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Plasma cells (PCs) represent the terminal differentiation step of mature B lymphocytes.

These cells are most recognizable for their extended lifespan as well as their ability

to secrete large amounts of antibodies (Abs) thus positioning this cell type as a key

component of humoral immunity. However, it is now appreciated that PCs can have

far reaching effects on pathologic as well as non-pathologic processes independent

of Ab secretion. This is highlighted by recent studies showing that PCs function as

key regulators of processes such as hematopoiesis as well as neuro-inflammation. In

part, PCs accomplish this by integrating extrinsic signals from their environment which

dictate their downstream functionality. Here we summarize the current understanding

of PC biology focusing on their ever-growing functional repertoire independent of Ab

production. Furthermore, we discuss potential applications of PC immunotherapy and

its implementation for translational benefit.
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INTRODUCTION

Trademarks of the adaptive immune system include the ability to respond to diverse sets of
antigenic stimuli and the long-term durability of this response. The former is initiated early in B and
T lymphocyte development and is driven by V(D)J recombination of antigenic gene loci (1). In the
case of B lymphocytes, this antigenic diversity can be further modified via somatic hypermutation
(SHM) (2) and class switching (3) during a subsequent immune response. In contrast, the durability
of an immune response results from the formation of long-term immunological “memory” which
includes cell types such as memory B and T lymphocytes (4) as well as plasma cells (PCs) (5).

A significant goal upon vaccination or infection is the production of protective Abs for a
sustained period of time. Given this, it can be rationally perceived that PCs sit at the apex of
adaptive immunity in the sense that these cells have the potential to survive indefinitely in both
mice (6–9) and humans (10–12) while also continuously secreting Abs (9). This latter phenotype
being thanks in part to an expanded Golgi-network that provides PCs with their signature peri-
nuclear halo when viewed under a microscope (13). As such, the accumulation of these cells over a
lifetime potentially represents a historical record of humoral immune responses. Not surprisingly,
numerous studies have focused on the induction of PCs differentiation from the perspective of
generating antigen-specific Ab responses (14).

However, the field has recently begun to appreciate the multitude of functions that PCs
possess aside from Ab secretion (15–18). This Perspective highlights the evolving functions of PCs
and discusses the potential for environmental interactions to program these diverse regulatory
behaviors. Furthermore, we consider the long-term effects of these cells on various biological
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FIGURE 1 | Plasma cells regulate biological processes independent of

immunoglobulins. Due to their enhanced endoplasmic reticulum-Golgi

structure (white peri-nuclear halo), PCs are best known for their ability to

secrete Ig (depicted as Y). Illustrated here are various non-Ig secreted factors

that PCs produce and the biological processes that PCs are known to

regulate. Solid connections represent studies in which the removal of PCs

and/or their secreted factors had a documented biological outcome. Dashed

connections represent predicted regulatory nodes based on the cytokines

produced which require further experimental validation. Cytokines highlighted

in red or green are commonly associated with being pro-inflammatory or

anti-inflammatory, respectively. Note that this figure does not summarize

studies of Ig-based PC effector function.

processes including aging and introduce strategies that may
become key means of modulating PC functionality for a
beneficial outcome.

MORE THAN JUST ANTIBODY FACTORIES

Regulation of Infectious and Autoimmune
Immune Responses
For decades, it has been presumed that upon maturation,
PCs migrate to the bone marrow (BM) where they remain
quiescent and ONLY secrete copious amounts of Abs. However,
this viewpoint has now been challenged (Figure 1). In a
landmark study, it was shown that stimulation of mice with
lipopolysaccharide (LPS) led to the generation of a population
of granulocyte-macrophage colony-stimulating factor (GM-CSF)
producing cells referred to as innate response activator (IRA)
B cells (19). Phenotyping of IRA B cells demonstrated the
expression of the PC marker, CD138. Transcriptional analysis
of these cells further supported the idea that IRA B cells may
be a bona fide subset of PCs as their gene signature clustered
closest to PCs compared to other B cell subsets. Similarly, recent
studies in mice examining responses to infectious agents such as
Trypanosoma cruzi and Salmonella enterica have demonstrated
the propensity of PCs to express cytokines such as interleukin

(IL)-17 (20) as well as IL-35 and IL-10 (21), respectively. In this
regard, B lymphocyte derived IL-17 was absolutely required for
efficient control of T. cruzi infection and dampening of infection-
associated inflammation following pathogen clearance (20). In
contrast, B lymphocyte-derived IL-35 was detrimental in the
context of Salmonella infection as its deletion led to enhanced
monocyte and T lymphocyte responses upon infection (21).
While these studies focused on B lymphocyte-specific cytokine
ablation and not just PC-specific cytokine deletion, they clearly
demonstrated that factors produced by PCs as well as other B
lymphocyte populations play a critical role in regulating host-
pathogen interactions.

The role of PCs in the progression of autoimmune disease is
well-known with the focus mainly on Ab production as auto-Abs,
through their constant regions, can potentially induce a pro-
inflammatory cascade (22). Studies in mouse models of lupus
(23–26) as well as human systemic lupus erythematosus (SLE)
patients (27) have shown that PC depletion reduces the level of
autoreactive antibodies as well as disease burden. However, the
role of PCs in autoimmunity is not solely limited to SLE (28).

A recent study elegantly demonstrated the role of IL-10
producing PCs in the suppression of neuroinflammation in a
mouse model of autoimmune encephalomyelitis (EAE) which
recapitulates some features of multiple sclerosis (MS) in humans
(18). Using genetic models combined with BM chimeras, the
authors demonstrated that in this instance, PC-produced IL-
10 was the key molecule in the suppression of EAE-induced
pathology. These IL-10-producing PCs were originally derived
from the small intestine and migrated to the central nervous
system (CNS), an important observation given the association
of the microbiota with diseases such as multiple sclerosis (29).
Using Mb-1-Cre-mediated deletion of Prdm1 to ablate PC
differentiation, a previous report also observed a critical role for
PCs in the suppression of EAE in mice (30). In this instance, in
vitro co-culture experiments implicated a role for PB-derived IL-
10 in the suppression of dendritic cell function and subsequent
interferon-gamma (IFN-γ) production by CD4+ T cells. These
results point to PCs having a beneficial effect in the context
of EAE. However, this is not the case for all autoimmune
disorders of the nervous system. For instance, neuromyelitis
optica (NMO) targets the optic nerve and spinal cord resulting
in their degeneration and this is largely thought to be due
to the production of auto-Abs targeting aquaporin 4 (AQP4),
which is highly expressed in the central nervous system (CNS)
(31, 32). Direct evidence of this was demonstrated in a in a rat
model in which AQP4-specific auto-Abs cloned from human
patients induced overt NMO pathology highlighted by astrocyte
depletion and myelinolysis following their administration (33).
Another study demonstrated the reliance of PBs isolated from
human NMO patients on the cytokine IL-6 for not only
enhanced survival but AQP4 auto-Ab secretion as well (32).
Whether or not PBs in NMO can be an autocrine supply of
this cytokine becomes an interesting question in light of in
vitro experiments that demonstrated the capacity of human PBs
to produce IL-6 (34). In the studies of EAE noted above, it
is unclear whether or not the responding PCs were clonally
derived; that is, antigen specific as is evident in the NMO

Frontiers in Immunology | www.frontiersin.org 2 November 2019 | Volume 10 | Article 2768

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pioli Plasma Cell Functions Expand

studies described here as well as in human cases of multiple
sclerosis (35).

Regulation of Hematopoiesis by Plasma
Cells
In BM, PCs localize in close proximity to stromal cells with
∼80% of BM PCs directly contacting stroma (36). While being
a key component of the PC survival niche (37), stromal cells
are also essential in the proper maintenance of hematopoiesis
(38). Therefore, it stands to reason that PCs have the potential to
regulate hematopoiesis directly through actions on progenitors
or indirectly by regulating the stromal niche. Indeed, this is
the case as we identified PCs as key effectors driving enhanced
myelopoiesis observed in aging mouse BM (17). Ab-mediated
depletion of PCs in agedmice led to the reduction ofmyelopoiesis
to levels observed in young animals in part through alterations
in the BM niche highlighted by reduced expression of myeloid
promoting factors such as Il1b and Csf1 by BM stromal cells. Co-
culture experiments demonstrated that the ability of PCs to drive
increased myelopoiesis was age-dependent as young PCs did not
promote myelopoiesis in contrast to old PCs. Transcriptional
profiling via RNA-sequencing (RNA-seq) demonstrated that
old PCs adopted an inflammatory gene signature which could
be exacerbated by Toll-like receptor (TLR) stimulation as
evidenced by increased Il1b and Tnf gene expression following
in vitro lipopolysaccharide (LPS) stimulation. Pharmacological
blockade of IL-1 and tumor necrosis factor-alpha (TNF-α)
signaling reduced granulopoiesis in aged mice demonstrating
the importance of these factors in the age-associated increase in
myelopoietic output (17). Notably, a recently published study
(16) demonstrated that in vitro derived mouse PCs had the
potential to regulate the composition of myeloid cells generated
in culture. Here, IL-10 was the critical regulator that skewed
the myeloid compartment toward a more macrophage-like cell
fate (16).

In regards to lymphopoiesis, both mouse (17) and human
(39) PCs have been shown to suppress B lymphopoiesis. In
the latter study, the ability to inhibit B lymphopoiesis required
interactions betweenmultiple myeloma (MM) cells, a PC-derived
neoplasm, and stromal cells which led to increased expression
of CCL3 (macrophage inflammatory protein-one alpha, MIP-1α)
and CCL4 (macrophage inflammatory protein-one beta, MIP-
1β) by stromal cells as well as increased expression of TGFB1
(transforming growth factor-beta one, TGF-β1) by both PCs
and stromal cells (39). Addition of either TGF-β1 or MIP-1β
to pre-B lymphocyte cultures was sufficient in suppressing B
lymphopoiesis in vitro demonstrating the regulatory potential
of these factors (39). Collectively, these studies demonstrate the
ability of PCs to regulate a fundamental process in hematopoiesis.
Furthermore, the data suggest that PCs do so independently of
their ability to produce Abs and in at least some instances, a
cytokine-dependent manner.

Gut Homeostasis and Plasma Cells
A majority of PCs reside in the gut as this tissue provides a
direct interface between host cells and microbes (40). These cells

play critical roles in gut homeostasis through the production of
secretory IgA (SIgA) (41) which regulates not only exclusion
of IgA-cross reactive bacteria but also the propagation of the
immune response (42). However, a recent study in mice (15) has
shown that PCs promote the generation of regulatory T (TReg)
cells in the gut through the production of TGF-β and retinoic acid
(RA) suggesting the importance of PCs in maintaining intestinal
immune tolerance. Paradoxically, PCs from the murine lamina
propria (43) have also been shown to produce TNF-α as well
as inducible nitric oxide synthase (iNOS), a key regulator of
IgA class switching (44). It remains to be determined if the
same PCs have the potential to make TGF-β, RA, and TNF-α
or alternatively, if these represent unique cytokine-producing PC
subsets. How the relative balance of anti-inflammatory (TGF-β,
RA) and pro-inflammatory (TNF-α) cytokine production in the
gut alters its homeostasis is a critical question given the potential
roles of these cytokines in pathologies such as intestinal bowel
disease (45).

PROGRAMMING PLASMA CELL
FUNCTION

Plasma Cells Express Functional
Membrane-Associated Immunoglobulins
Previous assumption has been that PCs do not express membrane
immunoglobulin (mIg). We now know differently as IgM+ and
IgA+ PCs in both mouse (17, 46) and human (47) have been
shown to express mIg. This is true for IgE+ PCs in mice as well
(48). Multiple studies have demonstrated that these surface BCRs
are fully functional. In humans, Ig crosslinking of mIgM+ and
mIgA+ PCs led to increased amounts of phosphorylated Syk as
well as phosphorylated ERK and AKT which represent events
proximal and distal to BCR signaling, respectively (47). Given
the importance of these kinases in B lymphocyte viability, it is
not surprising that low dose mIg crosslinking provided a survival
benefit to mIgA+ PCs in vitro (47). In vivo, a recent murine study
showed that stimulation of BM mIgM+ PCs through their mIg
led to increased surface expression of CD69 as well as changes in
gene expression highlighted by increases in the aforementioned
Il10 as well as Ccl5 (46), a pro-myelopoietic cytokine (49).
Taken together, these data suggest that mIg activation of a
previously established pool of PCs may elicit a pro-myelopoietic
transcriptional response; however, experiments are needed to
validate this hypothesis.

Plasma Cells Are Responsive to Toll-Like
Receptor Signals
TLR signaling in B lymphocytes contributes to the formation
of the PC compartment (50, 51). Not unlike B lymphocytes,
terminally differentiated PCs also express TLRs. In humans,
PCs isolated from the peripheral blood as well as the tonsils
have been shown to express TLRs 1–10 (52). Additionally,
the stimulation of human PCs with TLR ligands such as
peptidoglycan, poly(I:C) and flagellin significantly increased Ab
secretion in vitro (52). Similarly, TLR expression has been
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detected in human MM both in cell lines and primary cells
(53, 54). In regard to MM, TLR signals have been observed to
provide context dependent signals. For example, TLR4 ligation
enhanced survival and proliferation (54, 55) whereas TLR1/2
derived signals sensitizedMMcells to chemotherapy-induced cell
death (53).

However, the classical roles of TLR signaling respective to
inflammatory responses remain understudied in both human and
mouse PCs. Mentioned previously, PCs isolated from the BM
of old mice displayed increased levels of Tlr4 gene expression
and were highly responsive to LPS signaling in contrast to
their young counterparts (17). Additionally, old murine PCs
displayed increased expression of Tlr6, Tlr7, Naip2, Naip6, and
Nod2. It will be interesting to determine if these signaling
pathways are also functionally responsive in PCs and to what
biological outcome.

SELECTIVE ELIMINATION OF PLASMA
CELLS FOR TRANSLATIONAL OUTCOMES

It is becoming readily apparent that PCs play significant roles in
biology outside of Ab secretion. However, the full spectrum of
PC functionality has yet to be defined. In this sense, it will be
important to determine the causes, or context dependent signals,
that drive plasma cell heterogeneity such as the surrounding
cytokine milieu and even the nature of the antigen itself.
Indeed, phenotypically long-lived PCs have been identified in
various organs in both rodents (56–59) and humans (11, 12,
60) however, it is not fully understood how these differing
niches may regulate PC behavior. Furthermore, whether these
cues act directly on PCs themselves as has been demonstrated
for the model antigen 4-hydroxy-3-nitrophenylacetic-dextran
(NP-dextran) (46) or if PC phenotypes are imprinted from
the activated B cell that lies upstream will be important to
consider. With that being said, our recent study regarding PCs
and their effects on age-associated patterns of hematopoiesis
in mice (17) provides an example of how PCs can be targeted
for a potential therapeutic benefit. Aging is associated with
increases in myeloid leukemias which has been correlated with
the heightened levels of BM myelopoiesis also observed with
age (61, 62). In both humans (63) and mice (64, 65), this
is initiated at the most primitive progenitor levels as the
hematopoietic stem cell (HSC) compartment becomes more
myeloid-biased with age. At least in mice, this is in part due to
the preferential expansion of myeloid-biased HSCs (My-HSCs)
rather than the loss of HSCs with inherent lymphoid-bias (Ly-
HSCs) (66).

Using Abs directed toward CD138, a cell surface determinant
common to PCs, we successfully depleted their numbers and
reversed the expanded myelopoiesis commonly associated with
aging (17). While this strategy accomplished its goal and may
potentially be a route toward reducing the risk of age-associated
myeloid leukemias, it is not feasible in “real life.” The reason
being is that PCs are the major Ab producers in the body and
theoretically, provide protective immunity derived from even the

FIGURE 2 | Plasma cells are heterogenous and can be potentially targeted in

a subset specific manner. (A) While all PCs express the cell surface

determinant CD138, PCs are heterogenous in the cytokines produced and

various cell surface markers they express, of which only some are known. (B)

Using αCD138 antibodies, PCs can be homogenously targeted for depletion

which randomly and significantly depletes the PC-derived Ig pool. (C) Using a

high affinity bispecific antibody designed to react against CD138 and LAG-3,

all PCs are presumably depleted due to strong CD138 reactivity similar to (B).

(D) Using a low affinity bispecific antibody designed to react against CD138

and LAG-3, a therapeutic window has now been theoretically created which

allows for the specific depletion of IL-10-producing CD138+ LAG-3+ PCs

while still leaving the rest of the PC Ig repertoire intact.

earliest of ages. As such, depleting the bulk, if not all, of the
PC pool would leave the host severely immunocompromised.
This may not be as critical in younger individuals as they
generally possess robust immune responses and can be re-
vaccinated to restore the PC pool once a particular translational
goal is achieved. However, the elderly are more susceptible
to infection and possess weakened responses to vaccination
(67). In part, this is due to age-associated changes in B
lymphocytes which include an altered immune repertoire as well
as decreased expression of E2A and activation-induced cytidine
deaminase (AID) which would be predicted to compromise PC
differentiation (68).
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For PC depletion/modulation to be a successful strategy, the
PC pool must be heterogenous in nature and possess cell surface
determinants specific for a given PC subpopulation (Figure 2A).
To some degree, we already know this to be true. For example,
IL-17 producing PCs generated following T. cruzi infection only
constitute roughly ∼6–8% of the total splenic PC pool at 10
days post-infection (20). Using Il10eGFP reporter mice (69), it
was shown that LAG-3 was sufficient to prospectively identify
Il10eGFP+ PCs which constituted approximately 20 and 40%
of total PCs in BM from young and old mice, respectively.
Thus, functional PC subsets exist and, in some instances, can be
identified via expression of unique cell surface proteins.

So how do we ablate a particular subset such as LAG-3+ PCs?
Cell type-specific targeting would be key as depleting or altering
the function of all LAG-3+ cells would potentially lead to the
loss of tolerance through adverse effects on the TReg pool (70).
Looking toward the field of tumor immunotherapy (71), we find
that a potential solution would be the generation of bispecific Abs
reactive to both CD138 and LAG-3 which would preferentially
target IL-10-producing PCs (Figures 2B–D). Having a high
affinity bispecific Ab would be favorable in a tumor setting where
elimination of every cell is the desired outcome. However, in
terms of targeting a particular subset of PCs, this would still
result in targeting all PCs through efficient binding of CD138
(Figure 2C). One would need to develop a bispecific Ab where
each epitope is bound sub-optimally and thus only PCs which
expressed both CD138 and LAG-3 would be bound with high
enough affinity required for depletion (Figure 2D).

Secondarily, the mode of elimination would need to be chosen
in an application specific manner. For example, these Abs could
be conjugated to a particular toxin such as type I interferon
or even bortezomib, a MM chemotherapeutic. However, it is
not known if this strategy would cause high levels of local
or even systemic inflammation which could have unintended
consequences. For example, lymphopoiesis is suppressed by high
levels of inflammatory cytokines such as IL-1 while in contrast,
inflammation enhances myelopoiesis (72). As such, using an
unconjugated Ab may be most prudent. Mechanistically it is not
known how unconjugated CD138 antibodies deplete PCs (17).
This could be through Ig constant region-mediated interactions
such as with complement or even through the deprivation of
survival signals as CD138 has been demonstrated to promote
PC cell survival through heparan sulfate-mediated interactions
with IL-6 and APRIL (73). In this regard, it would be important
to assess the depletion efficiency of a CD138 Ab in which the
constant region [mouse IgG2a in (17)] has been converted to a
different isotype or deleted altogether.

CONCLUDING REMARKS

PCs are key contributors to effective humoral immunity through
their robust production of antigen specific Abs. However, it is
now readily apparent that these cells do more than just secrete
Ig and in fact, play critical roles in normal processes such as
hematopoiesis as well as diseases such as EAE. But much remains
unknown about these cells in regards to the full spectrum of

their regulatory potential. In this respect, the present article has
focused on PCs in the adult setting. PCs can be found in the blood
of humans as early as 1–5 months of age (74) and are important
sources of protective IgA in the gut of newborns (75). Whether or
not these cells possess critical Ab-independent functions remains
to be determined. Fortunately, both genetic and molecular tools
are now available to acutely deplete all PCs and observe the
resultant effects on a variety of biological systems.While multiple
studies have transcriptionally profiled the PC pool as a whole
(17, 76, 77), a further understanding is required in regards to the
regulation and extent of functional heterogeneity of PCs both in
the naïve state as well as following an infectious or autoimmune
response before we will have the capacity to target PCs subsets for
a translational outcome.

Using single cell sequencing approaches, it will now be
possible to fully visualize the PC landscape and better understand
the molecular underpinnings of various subsets of PCs. Analyses
of these data may provide important answers to remaining
questions such as: What types of B lymphocytes give rise to
a particular PC subset? What extracellular signals drive the
derivation of a specific type of PC? What core transcriptional
elements regulate various PC fractions? Ultimately, this has
the potential to lead to the development of PC-targeted
immunotherapies for the purposes of modulating specific
biological outcomes.
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