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INTRODUCTION

Respiratory tract infections (RTIs) are the third leading cause of morbidity and mortality
worldwide, accounting for ∼4.25 million deaths in 2010, in either children, adults or the elderlies.
RTIs encompass acute infections of the upper (rhinosinusitis, . . . ) and lower airways (pneumonia,
bronchiolitis, . . . ) and are also inherently associated with chronic diseases such as chronic
obstructive pulmonary disease (COPD) and cystic fibrosis (CF). In addition to prematuremortality,
RTIs result in a huge burden on the society considering quality-adjusted life year loss and additional
pressure on the overwhelmed healthcare systems, thereby representing a major public health issue.

Antimicrobial chemotherapies (e.g., antibiotics, antivirals) are the standard interventions to
prevent and to treat respiratory infections. However, their effectiveness is declining due to
increased pathogen resistance, urging alternative or complementary strategies to reinforce the
anti-infectious arsenal to fight RTIs. Among those under evaluation, immunomodulatory agents
(immunopharmaceutics) like therapeutic antibodies (Ab) or other therapeutic proteins and
vaccines may offer novel opportunities for the prevention and treatment of RTIs, by targeting
pathogens and boosting the host immune system. When used in a preventive way in patients
at risk, or therapeutically to stop or to limit the spread of infection, both immunopropylactics
and immunotherapeutics are administered through parenteral routes (including intravenous,
subcutaneous, and intramuscular) (Table 1). As demonstrated in preclinical studies, parenteral
delivery may not be optimal for large molecular weight entities to treat respiratory diseases (1, 2)
since they poorly reach the lung compartment. In contrast, inhalation, comprising the intranasal
and oral respiratory routes, targets drugs into the respiratory tract. Currently, inhalation is used
both for locally- and systemically-acting drugs as it allows a straight delivery to the diseased
organ and a portal to the blood circulation, considering the extensive alveolus-capillary interface.
By providing a better therapeutic index, inhalation is the gold standard for small molecules,
delivered topically as an aerosol, like corticosteroids/steroids, decongestants or bronchodilators
for the treatment of asthma, rhinosinusitis or COPD. Besides, it is also indicated for antibiotics
(nasal and oral inhalation), a local-acting protein therapeutic—Dornase alpha (Pulmozyme R©,
oral inhalation), a mucolytic agent for patients with CF and an influenza live vaccine (FluMist R©

Quadrivalent, nasal inhalation).

LOCAL-ACTING IMMUNOPHARMACEUTICS DELIVERED BY
INHALATION

There are accumulating evidences that administration of anti-infectious Abs, protein therapeutics
(e.g., cytokines) and vaccines, to the upper and/or lower respiratory tract by inhalation,
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with the purpose of inducing a local action, is effective
(3). Several preclinical studies showed the superiority
of immunopharmaceutics administered topically to the
respiratory tract in RTI models, in both therapeutic and
prophylactic regimens. For instance, inhalation of anti-
infectious Abs in models of pneumonia using Pseudomonas
aeruginosa or influenza virus conferred higher protection
and greater therapeutic response, respectively, compared
to parenteral route administration (4, 5). Besides, other
immunoprophylactics delivered through the respiratory route
such as immunocytokines (e.g., IL-7 Fc) (6) and live-attenuated
vaccines (7) showed superior performances over conventional
routes against airborne viruses, in mice and non-human
primates, respectively. Conversely, restricting the response to the
site of action for pleiotropic molecules (e.g., IL-7 Fc), envisioned
as adjuvant molecule, may reduce systemic side-effects. As
reported for anti-infectious Abs, the inhaled route may also
enable a higher efficacy with a lower dose (4). This means
that the inhaled route may allow, in the future, to alleviate
the financial burden of immunopharmaceutics (in particular
Abs), which may exceed the ability of both individual patients
and the healthcare systems to sustain them. Additional benefit
of the inhaled route includes its non-invasiveness, offering a
better comfort for patients, in particular those with chronic
respiratory infections, and thus preventing additional healthcare
costs. Besides, needle-free vaccination may prevent the risk of
cross-contamination and facilitate mass vaccination efforts.

However, beyond clear preclinical proofs of concept and
obvious theoretical advantages of the inhalation route for
immunotherapeutics and -prophylactics, few of these benefits
have materialized in the clinic (Table 1). Except for Flumist R©

Quadrivalent (Astrazeneca), an intranasal live attenuated
influenza vaccine, other marketed immunoprophylactics
vaccines (including those against Streptococcus pneumoniae,
Haemophilus influenza, Mycobacterium tuberculosis, Bordetella
pertussis or measles and Ab (anti-RSV Pavilizumab)—are
administered systemically. Similarly, none of the protein
therapeutics is given by inhalation. Recently, Ablynx developed
an inhaled anti-RSV trimeric nanobody R© (ALX-0171) for
therapeutic purposes. Despite promising results in several
animal models, the development has been interrupted due to
insufficient evidences of efficacy during Phase 2 trial in children
(in Japan). In 2019, only one phase 2 trial with an inhaled anti-
infectious protein therapeutics is still ongoing (NCT03570359)
assessing the efficacy of topical lung delivery of IFN-β1a
(SNG001, Synairgen/Astrazeneca), as an immunostimulant
to treat COPD exacerbations. Overall, this highlights the
complexity of developing inhaled biopharmaceuticals and points
out the persisting hurdles (Figure 1).

CHALLENGES FOR THE DEVELOPMENT
OF INHALED IMMUNE-
THERAPEUTICS/PROPHYLACTICS

The instability of immunopharmaceutics and vaccines often
emerges as a challenge for inhalation delivery. Therapeutic

proteins and vaccines are sensitive to various conditions
which may alter their structure, thereby decrease their activity.
Delivering a drug through the inhalation route implies either
spraying, drying or aerosolizing, which is associated with
multiple stresses (shearing, temperature, air/liquid interface, . . . )
potentially deleterious as widely discussed elsewhere (8, 9). To
deal with this, both the device used for the generation of the
aerosol and the formulation must be adapted, as successfully
reported for Ab-based therapeutics (3, 10). However, the
excipients must be adapted for respiratory delivery. The choice of
mucosal-licensed adjuvants, which should be exempt of intrinsic
immune-toxicity, and the instability of the associated carrier
[e.g., nanoparticles, liposomes, immune stimulating complexes
(ISCOMs)] is particularly challenging for the inhalation delivery
of vaccines, especially those of the latest generation (e.g., T,
B-epitope-based vaccines). The drug and device combination
yields proper aerodynamical properties (particle size, flow rate,
. . . ) to achieve the anticipated deposition in the appropriate
area of the respiratory tract. Indeed, appropriate deposition to
the anatomical site is mandatory to ensure an optimal efficacy.
On one hand, this depends on the drug formulation (e.g.,
surface tension and viscosity for liquid formulation) (11) and
device performances to allow the therapeutic agent to reach
the site of infection (Figure 1), by this means the microbe.
For lung infections, most pneumonia consists of an aggregate
of trachea-bronchitis and alveolar infections. Theoretically, this
clinical condition may benefit from a uniform distribution all
over the lungs, with a polydisperse aerosol (ranging 1–5µm).
However, several pathogens are associated with specific anatomic
localization, like S. pneumoniae, which is mainly found in the
alveolar spaces, thereby requiring low-size aerosols (<2–3µm)
to be targeted. On the other hand, delivery to the mucosal-
associated lymphoid tissue (MALT), located in the tonsils, would
be more adapted for vaccines to induce an adaptive immune
response, since MALT plays a central role in the primary
respiratory immune defense (Figure 1).

Biological barriers are additional hurdles to overcome
and apply to all inhaled anti-infectious agents (12). First, a
pathogen can “hide” itself inside host cells like M. tuberculosis
in alveolar macrophages, thus being more difficult to be
targeted by immunopharmaceutics. Other pathogens may
produce extracellular barriers like the biofilm matrix produced
by P. aeruginosa in the context of chronic lung infections.
This biofilm acts as a diffusion barrier, preventing inhaled
immunopharmaceutics from reaching their molecular target.
Antibody-based fragments, such as fragment antigen-binding
(Fab) and single-chain variable fragments (scFv) might be
more efficient in crossing over the biofilm, like they penetrate
better solid tumors (13), and eradicate P. aeruginosa. Secondly,
the host physical defenses, which prevent foreign particles
from penetrating into the respiratory tract, may limit the
accessibility of inhaled immunopharmaceutics to their target.
Among them, the mucus and the mucociliary escalator are
highly efficient clearance mechanisms (14, 15). The development
of mucoadhesive formulations may be helpful to enhance
the bioavailability of inhaled drugs (16). In contrast, anti-
adhesive molecules, such as polyethylene glycol may facilitate
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TABLE 1 | Marketed immunotherapeutics and immunoprophylactics for infectious diseases.

Target Product Category Sponsors Administration route Date of approval Indication

RSV Synagis Monoclonal antibody MedImmune IM 1998 Prophylaxis

Influenza Afluria Inactivated vaccine

Quadrivalent

Seqirus IM 2007 Prophylaxis

Fluad Inactivated vaccine

Trivalent

Seqirus IM 2015 Prophylaxis

Fluarix Inactivated vaccine

Quadrivalent

GSK IM 2012 Prophylaxis

Flublok Recombinant vaccine

Quadrivalent

Protein Sciences

Corporation

IM 2013 Prophylaxis

Flucelvax Inactivated vaccine

Quadrivalent

Seqirus IM 2012 Prophylaxis

Pandemic influenza

vaccine H5N1

Recombinant vaccine Medimmune IN 2016 Prophylaxis

FluLaval Inactivated vaccine

Quadrivalent

ID Biomedical

Corporation of Quebec

IM 2013 Prophylaxis

FluMist Live-attenuated vaccine

Quadrivalent

MedImmune IN 2003 Prophylaxis

Fluzone High Dose Inactivated vaccine

Quadrivalent

Sanofi Pasteur IM 2014 Prophylaxis

Fluzone Inactivated vaccine

Quadrivalent

Sanofi Pasteur IM 2009 Prophylaxis

Fluvirin Inactivated vaccine

Trivalent

Seqirus IM 1988 Prophylaxis

Measle Proquad Subunit vaccine Merck SC 2005 Prophylaxis

M-M-R II Subunit vaccine Merck SC 2014 Prophylaxis

Smallpox ACAM2000 Live vaccina virus Emergent Product

Development

Percutaneous 2007 Prophylaxis

Mycobacterium

tuberculosis

BCG Vaccine Live-attenuated vaccine Organon Percutaneous 2011 Prophylaxis

Streptococcus

pneumoniae

Pneumovax 23 Subunit vaccine Merck&Co IM 1983 Prophylaxis

Prevenar 13 Subunit vaccine Wyeth Pharmaceuticals IM 2010 Prophylaxis

Bordetella pertussis Daptacel Subunit vaccine Sanofi Pasteur IM 2008 Prophylaxis

Pediarix Subunit vaccine GSK IM 2002 Prophylaxis

Kinrix Subunit vaccine GSK IM 2008 Prophylaxis

Quadracel Subunit vaccine Sanofi Pasteur IM 2015 Prophylaxis

Pentacel Subunit vaccine Sanofi Pasteur IM 2008 Prophylaxis

Haemophilus influenzae Hiberix Subunit vaccine GSK IM 2009 Prophylaxis

ActHIB Subunit vaccine Sanofi Pasteur IM 1993 Prophylaxis

PedvaxHIB Subunit vaccine Merck IM 1989 Prophylaxis

Bordetella pertussis

Haemophilus influenzae

Infanrix Subunit vaccine GSK IM 1997 Prophylaxis

Vaxelis Subunit vaccine MCM Vaccine IM 2018 Prophylaxis

Bacillus anthracis Anthim Monoclonal antibody Elusys Therapeutics IV 2016 Prophylaxis/Therapy

Abthrax Monoclonal antibody GSK IV 2012 Prophylaxis/Therapy

Biothrax Subunit vaccine Emergent BioSolutions IM 2016 Prophylaxis

IM, intramuscular; IN, inhalation (nasal); SC, subcutaneous.

immunopharmaceutics translocation through themucus blanket,
as shown in vitro (17) and in vivo (18) for other applications.
It is noteworthy that, in some pathological conditions (e.g.,
chronic sinusitis, CF and COPD), the mucus gets thicker.
In CF, the mucus exhibited an increased density of disulfide
cross-links, further tightening the mucus mesh space, thereby

reinforcing its steric barrier potency to immunopharmaceutics
(19). To date, overcoming this physical barrier has not been
addressed in the design of inhaled immunopharmaceutics.
Other biological barriers include alveolar macrophages and
the pulmonary surfactant layer in the alveolar region. While
the molecular interactions between inhaled particles and
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FIGURE 1 | The multifaceted features from the development of inhaled immunopharmaceutics.

the surfactant are largely unknown, some evidences indicate
that surfactant proteins may facilitate the uptake of inhaled
particles by alveolar macrophages (20). Alveolar macrophages
patrol the airways and phagocytose inhaled organic (including
pathogens) and inorganic particles ranging between 0.5 and
5µm (21). Interestingly, the size-discriminating property of their
phagocytosis potency has led to the development of innovative
approaches for inhaled drugs, in which carrier entrapped-
particles of smaller or larger size are inhaled to escape the alveolar
macrophage phagocytosis and to provide a better controlled
drug release [(22, 23); Figure 1]. This strategy is investigated for
mucosal vaccines to prevent the degradation or denaturation of
the peptide/antigen, to sustain its release and favor delivery and
adjuvancy (24).

The lung mucosa is a metabolic active environment (25).
The presence of proteases [which is more prevalent in the
nasal mucosa (26)] may degrade therapeutic proteins before
they reach their targets. In addition to host enzymes, bacterial
pathogens, like P. aeruginosa, release additional proteases, which
may metabolize respiratory-delivered drugs (27). In this context,
the presence of protease inhibitors in the formulation of inhaled
protein therapeutics may improve their pharmacokinetics and
efficacy, as previously demonstrated for inhaled peptides such
as insulin and calcitonin (28). Furthermore, the encapsulation
of protein therapeutics into liposomes may also improve
stability and reduce the frequency of dosing (29). This
strategy has already been clinically validated for the pulmonary

delivery of antibiotics (30). Of note, respiratory diseases are
often associated with an impairment of the protease/anti-
protease balance. In CF, high levels of proteases are a result
of the chronic infection and inflammation induced by P.
aeruginosa (31). This proteolytic environment self-perpetuates
the intensity of inflammation, induces mucus hypersecretion and
respiratory tissue damage, which may ultimately affect inhaled
immunotherapeutics (Figure 1).

CONCLUSION

Compared to the expansion of biopharmaceutics
(excluding non-recombinant vaccines) in all medical areas,
the field of inhaled protein therapeutics/vaccines has
stagnated, with only few drugs approved so far. Despite
promising preclinical data and significant advances on
macromolecule inhalation, a definitive demonstration
that effective and intact inhaled immunopharmaceuticals
could be delivered (topically) to humans is
still lacking.

Although, we cannot rule out that the recent failures of
inhaled biopharmaceutics (Exubera and ALX-0171) make it
challenging, to our opinion, it may be time for thinking
carefully where inhalation may have the edge over other routes:
“finding the right use for this modality!” They may be many
possibilities considering the unmet clinical needs for respiratory
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diseases and the growing market of immunopharmaceutics. But
the inhalation route must be envisioned and integrated early
taking into account the disease/population, the target, the drug
and the device (Figure 1), rather than adapting an approved
molecule for the inhalation route. RTIs are undoubtedly an
appropriate clinical situation for inhalation, if we consider the
importance of matching the delivery of immunoprophylatics
or immunotherapeutics to their site of action. Anti-infectious
macromolecules may certainly benefit from the success of
inhaled antibiotics, but it is critical to remember their precise
molecular nature associated with a unique pharmacokinetics
profile when considering their development for inhalation.
Besides, the recent report of a universal flu vaccine, comprised
of Ab-based therapeutics (VHH) produced by an adeno-
associated virus delivered intranasally pushed further the
boundaries of the potential of the inhalation route for
immunoprophylactics (32).
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