 18) for a period of
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20 days, butyrate enemas induced only minor effects on colonic
inflammation and oxidative stress (107).

Furthermore, in IBD this dietetic approach could be useful
in reducing the recurrence risk in CD patients and in
preventing pouchitis after total proctocolectomy and ileo-pouch-
anal anastomosis in UC patients.

Knowledge about nutritional intervention in CD patients is
still extremely poor. For this reason, the most recent review
about this topic report on the nutritional manipulation of
GM and mucosal immune system is still only a promising
prophylactic intervention against bowel inflammation (108). In
fact, in addition to correcting malnutrition (factor connected
with a better short-term post-operative outcome in CD)
immunonutrition, enhancing immune function, may also induce
CD remission or reduce the extent of resection needed by
decreasing the inflammatory response.

In standard perioperative immunonutrition in oncologic
patients, the key immune-modulating nutrients include
ariginine, glutamine, nucleotides and omega-3 fatty acids
either alone or in combination (100). In fact, surgical stress
can cause an acute depletion of arginine, which both impairs
T cell function and wound healing. This acute nutritional
deficiency is potentially modifiable and has been the target of
nutritional optimization around the surgery time. Nutritional
supplements enriched with immunonutrients have recently been
introduced into clinical practice for patients undergoing cancer
surgery (109). Theoretically, the role of these immunonutrients
administered in the perioperative period could be similar in
oncologic patients in order to decrease the incidence of surgical
complications, in particular infectious complications. As a
supplement, the use of omega-3 fatty acids may also decrease the
production of proinflammatory leukotrienes and prostaglandins
by competing with omega-6 fatty acids in the eicosanoid pathway
(110). This has been shown to reduce the steroid requirements
in UC. In CD, where the C-reactive protein and erythrocyte
sedimentation rate are elevated, omega-3 fatty acids have been
shown to lower production of proinflammatory interferons
and prostaglandins; however, it has not been shown to play a
significant effect on disease activity and further studies on this
are legitimate needed (111).

Preoperative preparation of patients with Crohn’s disease
is challenging and there are no specific guidelines regarding
nutritional support. It has been shown that the optimization
of the nutritional status before surgery (with either enteral
or parenteral support) reduces post-operative intra-abdominal
septic complications and the need for a temporary diverting
stoma (112). More recently a retrospective, cohort study
including all CD patients who underwent abdominal surgery
showed that nutritional support can minimize post-operative
complications in IBD patients with low albumin levels (113).

In addition, a recent study demonstrated that the microbial
metabolite Urolithin A (UroA) (a major microbial metabolite
derived from polyphenolics of berries and pomegranate fruits),
and its analog UAS03, significantly enhance the gut barrier

functionality and inhibit unwarranted inflammation. The oral
treatment with UroA/UAS03 considerably mitigated systemic
inflammation and colitis suggesting potential therapeutic
applications for the protection from colonic diseases and the IBD
treatment (114).

An alternative approach based on a dietary modulation
targeting the immune system toward the GM post-biotics should
be more widely evaluated in order to better refine the specific
IBD pathogenesis and to decrease the incidence of short and
long-term post-operative complications in both CD and UC.

CONCLUSIONS

It is established that the gut colonization by the bacterial
community is essential for a correct training of the immune
system, in order to discriminate pathogens and commensals.
Here we underline some examples by which microbial post-
biotics could regulate host immune response in IBD. Currently,
growing data documents immunomodulating effects of MMPSs
in a wide range of immune cells (from innate to adaptive
immunity), supporting a challenging frontier in the prevention
and treatment of IBD. Examining the impact of bacterial
metabolites on gut immunity, whether through direct effects
on host immune cells or indirect effects on the GM, would
provide us with critical information essential to promote
innovative therapies.

Currently, the use of post-biotics has opened a new
opportunity to search for and investigate the potential
uses of microbiota-derived products as novel therapies
for many inflammatory diseases. Nowadays, IBD
therapies focus on the suppression of inflammation that
characterizes IBD and the restoration of intestinal barriers.
Immunonutrition is an underexploited and understudied
topic of research that could provide a tractable approach
employed in the future to reduce damaging intestinal
inflammation in IBD.
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