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The immune system is rapidly activated after ischemic stroke. As immune cells migrate

and infiltrate across the blood-brain barrier into the ischemic region, a cascade of cellular

and molecular biological reactions occur, involving migrated immune cells, resident glial

cells, and the vascular endothelium. These events regulate infarction evolution and thus

influence the outcome of ischemic stroke. Most immune cells exert dual effects on

cerebral ischemia, and some crucial cells may become central targets in ischemic stroke

treatment and rehabilitation.
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INTRODUCTION

Stroke has high morbidity and mortality rates around the world and became the leading cause
of death in China in 2017 (1). It accounts for about 1 in 19 deaths in the U.S. (2). Ischemic
stroke is associated with considerable morbidity and mortality in eastern and northern Asia (3).
In recent decades, understanding of the mechanism, diagnosis, and therapy of ischemic stroke
has improved. Patients with stroke experience neuronal damage and functional deficits, which
are tightly connected with immune responses during and after ischemia. Reduced focal cerebral
blood flow induces a series of metabolic, neurologic, and immunologic reactions, which are
followed by neuronal cell death (4). Studies of immune responses during and after ischemic
brain damage have revealed some probable pathways of post-ischemic cerebral injury, and will be
meaningful in identifying potential therapies for ischemic stroke. It is crucial to further investigate
the mechanical processes of the immunological and inflammatory reactions after cerebral ischemia.
Immune responses implicate the blood-brain barrier (BBB); vascular endothelial cells; glial cells;
inflammatory mediators; and immune cell infiltration, migration, and activation. Immune cells
are rapidly activated and recruited to the stroke site (5), where they continue to affect infarction
progression and prognosis. This article reviews the mediators, regulatory factors, and interaction
behaviors of different subpopulations of both brain resident and peripheral immune cells during
the immune process after cerebral ischemia.

LEUKOCYTES IN POST-ISCHEMIC IMMUNE RESPONSES

Due to increased BBB permeability and compromised BBB integrity in the acute phase after stroke
(6–8), leukocytes aggregate in the ischemic region of middle cerebral artery occlusion (MCAO)
models as early as 30min after occlusion (9). Mediated by leukocyte-endothelial cell interactions
on the endothelial vascular walls, leukocyte infiltration influences the evolution and outcome of
ischemic injury.
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Neutrophils
Infiltration of polymorphonuclear neutrophils (PMNs) in the
acute stage is a feature of post-ischemic inflammatory responses
(10, 11). Studies on the role of PMNs in the cerebral post-
ischemic immune response suggest that neutrophils aggravate the
prognosis after stroke (12). Neutrophil infiltration is responsible
for increased recruitment of other immune cells, and thus
induces a complicated series of effects on ischemic damage
(13). Although there are numerous studies supporting the long-
believed detrimental effects that neutrophil infiltration into the
infarct region causes in the acute stage of stroke (14–16),
evidence also suggests that neutrophils contribute to beneficial
regulation processes.

Neutrophils are involved in tissue remodeling after stroke
(17). Matrix metalloproteinases (MMPs) are a family of
secreted and membrane-bound proteases that influence
extracellular matrix (ECM) and tissue repair processes (18, 19).
They are usually crucial in leukocyte recruitment. Various
MMP subtypes have been studied. For example, MMP-9
promotes BBB leakage, neuronal cell death, and hemorrhage
in the early phase after stroke, while it later mediates brain
regeneration and neurovascular remodeling (17, 20). High
MMP-2 levels in an ischemic stroke patient is considered
to suggest a stable or recovering condition, while MMP-9
suggests worse prognosis (21). MMP-2 is considered to have
beneficial influences on post-ischemic immune responses (22).
In general, MMPs have dual effects. Neutrophils produce
and release substances like vascular endothelial growth
factor (VEGF) and transforming growth factor-β (TGF-β),
thus regulating various immune regulation activities (6).
Neutrophils are also involved in clearance of dead cells, debris,
and bacteria, creating a more suitable microenvironment
for repair and recovery (6, 13, 23). Neutrophil extracellular
traps (NETs), the structural fibers produced by neutrophils,
are composed of granule and nuclear constituents. As a
conserved innate antimicrobial strategy, NET release has
been reported to play a role in extracellular bactericidal
activities (24).

Many pro-inflammatory mediators can induce NET release

during inflammatory processes, including interleukin-8 (IL-8),
tumor necrosis factor-α (TNF-α), and platelet-activating factors
(11). Non-inflammatory factors such as amyloid fibrils also
trigger NETs (25).

An in vitro study on primary cultures of bovine brain
microvessel endothelial cells (BBMEC) showed that neutrophils
influence the permeability of the BBB (26). In this study,
increase of permeability of BBB was observed and confirmed
to be induced by infiltrated neutrophils throun an increase in
intracellular Ca2+.

However, the transient gathering of neutrophils in the infarct
lesion after ischemic stroke remains controversial. A study
using endothelin-1-induced cerebral ischemia in rats (ET-1
model) showed that infiltrated neutrophils are phagocytized by
macrophages in the first 3 days after stroke onset, but MPO
activity keeps increasing, suggesting that MPO may not be the
best measurement for neutrophil accumulation (27). But as
endothelin-1 has also been found on neurons in the brain out

of endothelial cells (28), and it is reported to probably prompt
growth of astrocytes after spinal cord injury (29), results using
ET-1 models may not be completely credible (30).

Lymphocytes
Both innate and adaptive immune cells contribute to the
inflammatory response after cerebral ischemia. In mice MCAO
models, lymphocytes accumulate in the infarct lesion in the first
4 h after ischemia, and depletion of lymphocytes leads to a smaller
infarct volume (5, 31). However, the roles of specific lymphocyte
subpopulations in the process of inflammatory reaction after
cerebral ischemic injury were unclear until recently.

T and B Lymphocytes in Cerebral Ischemia
CD4+ and CD8+ T cells interact with each other. Lower IL-
16 expression was observed in CD8-deficient mice in parallel
with decreased CD4+ T-cell recruitment (32). There were
reports about T cell involvement in ischemia/reperfusion (I/R)
injury in other organs including the intestine, kidney, and
liver. From the results a hypothesis was proposed that T cells
may also play a role in I/R injury in the brain. However, as
earlier studies mainly focused on monocytes, T cells have been
neglected for a long time (33). In 2006, Yilmaz et al. elucidated
the contribution of CD4+ and CD8+ T lymphocytes to the
inflammatory and thrombogenic responses in an experimental
stroke model. The team discovered that in the first 24 h after
ischemic stroke onset, T cell depletion significantly reduced
infarct volumes, but lacking B cells did not influence ischemic
stroke outcomes. According to their results, both CD4+ and
CD8+ T cells exert detrimental effects on post-ischemic cerebral
immune responses (5). Considerable evidence demonstrates the
detrimental effects of T cells. Depletion experiments showed
improvement of infarction (31), and cytotoxic T lymphocytes
have a direct cytotoxic effect on cerebral post-ischemic injuries
via the perforin-mediated pathway (34).

T cells are regulated by various cytokines. In an early study,
IL-15 was reported to enhance the in vivo function of reactive
CD8+ T cells (35). Later, the effect of IL-15 on CD8+ T cells
was further characterized (36). Astrocytes, the main source of
IL-15 in the brain, have been shown to modulate polarization
of CD4+ T cells into Th1 cells and support Treg production
in co-culture cell conditions. These results provide additional
evidence that the central nervous system (CNS) environment
affects T cells (37). In later studies, IL-15 was confirmed to be
a positive regulator that induces and enhances the Th1 response
in the post-I/R cerebral immune response. Lee et al. found that
a neutralizing IL-15 antibody likely penetrated that BBB and
significantly reduced responses mediated by T cells and natural
killer (NK) cells, implying that IL-15 could be a novel treatment
target after cerebral I/R (38).

IL-2 secreted by T cells is one of the cytokines that supports
T cell survival (39). Both IL-15 and IL-2 regulate CD8+ T cell
proliferation in vitro, but only IL-15 has an effect on CD8+ T
cells in vivo. Generally, IL-2 levels in vivo are too low to regulate
CD8+ T cell proliferation, but CD4+ T cells respond well to this
low level (40–42). IL-2 was also found to promote regulatory
T cell (Treg) production (42). In experimental autoimmune
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encephalomyelitis, IL-2 also influences the behavior of NK cells.
NK cells also suppress Th17 transcription factors via microglia,
and complexes of IL-2 and IL-2 monoclonal antibody reduce
Th17 production by CD4+ T cells in the CNS. These results may
suggest that IL-2 regulates NK cells in CNS immune responses
and probably influence post-ischemia immune responses (43).

Targeting B cells in experimental stroke does not influence
infarct volume, evolution, or cerebral blood flow during the
acute phase (44, 45). However, some findings indicate that B
cells are beneficial lymphocytes in the immune response after
cerebral ischemia. B cells exert neuroprotective effects in the
process, and there is ample evidence that B cells are the main
regulatory immunological cells in the inflammatory process
after ischemic brain injury (45–47). B cells have a probable
protective function; they were observed to limit infarct volume
and functional neurological deficits by inhibiting activation
and recruitment of other immune cells including T cells,
macrophages, and microglia into infarct lesions during post-
ischemia responses. B cells are believed to promote the recovery
process and are regarded as a potential therapeutic target for
neurological function recovery after ischemic cerebral injury
(47). However, other evidence suggests that B cells may hamper
long-term recovery and are probably responsible for delayed
cognitive impairment after ischemic stroke. In a mouse distal
MCAOmodel, activated B cells infiltrated infarcted lesions weeks
after stroke, and mice developed delayed deficits in long-term
potentiation and cognition that could be prevented by an anti-
CD20 antibody (48).

The influence of B cells on cerebral ischemia outcomes
remains controversial. However, whether B cells display duel
function or not, they remain a potential therapy target. In order to
have a better knowledge on the role B cells play during and after
cerebral ischemia, further studies are required to clarify B-cell
related short- and long-term prognoses.

Regulatory T and B Cells (Tregs and Bregs)
The newly defined subtype of regulatory B cells (49) have
protective effects in some autoimmune diseases. They are
thought to regulate the behavior of activated B lymphocytes in
the immune response after cerebral ischemia. Recently they were
confirmed to have a protective effect against brain injury (50). A
CD1dhiCD5+ phenotype of regulatory B cells that secrete high
levels of IL-10 (B10 cells), has been found to play a role in contact
hypersensitivity responses, but this phenotype accounts for a low
proportion of spleen B cells. Depletion of B10 cells in the spleen
enhanced inflammatory responses (51). This phenotype exerts
regulatory effects during Listeria infection. In animal models,
depletion of B10 cells enhanced bacteria clearance, which was
accompanied by significantly more macrophage phagocytosis
of bacteria, even if macrophages were re-stimulated in an
external environment. Collectively these results indicate that
B10 cells may have a negative regulatory effect on macrophage
cytokine production.

B10 cells were also found to shape the responses in BALB/c
mice infected with Leishmania major through IL-10 production
(52). These results underscore the need for research into the
regulation pathways of IL-10 secreted by regulatory B cells (53).

Offner and Hurn first implicated B10 cells as a major regulatory
subtype in the post-ischemic immune process. They pointed
out that this subpopulation may be a potential target of stroke
treatments (45). B10 cells accumulate in the infarct area 48 h
after 60-min MCAO. Although only a small amount of B10 cells
were found in the striatum, they were the main regulatory factors
in post-ischemic responses compared to intraperitoneal B cells.
Moreover, smaller cortical infarct volumes were observed in mice
injected with IL-10-competent B cells compared to those injected
with intraperitoneal-derived B cells (46).

Regulatory B cells affect multiple pathways, one of which
is via suppressing pro-inflammatory T cells and enhancing
regulatory T cell expansion (50, 54, 55). IL-10 secreted by B10
cells plays a role in polarizing the Th cell response toward
the Th2 phenotype. Researchers proposed that the process was
regulated by IL-12 (52). Tregs are a CD25+ Foxp3+ cell subset
that only account for 10% of peripheral CD4+ T cells (32). They
play an active regulatory role in the post-ischemic brain (6)
and were identified as key mediators of ischemic stroke. Tregs
possess an intrinsic propensity for migration, which increases the
likelihood of Treg-endothelial cell interaction. Moreover, Treg-
mediated infarction development can be prevented by platelet
depletion, indicating that the Treg-related immune process is
closely related to thromboembolism (56). Numerous studies have
shown that Tregs have positive effects in the brain. Some authors
have reported that Tregs down-regulate immune cell infiltration,
which reduces inflammatory reaction and thus protects neurons.
Together withmonocytes, Tregs also promote neovascularization
after ischemic stroke (32). Tregs function by promoting the
production of various cytokines such as TGF-β, IL-10, and IL-35.

Tregs are mediated by neural cell-specific genes such as the
serotonin receptor (Htr7) and respond to serotonin, and they are
also sensitive to selective serotonin reuptake inhibitors (SSRIs)
(32). There is no evidence that the role T cells play in post-
ischemia cerebral injury is influenced by antigen recognition,
T cell receptor (TCR) stimulatory pathways, or thrombus
formation. It is an antigen-independent detrimental effect that T
cells exert on the process (33). Tregs are crucial for promoting
post-ischemic immunosuppression, which provides a partial
neuroprotective effect but also increases the risk of post-stroke
infection (32).

γδT Cells
Integrins and interleukins play significant roles in assisting
immune cells in post-ischemia immune responses. They
influence inflammation development and usually aggravate
neurological and functional outcomes after ischemic brain
injuries. Gamma delta T cells (γδT cells) produce integrins
and interleukins.

T cells infiltrate into the brain where they promote infarction
evolution and subsequent neurological deficits via IL-23 and IL-
17. The ILs mainly derive from γδT cells instead of the long-
believed CD4+ Th cells (57). The pivotal role of IL-17-secreting
γδT cells was recently demonstrated, and the CC chemokine
receptor 6 (CCR6) was found to be a primary regulator. In
CCR6−/− MCAO mice there was decreased accumulation of IL-
17-producing γδT cells (nTγδ17 cells) accumulation, as well as
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smaller infarct volumes due to less IL-17-dependent induction
of the CXC chemokine and neutrophil infiltration (58). Zheng
et al. found that IL-23 stimulates production of other cytokines
and the transcription factor forkhead box P3 (Foxp3) in cerebral
ischemia. They also showed that RNA interference knockdown
of IL-23p19 prevented cerebral ischemic injury by reducing
inflammation after stroke onset. IL-23 deficiency enhanced
interferon (IFN)-γ and Foxp3 expression levels in delayed
cerebral ischemic mice, and IL-17, IL-4, IFN-γ, and Foxp3+ cells
were found in the ischemic hemisphere (59).

Systemic treatment with IL-33 showed beneficial effects
against stroke (60). It promotes Th2-type effects and thus
increases the plasma level of Th2-type cytokines and fewer pro-
inflammatory microglia/macrophages in the infarct lesion (61).
IL-33 also promotes the infiltration of NK cells, reduces activated
glial cells, and increases IL-10-expressing Tregs. However,
MCAO mice treated with IL-33 were susceptible to serious
lung infection, which implies that IL-33 may exert a dual effect
on the prognosis of ischemic cerebral injury. The data suggest
that IL-33 might be a target treatment when given under close
surveillance for infection or in combination with antibiotics (62).
Xiao et al. reported another effect of IL-33 after ischemic brain
damage. They studied the modulation effect of IL-33 of splenic
T cell responses after cerebral ischemic stroke and found that
intraperitoneal IL-33 pre-treatment reduced neurological deficit
scores and infarct volumes after 30min of MCAO, decreased
IFN-γ+ T cells, and increased Foxp3+ T cells in the spleen. IL-33
pre-treatment also reduced IFN-γ production and mRNA levels
of the transcription factor T-bet, but increased IL-4, IL-10, TGF-
β, GATA-3, and Foxp3 in the spleen. Xiao et al. proposed that
IL-33 participates in the post-ischemic immune responses by
inhibiting the Th1 response and promoting the Treg response
and therefore will be a potential ischemic stroke treatment (63).

NK Cells
NK cells are innate lymphocytes. They are rapidly mobilized and
recruited during the super acute phase of immune responses
(64, 65). Gan et al. showed that NK cells are recruited only 3 h
after ischemia and peak at day 3 (66). The temporal dynamics
of immune cell accumulation in a temporal MCAO model were
observed, but there is no report regarding an increased number
of NK cells in the ischemic hemisphere (67). According to Zhou
et al., the behavior of NK cells is related to the time of ischemia
during a stroke. Their research showed that invading NK cells
accumulate in ischemic lesions but do not differ between mice
with 30-min partial MCAO and 90-min total MCAO. However,
the authors only assessed cytokine expression at a single subacute
time point, which should be extended and further tracked in
future studies (68).

Later studies suggested that NK cells may indeed influence
ischemic brain injury outcomes. NK cell recruitment in the early
stage of ischemic stroke is required in the Th1 response priming
of CD4+ T cells by IFN-γ (69). NK cells also influence the level of
activated CD8+ T cells by killing recently activated CD8+ T cells
in an natural killer group 2D (NKG2D)- and perforin-dependent
manner, and thus influence cellular immune responses (70). Gan
et al. found that in the human brain, NK cells infiltrate into

peri-infarct areas or the ischemic hemisphere. They help catalyze
neuronal death via the perforin/granzyme apoptosis pathway,
directly or indirectly co-effecting with immigrant cells or brain-
resident cells, thus accelerating ischemic infarction (66). Zhang
et al. found that NK cells promote the process via IFN-γ and
that NK cells are dose-dependently affected by IP-10 via CXCR3.
NK cells are related to disintegration of the BBB, and this injury
process was aggravated by IP-10. In their study, the number of
NK cells peaked 12 h after ischemic stroke onset (71).

NK cells kill inactivated resting microglia via NKG2D
(CD314) and NKp46, one of the natural cytotoxicity receptors
(NCRs). ActivatedNK cells rapidly form immunological synapses
with microglia and mediate perforin polarization at the interface
between NK cells andmicroglia (72). NK cells also closely contact
astrocytes. IL-15 is one of the extrinsic signals that regulates
the development and maturation of NK cells (73–75). Previous
studies have demonstrated how IL-15 influences the development
of mature NK cells (76), but more recent research confirmed that
IL-15 is produced by glial cells, and the level is determined by glial
cell activity. Reactive glial cells, mainly astrocytes, express IL-15
in the acute phase of CNS inflammation, but in a study, microglia
were recruited as the minor source of cytokines (77). Later
studies showed that in the glial fibrillary acidic protein (GFAP)
promoter-controlled IL-15–expressing transgenic mouse (GFAP-
IL-15tg) line, mice that express astrocyte-derived IL-15, NK cells,
and CD8+ T cells increasingly accumulate in post-reperfusion
responses. The results suggested that astrocyte-derived IL-15
might recruit NK cells and CD8+ T cells in post-ischemic
cerebral reactions, exacerbating the infarction and subsequent
neurological deficits (36).

Leukocyte-Endothelial Cell Interactions
and Leukocyte Infiltration
Leukocyte infiltration is crucial in cerebral post-ischemic
immune responses. Recruitment and infiltration of leukocytes
are dependent on vascular endothelial cells. In the first several
hours after stroke onset, leukocytes are rapidly recruited into
microvessels in the ischemic region. The recruitment process
requires some events including leukocytes rolling along the
vascular endothelium and initially binding to the blood vessel
walls, followed by leukocyte activation, leukocyte-endothelial cell
adhesion, leukocytes traveling through the blood vessel walls,
and transmigration into the inflammatory region (Figure 1).
Adhesion molecules and cytokines are the main molecules that
interact with leukocytes on the endothelial cell membrane.
There are changes in microvessels after ischemic stroke
onset. The membranes of endothelial cell contain adhesion
molecules and regulatory cytokines that interact with activating
leukocytes and platelets, which together initiate and participate
in thrombosis (9).

Adhesion Molecule Expression
Adhesion molecules including integrins, immunoglobulin
superfamily members, and selectins induce cell-to-cell or cell-to
ECM binding via receptor-ligand formation. Binding is a key
stage in cell infiltration and migration and is significant in the
early stages of cerebral post-ischemic immune responses.
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FIGURE 1 | Leukocyte infiltration process. (1) Leukocytes roll along the vascular endothelium. (2) Leukocytes are recognized and initially bind to the blood vessel walls.

(3) Leukocyte activation and leukocyte-endothelial cell adhesion. (4) Leukocytes travel through the vascular wall. (5) Leukocytes transmigrate into the ischemic region.

Among immunoglobulin superfamily members,
myeloperoxidase, intracellular adhesion molecule-1 (ICAM-1),
and vascular cell adhesion molecule-1 (VCAM-1) have been
studied the most with regard to their effects on leukocyte-
endothelial cell interaction (78). ICAM-1 is associated
with leukocyte accumulation in the ischemic region in
the first 24 h, and ICAM-1 levels peak at 12–48 h post-
ischemia (79, 80). As is shown in many deficiency/inhibition
studies, ICAM-1 depletion reduces leukocyte infiltration
and infarct volumes (81). However, a clinical trial using
enlimomab, an anti-ICAM-1 antibody claimed that anti-
ICAM-1 treatment may bring opposite results. Patients treated
with enlimomab obtained worse outcomes (82). VCAM-1
levels increase in post-stroke responses, and the levels are
even higher in patients with polyvascular atherothrombotic
diseases (83). Evidence suggests a probable beneficial effect of
VCAM-1 depletion, suggesting that protein has detrimental
effects (84, 85).

Selectins (E-, L-, and P-selectins) separately modulate the
recognition and initial binding to vascular endothelial cells
and different leukocyte subpopulations. One study reported
regulation effects of selectins in cerebral post-ischemic immune
responses. P-selectin, which is essential to monocyte-endothelial
cell adhesion (86), was associated with BBB breakdown (87, 88).
P-selectin continually rise in the acute phase, and the increase
persists into the subacute phase, while E-selectin levels start to
decline at the end of acute phase (89). However, a study of
L-selectin inhibition did not report significant differences (90).
This may be related to the specific subpopulations that certain
selectins recognize.

The integrin families mainly induce cell-ECM adhesion. The
leukocyte function-associated antigen (LFA) group and very
late adhesion molecule (VLA) group are distributed on the
leukocyte membrane, while glycoprotein groups are found on the
membranes of platelets, endothelial cells, and megakaryocytes.
LFA-1, macrophate-1 (Mac-1), and VLA-4 mediate leukocyte
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binding to the activated endothelium in ischemic regions (91).
Deficiency experiments of LFA-1 and Mac-1 both showed
decreased leukocyte infiltration 24 h after stroke, indicating that
both LFA-1 and Mac-1 correlate with brain injury and blood
cell-vessel wall interactions after cerebral ischemic injury (92).

Cytokine Expression
Cytokines including IL, colony-stimulating factor (CSF), IFN,
TNF-α, growth factor (GF), and other chemokine families are
crucial mediators in most regulatory pathways. Many cytokines
have been found to regulate leukocyte infiltration; for example,
TNF-α increases lymphocyte infiltration into interstitial tissues
in immune responses to kidney infection (93). IL-1 was found to
reduce neutrophil infiltration after liver ischemia (94). Cytokines
regulate leukocyte infiltration and affect cerebral post-ischemic
responses in many other aspects, as described below.

RESIDENT GLIAL CELLS AND
INFILTRATING
MACROPHAGES/MONOCYTES

Both resident microglia and bone marrow-derived monocytes
may be the source of macrophages in the damaged tissue after
cerebral ischemia (95). As the key immune cells in acute and
subacute stages after cerebral ischemia, resident microglia and
infiltrating monocytes share certain features, while differ in some
other aspects, which lead to plenty of comparative studies on the
two cell populations.

Three murine cell culture models, namely iPSC microglia,
iPSC-macrophages and NSC-primed iPSC-macrophages were
cultured to elucidate pro-inflammatory and anti-inflammatory
features of brain resident and infiltrating monocytes during
cerebral ischemia. Consistency of results in vitro and in vivo
suggested that iPSC-derived neuro-immune cell culture models
can be possibly useful in related researches (96).

Resident Glial Cells
Resident microglia are rapidly activated in the first 24 h after
transient MCAO in mice. Schilling et al. used green-fluorescent
protein bone marrow chimeric to show that resident microglia
were the main source of macrophages in infarcted area (95).
Glial cells are deeply involved in the acute phase of the post-
ischemic inflammatory process.Microglia depletion was reported
to increase the infiltration of neutrophils, macrophages, and
CD4+ T, and NK cells in the brain and reduce the accounts
of subtypes of these splenic leukocytes (97). Microglia confer
a protective effect against the post-ischemic immune process
via their inhibition of astrocytes; they are crucial for neuron-
astrocyte crosstalk that occurs in immune responses following
cerebral ischemia (68).

Microglia up-regulate expression of triggering receptor
expressed on myeloid cells 1 (TREM-1), which prompts
microglial M1 polarization and neutrophil recruitment by
increasing mRNA levels of M1 markers and chemokines,
as well as protein levels of ICAM-1. Microglia TREM-1
regulates cerebral post-ischemic immune responses by activating

downstream pro-inflammatory pathways through interaction
with spleen tyrosine kinase (SYK), and the final effect
leads to increases in inflammatory cytokine levels, chemokine
production, and pyroptosis (98). Activated glial cells produce
a large amount of inflammatory cytokines including IL-1β, IL-
6, TNF-α, and nitric oxide. All of these cytokines promote the
evolution of inflammation, and therefore lead to poor outcomes
following ischemic cerebral injury (68, 99–101). An in vitro
model ofmicroglia activationwas established to study the delayed
inflammation after cerebral ischemia. By exposing microglia
to oxygen glucose-deprived (OGD) neurons and astrocytes, an
ischemia-like microenvironment is developed (102). The study
reported that microglia are activated by OGD and induce
neuron death with TNF-α and thus contributes to delayed
inflammation (103).

Microglia are also one of the two cellular sources of
induction of TNF receptor associated factor 2 (TRAF2); the
other source is neurons. Li et al. discovered TRAF2 is induced
after ischemic stroke, and this may inhibit necroptosis by
inhibiting the association between receptor interacting protein
3 (RIP3) and mixed lineage kinase domain-like (MLKL), the
activation of which contributes to necroptosis. Thus, the authors
regarded TRAF2 as a novel regulator of cerebral ischemic injury
(104). The results indicate that microglia participate in post-
ischemic immune responses via TRAF2 production. Microglia
highly express danger-associated molecular pattern molecules
(DAMPs), co-effecting with purines to induce the expression
of pro-inflammatory molecules in infiltrating leukocytes, and
they also prime dendritic cells for antigen presentation (91).
Glial cells are also mediated by chemokines. Chemokine-
liked factor 1 (CKLF1) was found to increase expression
of pro-inflammatory cytokines and decrease that of anti-
inflammatory cytokines in ischemic lesions. CKLF1 was also
found to modulate microglia/macrophages toward an M1
phenotypic polarization, thus aggravating the inflammatory
response and contributing to a poor prognosis following ischemic
stroke (105–107).

Several studies have confirmed that sphingosine 1-phosphate
receptor subtype-1 (S1P1) and S1P3 are related to microglial
activation (108–110). M1 polarization is activated by S1P3
mainly in activated microglial (109). Receptor-mediated S1P
signaling in regulation of inflammatory cells has been described
by multiple groups (111, 112). Expression of S1P receptor-1
(S1PR1) by lymphocytes was found to play a role in lymphocyte
egress from the thymus and secondary lymphoid tissue or
organs. T cells tend to migrate toward S1P1 in the first stage
after activation of the inflammatory response, but the ability
disappears after day 1. However, after 72 h, T cells recover
S1P1 mRNA and regain their responses to S1P1 (113). This
could be a possible explanation for brain T cell accumulation
in the first 24 h after ischemic stroke. S1P is also reported to
play a role in pro-inflammatory responses (114–116), mainly
in activated microglia (115–117). One of the drugs targeting
S1PR1, FTY720 (Fingolimod), has protective activity in different
animal models of transplant and autoimmune diseases and is
therefore used in experiments as an immuno-suppressant (114).
It was also observed to suppress neuronal damage and microglial
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activation in rodent models of cerebral ischemia (118). A proof-
of-concept trial shows that in patients with acute ischemic
cerebral stroke, FTY720 treatment within 72 h of stroke onset
brings better outcome (119). In this trial, FRY720 is reported to
have reduced secondary tissue damage and neurological deficits,
as well as prompted functional recovery. Other experiments
showed that lipopolysaccharide (LPS) stimulation reduced
microglial expression of S1P2, S1P4, and S1P5, suggesting
the down-regulation of S1PR subtypes may also contribute to
the persistence of microglial activation during inflammatory
conditions, given that the receptor for fractalkine, a negative
regulator of microglial activation, was down-regulated by LPS
stimulation of microglia from aged mice (120). NK cells are also
regulated by S1PRs. S1PR5 has been shown to be necessary for
NK cell egress from lymph nodes and bone marrow, suggesting
that behavior of NK cells may be in part mediated by S1P and
S1PRs (121). Gaire et al. found that S1P1 regulates M1/M2
polarization. Specifically, S1P1 activation influences mitogen-
activated protein kinases and phosphoinositide 3-kinase/Akt
activation in the ischemic hemisphere, and those pathways can
increase M1 polarization while simultaneously decreasing M2
polarization. The influence is especially significant on microglia
M1 polarization (122). These results may lead to further study
of S1P subtypes on their relationships with and regulation
of the M1/M2 polarization of microglia. S1P also activates
astrocytes. Local microinjection of S1P exacerbated cerebral
infarction in MCAO models, and the microglia/macrophage-
specific marker Iba1 and astrocyte-specific marker GFAP both
significantly increased (114). This supports the hypothesis that
microglia and astrocyte activation is detrimental to recovery from
cerebral ischemia.

Infiltrating Macrophages/Monocytes
Macrophages/monocytes mainly accumulate in the ischemic
region in the subacute phase. Levels peak in the infarct territory
72–96 h after ischemic induction (7).

Increasing invading macrophages usually suggests a better
prognosis after cerebral ischemia. It has been reported that low
lymphocyte-to-monocyte ratio is an independent risk factor for
poor outcome in acute cerebral ischemic stroke cases treated with
thrombolytic therapy (123).

Neutrophils are found to promote monocyte recruitment
(13) via proteins released from neutrophil granules (124).
CD14+ monocyte differentiation induces polarization of CD4+

T cells into Th-17 cells during migration across the BBB
(125). The process involves cytokines including TGF-β and
granulocyte-macrophage colony-stimulating factor (GM-CSF).
Both cytokines function in inflammatory responses. In the
CNS, TGF-β expression enhances immune cell infiltration
and increases autoimmune damage (126). GM-CSF has been
confirmed to promote monocyte differentiation into dendritic
cells (125). These cytokines are secreted by various cells including
astrocytes andmicroglia, implying there may be a combination of
regulatory effects by various cell types (127, 128).

Different behavior models are also observed during the
recovery after ischemia. Infiltrating macrophages tend to
massively cluster to infarct area 72 h after stroke onset, while

microglia display a migration from infarct center to peri-
infarct region during several days after the cerebral ischemic
events (129).

Infiltrating monocytes are found to have different molecular
signature and electrophysiological properties from resident
microglia. The study also covered microglia and monocyte
behaviors during the delayed phases after cerebral ischemic
injury. Differences in genomic features were also detected in
resident microglia and infiltrating monocytes (130).

Differences on inflammatory expression profiles between
microglia and invading macrophages are observed in study and
are believed to shape repair and pro-regenerative mechanisms
after stroke. Expression analysis in pMCAO mice models
show a reduction in expression of pro-inflammatory genes,
while bone marrow-derived macrophages have an inflammatory
phenotype (129).

In a study of periphery immune cell invasion to the cerebral
parenchyma after cardiac arrest and resuscitation, researchers
found a parallel significant increase of monocytes in the bone
marrow and blood, which they think may suggest a strong
coupling of peripheral immune response and CNS immunity,
providing a potential neuroprotective therapy by targeting the
pro- and anti-inflammatory signals in the periphery (131).

Like the way microglia switch between M1 and M2
subtypes in a certain context, it is reported that infiltrated
monocytes in the infarct area display different expression
feature from those surrounding the infarct area, suggesting that
infiltrated monocytes may react specifically to different micro-
environments (132).

Unique transcriptomic profiles were detected in both
resident microglia and bone marrow-derived macrophages in
ischemic hemispheres in tMCAO in rats. Resident microglia
are found to mainly display pro-inflammatory phenotype,
while infiltrating macrophages recruited in the early stage after
cerebral ischemia play anti-inflammatory, phagocytic and wound
healing function. These bone marrow-derived macrophages,
however, showed a functional shift toward a pro-inflammatory
phenotype (133).

In certain context macrophages can be polarized into
a state sharing part of signature features of M2 cells,
namely the M2-like phenotype (134). Similar switch have
been observed in many studies. For example, according to
Lidia Garcia-Bonilla and co-workers, after cerebral ischemia,
early accumulation of CCR2+Ly6Chi monocytes, an pro-
inflammatory monocyte subtype is observed in a study.
But weeks later a tendency of CX3CR1+Ly6Clo subtype
accumulation is detected, which are believed to be switched
from CCR2+Ly6Chi subtype instead of derived from blood borne
monocytes (135).

Later a study confirmed that infiltrating monocytes tend
to display an M2-like phenotype after stroke, which is
neuroprotective. According to genomic analysis, this tendency
might be stronger than that of microglia (130).

A study on the role of choroid plexus played in post-ischemic
cerebral immune responses found that in cerebrospinal fluid,
polarized M2-like monocyte-derived macrophages can migrate
into the ischemic hemisphere, and the process improves motor
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TABLE 1 | Effects of immune cells in immune responses after cerebral ischemia.

Immune cell Effects in cerebral post-ischemic

responses

Neutrophils (1) Promote immune cell recruitment to the

ischemic region, including lymphocytes,

monocytes, and platelets; (2) Clearance of

dead cells, debris, and bacteria as a defense

against the increased risk of infection as a result

of immunosuppression after stroke; (3) Involved

in tissue repair and remodeling processes

T lymphocytes (1) Infiltrate into infarct areas to promote

ischemic injury via IL-17, IL-23, and IL-33

secreted by γδT cells; (2) Produce IL-2 to

reduce Th17 production by CD4+ T cells

Regulatory T cells (1) Reduce immune cell infiltration; (2) Promote

neovascularization; (3) Promote

immunosuppression

B lymphocytes (1) Inhibit the activation and recruitment of

other immune cells; (2) Promote the recovery

process; (3) Harmful to long-term recovery and

probably lead to delayed neurological and

cognitive function deficits.

Regulatory B cells (1) Down-regulate macrophage cytokine

production; (2) Suppress pro-inflammatory T

cells and enhance the expansion of regulatory

T cells; (3) Promote Th2 polarization via IL-12

NK cells (1) Participate in Th1 priming of CD4+ T cells;

(2) Kill recently activated CD8+ T cells in an

NKG2D- and perforin-dependent manner; (3)

Promote neuronal death

Astrocytes (1) Produce IL-15, mediating Th1 polarization of

CD4+ T cells, enhancing production of Tregs,

and influencing maturation of NK cells; (2)

Activation aggravates ischemic injury

Macrophages

/microglia

Residental

microglia

(1) Prompt microglial M1 polarization and

neutrophil recruitment; (2) Induce neuron death

through TNF-α; (3) Migrate from infarct center

to peri-infarct regions in delayed phase

Infiltrated

macrophages

(1) CD14+ differentiation induces CD4+ T cell

polarization into Th-17 cells when migrating

across the BBB via TGF-β and GM-CSF; (2)

Display anti-inflammatory, phagocytic and

wound healing function in early phase; (3)

Migrate from infarct center and tend to display

an M2-like phenotype in delayed phases

and cognitive prognosis with no influence on infarct volume.
The result may provide an alternative novel therapy for cerebral
ischemic stroke (136).

Some clinical trials have been conducted targeting
microglia/macrophages. An open-label, evaluator-blinded
study of minocycline, a deactivator of macrophages showed
its favorable effects on patients acute stroke onset when
taken orally, probably by inhibiting microglia activation in
the acute phase (137). As minocycline is inexpensive and
safe with easy access, it makes a pretty promising treatment
on ischemic stroke. A later pilot study of a small sample of
acute stroke patients showed intravenous minocycline is safe.
Meta-analysis of three human trials suggests minocycline may
reduce disability after stroke, but larger trials are required

to ensure the effect of minocycline in post cerebral ischemia
treatment (138).

STROKE-INDUCED IMMUNODEPRESSION

Stroke-induced immunodepression (SIID) occurs in both
experimental models and clinical cases. SIID is characterized
by lymphopenia, up-regulation of anti-inflammatory cytokines,
and splenic atrophy (139). There are other factors influencing
SIID, such as glucocorticoids, acetylcholine, adrenaline, and
noradrenaline (6).

Tregs aremainly involved in immunosuppression via cytokine
production (32, 140). One hypothesis posits that the systematic
switch to Th2 responses exerts a long-term effect on SIID. A
decreased IFNγ/IL-4 ratio is reportedly associated with impaired
IFN-γ production, which blockades infection defense (141). IL-
4 plays a role in exacerbation of various diseases, and play a
robust regulation role in the Th1/Th2 switch (142). Reducing
Th1-type inflammation, IL-33 probably aggravates SIID via Th2-
promoting effect although the effect reduces infarct volumes.
This led to a phenomenon that IL-33 treated animal MCAO
models showed more limited infarction and better outcomes
as well as worse clinical deficits (61). Many animals died of
pneumonia, which shares the highest morbidity in clinical stroke
cases (141). These results emphasize the significance of early use
of antibiotics after stroke onset.

CONCLUSION

Cerebral post-ischemic immune responses involve the CNS;
peripheral immune cells; the BBB; vascular endothelial cells; and
various inflammatory molecules including cytokines, adhesion
molecules, selectins, globulins, and fibrillation. Immune cells
including resident glial cells play the most pivotal role in the
process. Early recruited immune cells such as neutrophils and
T lymphocytes influence ischemic injury in the acute phase,
while cells infiltrating the ischemic region in the subacute
phase mainly influence neurons and functional remodeling and
recovery processes. Various subpopulations of immune cells have
been reported to exert dual effects on the evolution of and
recovery from ischemic stroke (Table 1). Immune cells influence
ischemic stroke mainly via inflammatory factors including cell
adhesion molecules, cytokines, and related receptors. Some of
these molecules have been identified as therapeutic targets, but
their reactions to specific drugs require further study.
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