
REVIEW
published: 29 November 2019

doi: 10.3389/fimmu.2019.02787

Frontiers in Immunology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 2787

Edited by:

Paola Italiani,

Italian National Research Council

(CNR), Italy

Reviewed by:

James Harris,

Monash University, Australia

Sian M. Henson,

Queen Mary University of London,

United Kingdom

*Correspondence:

Peisong Gao

pgao1@jhmi.edu

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 07 August 2019

Accepted: 13 November 2019

Published: 29 November 2019

Citation:

Sachdeva K, Do DC, Zhang Y, Hu X,

Chen J and Gao P (2019)

Environmental Exposures and Asthma

Development: Autophagy, Mitophagy,

and Cellular Senescence.

Front. Immunol. 10:2787.

doi: 10.3389/fimmu.2019.02787

Environmental Exposures and
Asthma Development: Autophagy,
Mitophagy, and Cellular Senescence

Karan Sachdeva 1, Danh C. Do 1, Yan Zhang 1,2, Xinyue Hu 1,2, Jingsi Chen 1,3 and

Peisong Gao 1*

1 Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States,
2Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China, 3Department of

Dermatology, Children’s Hospital, Chongqing Medical University, Chongqing, China

Environmental pollutants and allergens induce oxidative stress and mitochondrial

dysfunction, leading to key features of allergic asthma. Dysregulations in autophagy,

mitophagy, and cellular senescence have been associated with environmental pollutant

and allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple

inflammatory proteins, and subsequently development of asthma. Particularly, particulate

matter 2.5 (PM2.5) has been reported to induce autophagy in the bronchial epithelial

cells through activation of AMP-activated protein kinase (AMPK), drive mitophagy

through activating PTEN-induced kinase 1(PINK1)/Parkin pathway, and induce cell cycle

arrest and senescence. Intriguingly, allergens, including ovalbumin (OVA), Alternaria

alternata, and cockroach allergen, have also been shown to induce autophagy through

activation of different signaling pathways. Additionally, mitochondrial dysfunction can

induce cell senescence due to excessive ROS production, which affects airway diseases.

Although autophagy and senescence share similar properties, recent studies suggest

that autophagy can either accelerate the development of senescence or prevent

senescence. Thus, in this review, we evaluated the literature regarding the basic cellular

processes, including autophagy, mitophagy, and cellular senescence, explored their

molecular mechanisms in the regulation of the initiation and downstream signaling.

Especially, we highlighted their involvement in environmental pollutant/allergen-induced

major phenotypic changes of asthma such as airway inflammation and remodeling and

reviewed novel and critical research areas for future studies. Ultimately, understanding

the regulatory mechanisms of autophagy, mitophagy, and cellular senescence may allow

for the development of new therapeutic targets for asthma.

Keywords: oxidative stress, autophagy, mitophagy, senescence, asthma

INTRODUCTION

Asthma is a leading serious chronic illness of children and adults worldwide, and its prevalence has
been increasing over the past few decades (1, 2). Million people worldwide are affected, including
24 million in the United States (3). Asthma is chronic airway inflammation characterized by
airway hyper-responsiveness, wheezing, cough, and dyspnea, and has become a major contributing
factor to missed time from school and work, and is also a major cause of hospitalization and
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emergency department visits. It is well-recognized that the
increase in asthma prevalence may be mainly attributed to
industrialization- and urbanization-generated environmental
pollutants (4–10). In China, a study of over 30,000 adults showed
that the prevalence of persistent cough, sputum production, and
wheezing was associated with major traffic roads, factories, and
large smokestacks (11). This was supported by another cross-
sectional study of 23,326 Chinese children, which showed that
the prevalence of asthma was higher for those residing near areas
with serious air pollution (12). Diesel exhaust particles (DEPs)
are of particular concern and contributed to more than 90%
of the particulate matters (PMs) derived from traffic sources
in European and American cities (13). Particulate matter 2.5
(PM2.5), one of the major pollutants in urban areas, accounts
for a large proportion of the atmospheric particulate matter
and increased prevalence and symptom severity in children
and adult patients with asthma (14–16) and other respiratory
diseases (17, 18). PM2.5 as a mixture of various chemical
constituents has been shown to promote oxidative stress and
inflammation (19). Furthermore, concentrated transition metals
in the environment have been shown to stimulate the production
of reactive oxygen species (ROS) 19, leading to airway injury and
inflammation (20).

In addition to environmental pollutants, it is well-known
that environmental allergens are also major players in the
development of allergic sensitization and asthma. Importantly,
recent studies made novel findings that environmental pollutants
co-exposure with allergens can lead to increased allergic
sensitization and severe asthma (21–23). Particularly, prenatal
exposure to DEPs is associated with an increased risk of
allergic sensitization, early childhood wheeze, and asthma (24,
25). Of interest, co-exposure to DEP and house dust mite
(HDM) can promote allergic sensitization and induce major
features of a more severe asthma (9, 26–29). Furthermore, we
have recently shown that benzo(a)pyrene (BaP) co-exposure
with dermatophagoides group 1 (Der f 1) can activate aryl
hydrocarbon receptor (AhR) signaling, which regulates ROS
generation and TSLP and IL-33 expression (30). Similarly,
a very recent study demonstrated that PM2.5 disturbs the
balance of Th17/Treg cells by impairing differentiation of Treg

cells and promoting differentiation of Th17 cells through the
molecular pathways AhR–HIF-1α (hypoxia-inducible factor-
1alpha) and AhR–Got1 (glutamate oxaloacetate transaminase
1) in a cockroach allergen-induced mouse model of asthma
(31). Warren et al. reported that acute inhalant exposure to an
agriculture acquired organic dust extract (ODE) impacts lung
inflammatory responses in a murine model of experimental
allergic asthma, suggesting that allergic asthma may prime

Abbreviations: CRE, Cockroach extract; HDM, House dust mite; PM2.5,
Particulate matter 2.5; SASP, Senescence-associated secretory phenotype; ROS,
Reactive oxygen species; NAC, N-Acetyl Cysteine; AMPK, AMP-activated
protein kinase; PINK1, PTEN-induced kinase; PI3K, Phosphatidylinositol-
4,5-bisphosphate 3-kinases; mTOR, Mechanistic target of rapamycin; ATG,
Autophagy-related gene; CaMKII, Calmodulin-dependent protein kinase II; CQ,
Chloroquine; BAL, Bronchoalveolar lavage; AHR, Airway hyperresponsiveness;
COPD, Chronic obstructive pulmonary disease; IPF, Idiopathic pulmonary
fibrosis; 3-MA, 3-Methyladenine.

the lung microenvironment response toward an exaggerated
response following exposure to a dusty farm environment
(32). Thus, future studies are warranted to identify the
underlying mechanisms regarding the co-exposure-induced
exacerbation of allergic asthma. In this review, we evaluated
the literature regarding the basic cellular processes, including
autophagy, mitophagy, and cellular senescence, and discussed
their involvement in environmental pollutant/allergen-induced
major features of asthma and biological regulation. Additionally,
we identified areas of unmet research needed and their potentials
as novel therapeutic avenues for the treatment of asthma and
allergic diseases.

AUTOPHAGY

It has been postulated that dysregulation of basic cellular
processes which maintain homeostasis and physiological balance
may lead to the key clinical features of asthma. Autophagy, a
homeostatic process with multiple effects on immunity, has been
shown to play important roles in causing downstream changes
initiated by environmental pollutants, allergens, and respiratory
tract infections (33–40). Autophagy is a mechanism in which
the eukaryotic cell encapsulates damaged proteins or organelles
for lysosomal degradation and recycling (41). The autophagic
pathway has recently been suggested to be involved in the several
key features of asthma pathogenesis, including eosinophilic
airway inflammation (42), airway hyper-responsiveness (36), and
airway remodeling (43). It has been shown that PM2.5 exposure
can induce cell autophagy and airway inflammation through
different immunological and molecular mechanisms (44–46).
Furthermore, exposure to allergens has also been shown to
activate autophagy, as demonstrated in studies with cockroach
allergen (47), Alternaria extract (48), and caffeine (49).

Autophagy is a process that has been maintained over ages
of evolution, and by which damaged and misfolded proteins
along with aged or damaged organelles are transported to
lysosomes for elimination and digestion (50). Currently, three
major types of autophagy are recognized: macroautophagy,
microautophagy, and chaperone-mediated autophagy (51). Of
these, macroautophagy is the most extensively studied, which
uses autophagosomes, double-membraned vesicles, to engulf
cytoplasmic proteins and organelles for delivery to the lysosome
for degradation. Autophagosomes fusing with lysosomes are
termed autophagolysosomes (52). After fusion with lysosomes,
the cargo delivered is degraded by lysosomal enzymes and
then transported to the cytoplasm (53–55). The byproducts of
lysosomal degradation (e.g., amino acids) are recycled and then
used for protein synthesis that enables salvage of energy normally
used in de novo synthesis. Microautophagy as a second type
of autophagy does not require autophagosomes but involves
the direct engulfment of the cargo that may include proteins
and lipids by the invagination of the lysosomal membrane
(56). Chaperone-mediated autophagy (CMA) as a third type of
autophagy is unique to mammalian cells (57). CMA is a highly
regulated cellular process that involves the degradation of a
selective subset of cytosolic proteins in lysosomes. In contrast
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to macroautophagy that engulfs and delivers predominantly
larger structures for bulk degradation of cargo, CMA delivers
individual proteins for lysosomal degradation. CMA involves a
co-chaperone complex led by heat shock cognate 70 (HSC70) that
recognizes target proteins that have a KFERQ-like pentapeptide
sequence (52). Chaperone-bound proteins are transported to
lysosomes, in which they are recognized by the lysosome-
associated membrane protein type 2a (LAMP2a) receptor,
a major regulator of CMA. LAMP2a is a transmembrane
protein component that oligomerizes and forms a translocon
complex for internalization and degradation of chaperone-
delivered cargo in the lysosome (58). In this review, we mainly
focused on macroautophagy, the form of autophagy dealing
with the destruction and recycling of damaged macromolecules
and organelle structures, and highlighted the significance of
macroautophagy in the maintenance of cellular energetic balance
and homeostasis.

REGULATION OF AUTOPHAGY

Significant progress has been made in understanding the
molecular mechanisms of autophagy and the regulation of
autophagy in the past 10 years (59). These studies, together
with discoveries of the autophagy-related (ATG) genes and
their associations with specific diseases (60, 61), provide
a multidimensional perspective of mechanisms by which
ATG gene-dependent autophagy pathways are critical in the
pathogenesis of human diseases. The autophagy pathway is
usually described as involving a set of 16–20 core conserved ATG
genes. These core proteins are involved in regulating initiation
of autophagy by the UNC51-like kinase (ULK) complex (e.g.,
ULK1, FIP200, ATG13), autophagosome nucleation (Beclin 1,
VPS34, VPS15, and ATG14), autophagosome elongation and
maturation (e.g., ATG5, ATG12, ATL16L1, ATG8/microtubule-
associated protein 1 light chain 3 [LC3]), and induction
of autophagosomes and fusion of autophagosomes with
lysosomes (i.e., ATG9/mammalian Atg9 and vacuole membrane
protein 1) (59, 62). Amongst these ATG proteins, LC3 is a
well-defined protein, which is cleaved from a pro-form by
Atg4 and then conjugated with phosphatidyl-ethanolamine
by the sequential action of Atg7 and Atg3 (63) to form
LC3-II (Figure 1). The conversion of LC3-I (unconjugated
cytosolic form) to LC3-II (autophagosomal membrane-
associated phosphatidylethanolamine-conjugated form) has
been considered as a major feature of autophagosome formation.
Additionally, SQSTM1/p62 has an ubiquitin binding domain
and an LC3 interaction domain and thus can bring ubiquitinated
cargos to the autophagosomes for autophagy.

Significant numbers of signaling molecules particularly
cytokine have been shown to regulate autophagy (52, 64).
For example, IL-10 and IL-10 receptor signaling inhibits the
starvation induced autophagy of murine macrophages via class
I phosphatidylinositol 3-kinase (PI3K) pathway (64), suggesting
that IL-10 plays a critical role in the autophagic process of
macrophages. Distinct classes of PI3K have previously been
shown to be involved in signaling pathways that control

macro-autophagy in human colon cancer HT-29 cells (65, 66).
Moreover, the Th1 cytokine IFN-gamma induces autophagy
in macrophages (67). In contrast, Th2 cytokines, IL-4 and
IL-13, inhibit autophagy in macrophages under starvation
or IFN-gamma stimulation, and inhibit autophagy-mediated
killing of intracellular mycobacteria in murine and human
macrophages (68). Intriguingly, recent studies suggest that
IL4 can induce autophagy in activated CD4+ Th2 cells (68),
primary dendritic cells (DCs) (69), and primary B cells that
exacerbates experimental asthma through different mechanisms
(70). Similarly, IL-13 alone can activate autophagy in airway
epithelial cells and drive the secretion of excess mucus (71).
These findings suggest that Th2 cytokines may play a dual
role in autophagy induction depending on different cell types.
However, further studies are essential to investigate how
differential modulation of autophagy by Th1 and Th2 cytokines
in different cell types, which may represent a key feature
of the host response to environmental stresses. Furthermore,
neutralization of the receptors VEGFR, β-integrin or CXCR4,
or IL-10 can also regulate autophagy by restoring autophagy
in macrophage/monocytic cells exposed to HIV-1-infected
cells (72). In contrast, autophagy can also regulate cytokine
production (73). For example, Atg16L1 is an essential component
of the autophagic machinery responsible for control of the
endotoxin-induced IL-1β production (74). It has also been shown
that autophagy influences IL-1β secretion by either targeting
pro-IL-1β for lysomal degradation or regulating activation of
the NLRP3 inflammasome (73). Similarly, autophagy plays a
pivotal role in the induction and regulation of IL-23 secretion
and innate immune responses through effects on IL-1 secretion
(75). Furthermore, autophagy regulates inflammatory cytokine
secretion [e.g., macrophage migration inhibitory factor (MIF)]
by macrophages through controlling mitochondrial ROS (76).
ROS can activate STAT3 transcriptional factor, leading to the
secretion of IL-6 in starvation-induced autophagy of cancer cells
(77). Interestingly, Alternaria extract as a major outdoor allergen
can activate autophagy that subsequently induces IL-18 release
from airway epithelial cells (48).

In addition to cytokines, several significant molecules have
also been identified to regulate autophagy (52). Of these, mTOR
(mammalian target of rapamycin) has been shown to regulate
cell-signaling pathways after exposure to several major factors
including amino acids, oxidative stress, energy levels, and growth
factors (78, 79). Particularly, mTORC1 (one of the functional
forms of mTOR) regulates autophagy by directly interacting
with the ULK complex ULK1-ATG13-FIP200 (80). mTORC1
can suppress autophagy by inhibiting ATG1/ULK complexes
under normal physiological conditions (51). In addition, AMP-
activated protein kinase (AMPK)/ULK1 pathway mediates
autophagy by transmitting stress signals for autophagosome
formation, independent of mTOR signaling (80, 81). AMPK
is capable of inhibiting non-autophagy VPS34 complexes but
activating the proautophagy VPS34 by the phosphorylation of
Beclin 1 (Beclin1/VPS34) to initiate phagophore formation (82).
In addition to AMPK and mTORC1, calmodulin-dependent
protein kinase II (CaMKII) also plays a role in engaging
autophagy regulation (83). CaMKII, a serine/threonine-specific
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FIGURE 1 | Schematic overview of autophagy regulation. Environmental signals, such as environmental pollutants and allergens, induce cellular stress leading to the

activation of the mTOR signaling complex 1 (mTORC1). Induction of autophagy begins with the formation of the phagophore, which is initiated by the ULK complex,

consisting of ULK1 (or ULK2), autophagy-related protein 13 (ATG13), FAK family kinase interacting protein of 200 kDa (FIP200) and ATG101. PI3K complex, consisting

of the vacuolar protein sorting 34 (VPS34) and the regulator subunits ATG14L, p150 and beclin 1, provides further nucleation signal. Autophagosome formation

requires phagophore membrane elongation by a complex composed of ATG5, ATG12, ATG16L, and LC3-II, which are derived from the microtubule-associated

protein 1 light chain 3 (LC3) by the activity of ATG4 generating LC3-I and the conjugation C-terminal glycine of LC3-I to phosphatidylethanolamine by ATG7, and

ATG3. The formation of the autophagolysosome is a result of the fusion between the autophagosome and lysosomal compartments. Lysosomal hydrolyases degrade

the autophagy cargo in all three processes.

protein kinase regulated by the Ca2+/calmodulin complex, can
directly phosphorylate Beclin 1 at Ser90 that enhances K63-
linked ubiquitination of Beclin 1 and activation of autophagy
(84). CaMKII can also stimulate K63-linked ubiquitination of
inhibitor of differentiation 1/2 (Id-1/2). Of interest, the increased
ubiquitinated Id-1/Id-2 can bind p62 and then be transported to
autolysosomes for degradation, which can subsequently promote
the differentiation of neuroblastoma cells and suppress the
proportion of stem-like cells (84).

Recently, transcriptional regulation of autophagy genes
has drawn a lot of attention in autophagic responses to
specific stimuli (85). Several transcription factors and
histone modifications have been identified to regulate
autophagy gene expression. In addition to the well-known
two transcription factors, p53 and Forkhead box O3 (FOXO3)
(86), Transcription Factor EB (TFEB) is one of the most
recently identified transcriptional regulators of autophagy
(87). TFEB is highly phosphorylated by various kinases such
as AKT, Extracellular Signal-Regulated Kinase 2 (ERK2), and
mTORC1, and sequestered in the cytoplasm under nutrient
rich conditions. In contrast, TFEB is dephosphorylated by
calcineurin (CaN) and translocates to the nucleus where it
activates autophagy and lysosome gene transcription upon
nutrient deprivation (88). Forkhead box K (FOXK) engages in
the transcriptional repression of autophagy gene expression by
binding to promoter regions of early-stage autophagy genes
(e.g., ULK complex) and recruits the SIN3A-Histone deacetylase
(HDAC) repressor complex to these regions under nutrient
rich conditions (89). However, most intriguingly, the post-
translational modification status on histones is also linked to
autophagy gene regulation, including histone H4K16 acetylation,

H3K9 dimethylation, and H3K27 trimethylation (90). Of these,
H4K16 acetylation suppresses autophagy gene expression
through H4K16 acetyltransferase human Males absent On the
First (hMOF) degradation and/or Sirtuin1 (SIRT1)-dependent
histone deacetylation (91). H3K27 trimethylation catalyzed by
Enhancer of Zeste Homolog 2 (EZH2) suppresses the expression
of negative regulators of the mTORC1 signaling components
and leads to mTORC1 activation and autophagy inhibition (92).
Interestingly, many of the transcriptional factors that modulate
expression of autophagy genes are regulated by common
upstream kinases such as mTORC1 and AMPK. Furthermore,
histone modification status is also a significant determinant of
transcriptional regulators to autophagic stimuli.

AUTOPHAGY AND KEY FEATURES OF
ASTHMA

Exposure to traffic and industrial pollution particulate matters,
predominantly DEPs, have been shown to increase the risk
of asthma (15, 26). Environmental pollutants (e.g., PM2.5) can
induce ROS generation and impair lung function in asthmatic
patients (93–97). It was well-documented that ROS are key
mediators that contribute to oxidative damage and chronic
airway inflammation in allergy and asthma (98–101). However,
the underlying mechanisms still remain unclear. Recent studies
have suggested that autophagy may be a new frontier in human
asthma (50) and may play a crucial role in chronic airway
inflammation (42). Indeed, higher autophagy levels have been
shown in sputum granulocytes, peripheral blood cells and
peripheral eosinophils of patients with severe asthma (102).
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The increased autophagy has been associated with important
immune mechanisms and extracellular matrix deposition and
fibrosis in airway remodeling in asthma (43). Furthermore,
genetic mutations in autophagy genes have been associated
with asthma. For example, single nucleotide polymorphisms
in Atg5 are correlated with reduced lung function (103).
Thus, these cumulative findings raise the possibility that
environment/allergen exposure initiates the production of ROS
in airway epithelial cells, which serve as “signaling molecules”
modulating the process of autophagic cycle through activating
signaling molecules and autophagy pathways, thereby leading
to the major phenotypic changes of asthma as summarized in
Figure 2, including airway inflammation, airway remodeling,
and airway hyper-responsiveness.

AUTOPHAGY AND AIRWAY
INFLAMMATION

Autophagy plays important roles in airway inflammation (36,
42). It has been suggested that autophagy plays a critical role

in PM-induced inflammation in airway epithelium through
the activation of NF-kB1 and activator protein-1 (AP-1) (104).
Furthermore, PM2.5 can induce inflammatory cytokine release
(e.g., IL-6, IL-8, IL-1β1, and TNFα) and oxidative injury of
lung cells (105). Additionally, Long et al. found that PM2.5 can
induce cell arrest in the G0/G1 phase and increase mitochondrial
membrane potential, ROS generation, and airway epithelial cell
apoptosis (106). PM2.5 not only induced the production of pro-
inflammatory cytokine IL-6, TNFα, and activation of AMPK,
but also promoted the expression of ATG5, Beclin-1 and LC3II
in the airway epithelial cells (107). Interestingly, knockdown of
ATG5 limited PM2.5 -induced autophagy, ROS generation, cell
apoptosis, and production of IL-6 and TNFα. Mechanistically,
this study suggests that the activation of AMPK may be critical
in autophagy-mediated PM2.5-induced airway inflammation. In
addition, allergens have also been shown to induce autophagy.
OVA (ovalbumin) used in a murine asthma model can induce
autophagy in airway tissues (36). Alternaria alternata as one of
the major outdoor allergens that cause allergic airway diseases
(108) has been shown to induce IL-18 secretion from airway
epithelial cells, and thereby initiate Th2-type responses (109).

FIGURE 2 | Autophagy and major features of asthma. Environment/allergen exposure initiates ROS generation in airway epithelial cells, which serve as “signaling

molecules” modulating the process of autophagic cycle through activating signaling molecules and autophagy pathways, thereby leading to the major phenotypic

changes of asthma, including airway inflammation, airway remodeling, and airway hyper-responsiveness.
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IL-18 is a pro-inflammatory cytokine that belongs to the IL-
1 family (110). Importantly, Alternaria extract stimulation can
activate an autophagy-based unconventional secretion pathway
and induce airway epithelial cells to release IL-18 via an
autophagy dependent, but caspase 1 and 8 independent pathway
(48). Studies from our research group showed that cockroach
extract can induce autophagy in airway epithelial cells in vitro
and in a mouse model of asthma (47). Further studies on the
underlying mechanisms demonstrated that ROS and oxidized
CaMKII (ox-CaMKII) in airway epithelial cells are critical in
regulating cockroach allergen-induced autophagy (111).

Although environmental pollutants/allergens can induce
autophagy, its role in airway inflammation remains unclear. It
has been suggested that, at baseline, autophagy is critical for
inhibiting spontaneous lung inflammation and is fundamental
for airway mucus secretion by airway goblet cells. Autophagy
deficient mice (Atg5−/− and Atg7−/−) develop spontaneous
sterile lung inflammation (110). Similarly, deficiency of
CD11c-specific autophagy results in severe IL-17A-mediated
neutrophilic lung inflammation and unprovoked spontaneous
airway hyperactivity (112). Furthermore, deficiency of ATG5
in airway epithelial cells results in an increased airway
inflammation (113), and disruption or deletion of autophagy in
airway epithelial cells resulted in airway hyperreactivity (114).
Autophagy deficiency (ER-Cre:Atg7fl/fl) in mice after exposure to
P. aeruginosa impairs pathogen clearance, increases neutrophilic
inflammation, and the production of IL-1β (115). Although
autophagy appears to be a protective mechanism, autophagy
may also exacerbate airway inflammation. For example,
inhibition of autophagy by 3-MA and intranasal knockdown
of Atg5 led to marked improvement in AHR, eosinophilia,
IL-5 levels in bronchoalveolar lavage fluid, and histological
inflammatory features (36). Similarly, autophagy deficiency in
macrophages (siRNA targeting PIK3C3) during LPS-induced
lung inflammation attenuates lung and bronchoalveolar
immune cell infiltration and air space cytokine levels (116).
Additionally, IL-4-induced autophagy in B cells exacerbated
asthma through an mTOR-independent, PtdIns3K-dependent
pathway (70). Thus, autophagy may play diverse roles, either
protective or detrimental, in asthma. Although the reason is
unknown, it has been suggested that autophagy may represent
a protective role in maintaining homeostasis at baseline or
during acute infection, but play a detrimental role due to
impaired autophagy or a persistent autophagy responses
leading to an accumulation of excessive autophagosome in a
prolonged exposure of environmental pollutants/allergens or
inflammation. Furthermore, autophagy involvement in different
cell types may result in different characteristic phenotypic
changes. For example, deletion of ATG5 and ATG14 or
pharmacological inhibition (e.g., 3-MA, Baf-A1) in cultured
airway epithelial cells treated with IL-13 results in less mucus
secretion and less CCL26 secretion. In contrast, autophagy
deficiency in macrophages (117) or DCs (112) results in
the exacerbation of inflammation. Thus, the investigation of
the real impact of autophagy, protective or detrimental, is
extremely challenging.

AUTOPHAGY AND AIRWAY REMODELING

Recent studies have linked autophagy to the major features of
airway remodeling in asthma, including airway smooth muscle
(ASM) 44 (118–120), extracellular matrix (ECM) (121, 122),
fibrosis (117), and epithelial-mesenchymal transition (EMT)
(123). Particularly, it has been suggested that TGFβ1 induced
autophagy is essential for collagen and fibronectin production
in human airway smooth muscle cells, and deletion of Atg5
and Atg7 leads to reduction in pro-fibrotic signaling and ECM
protein release (50, 124). In turn, autophagy has also been shown
to participate in profibrotic changes induced by TGFβ1 (125).
Furthermore, McAlinden et al. provided evidence of increased
activation of the autophagy pathway in the airways of patients
with asthma (43). Especially, they showed an association for
TGFβ1 and accumulation of collagen and increased profibrotic
signaling in an autophagy-dependent manner in ASM cells (43).
Furthermore, inhibition of autophagy in murine model has
been shown to attenuate airway inflammation and reduce the
concentration of TGFβ1, and subsequently lead to a reduced
airway remodeling. However, the critical mechanistic evidence
is limited.

MITOPHAGY

Mitophagy is the selective degradation of mitochondria
by autophagy. It often happens to damaged mitochondria
following the exposure to environmental pollutants/allergens
or stress and plays a critical role in promoting turnover of
mitochondria and preventing accumulation of dysfunctional
mitochondria (38). Mitochondrial dysfunction and elevated
ROS production have been associated with allergic diseases,
including atopy, atopic dermatitis, and asthma (126–129). Of
interest, a disturbance in the homeostasis of mitochondria
leads to ROS generation, which cause weakened barriers
and subsequently airway inflammation, epithelial fragility,
and impaired secretion capacity (130). Furthermore, PM2.5-
exposed rat lung injury is associated with mitochondrial
fusion-fission dysfunction, mitochondrial lipid peroxidation and
cellular homeostasis imbalance, and ROS generation, leading
to the disruption of mitochondrial dynamics (131). PM2.5

can regulate the dynamics of mitochondria via facilitating
mitochondrial fission, and the excess ROS induced by PM2.5

can trigger mitophagy by activating PINK1/Parkin pathway
(132). Acrolein, an ubiquitous environmental pollutant
that is abundant in tobacco smoke, cooking fumes, and
automobile fumes (133), has also been reported to induce
mitochondrial DNA (mtDNA) damages, mitochondrial fission
and mitophagy in human lung cells (134). Of interest, mitophagy
was found to prevent mitochondria-induced inflammation
(mito-inflammation) (135). Thus, mitophagy may be critical
in environmental pollutant/allergen-induced mitochondrial
dysfunction and dysregulation of mitochondrial bioenergetics.
These may ultimately result in a dysregulated mitophagic
cycle and significant phenotypic changes observed in asthma
(Figure 3).
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FIGURE 3 | Mitophagy and major features of asthma. Environmental pollutant/allergen induces excessive ROS generation, mitochondrial dysfunction, and mitophagy,

subsequently leading to dysregulation of mitochondrial bioenergetics. These may ultimately result in significant phenotypic changes observed in asthma.

MOLECULAR MECHANISMS OF
MITOPHAGY

Mitophagy is an evolutionarily conserved homeostatic process
by which the cells selectively degrade only dysfunctional or
damaged mitochondria (136, 137). Mitophagy is a normal
physiological process during cell life and functions as surveiling
mitochondrial population, eliminating superfluous and/or
impaired organelles (137). Defective removal of damaged
mitochondria leads to hyper-activation of inflammatory
signaling pathways and subsequently to chronic systemic
inflammation. However, important questions remain regarding
the molecular mechanisms of mitophagy. It has been suggested
that mitophagy is regulated by “PTEN-induced kinase 1 (PINK)-
Parkin-mediated pathway” and “receptor-mediated pathway”
(137). Under physiological conditions, the transport of PINK1
preprotein onto the inner mitochondrial membrane (IMM) is
followed by sequential proteolytic cleavage by the mitochondrial

processing peptidase and pre-protein-associated rhomboid-
like protease (138). Under challenged condition, active
PINK1 accumulates on the outer mitochondrial membrane
(OMM) through its interaction with the translocations of the
outer mitochondrial membrane complex (TOM complex),
promoting Parkin recruitment through phosphoralation of
both Parkin and ubiquitin (139). In turn, Parkin triggers the
polyubiqutination of several OMM proteins, including voltage-
dependent-anion-selective channer 1 (VDAC1), mitofusin 1
and 2 (MFN1/2), and mitochondrial import receptor subunit
TOM20 homolog (TOMM20) 138. Several adaptor molecules
[e.g., p62, optineurin (OPTN), and nuclear domain protein
52 (NDP52)] bindphosphorylated polyubiqutinated proteins
and initiate autophagosomal formation through binding with
LC3 (140). Recent studies suggest that both NDP5 and OPTN
are phosphorylated by the Tank-binding kinase 1 (TBK-1)
which enhances their binding affinity to ubiquitin (141). The
OPTN-TBK1 complex forms a feed-forward mechanism that
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speeds up the mitochondrial clearance (142). In contrast, the
receptor-mediated mitophagy is dependent on various OMM
proteins such as Nip3-like protein X (NIX), BCL2 interacting
protein 3 (BNIP3), and Fun14 domain-containing protein 1
(FUNDC 1) (137, 140). These proteins localize to the OMM and
interact directly with LC3 to regulate mitochondrial elimination.
Cardiolipin and prohibitin 2 (PHB2) are externalized to OMM
and interact with LC3 in response to mitochondrial damage to
promote the engulfment of defective mitochondria (143, 144).

MITOPHAGY AND ASTHMA

Similar to autophagy, accumulating evidence suggests that
both enhanced and impaired mitophagy has an important
role in the pathogenesis of COPD and lung fibrosis (145–
149). However, limited studies were found for asthma. Recent
studies have shown that PM2.5 can induce increased ROS and
mitochondrial damage, which triggers the mitophagy through
activating PINK/Parkin pathway (132). In the nucleus, excessive
ROS could activate HIF-1 FOXO3, and NRF2, which promote
the transcription of BNIP33/NIX, LC3/BNIP3, and p62, thereby
facilitate mitophagy (150). Furthermore, the impairment of
mitochondrial degradation by mitophagy can lead to the
accumulation of fragmented mitochondria and activation of
the mitochondrial apoptosis pathway (134). Thus, these studies
suggest that environmental pollutants can induce ROS and
mitochondrial damage, which triggers mitophagy to maintain
stable mitochondrial function in cells by scavenging impaired
mitochondria and reducing excessive ROS. Further studies on
regulatory mechanisms regarding ROS and mitophagy may
provide a new angle on therapies for allergy and asthma.

CELLULAR SENESCENCE

Cellular senescence is characterized by irreversible cell cycle
arrest and triggered by a number of factors such as aging, DNA
damage, oxidative stress, mitochondrial dysfunction (151–153),
telomere shortening (154, 155), epigenetic modifications (156),
and inflammation (157). Senescence arrest occurs mostly in the
G1 phase of the cell cycle, distinguishing it from G0-arrested
quiescent cells, and is mediated by cyclin-dependent kinase
inhibitors (CDKis) (e.g., p21CIP1, p16INK4a) and is dependent
on the TP53 and pRB tumor suppressor pathways (158).
Also, telomeres and nucleoprotein complexes located at the
ends of linear chromosomes (159) are critical to the cellular
senescence (160). Furthermore, senescent cells accumulated in
tissues secrete a large amount of pro-inflammatory mediators
termed the senescence associated secretory phenotype (SASP),
which drives chronic inflammation, leading to further senescence
(157). The composition of the SASP is stimulus-dependent and
includes pro- and anti-inflammatory cytokines, chemokines,
matrix metalloproteinases, growth factors, and other factors,
and has an important role in the immune-mediated clearance
of senescent cells and tissue dysfunction (160). Senescent cells
have been found at sites of chronic age-related diseases like
osteoarthritis (161), atherosclerosis (162–164), and aging lung

(153), highlighting the significant role of senescent cells in
the pathogenesis of chronic diseases. Senescent cells exhibit
increased protein turnover and massive proteotoxic stress due
to augmented autophagy and SASP component synthesis (165).
Senescence cells also show increased rates of mitochondrial
metabolic activity, including the tricarboxylic acid cycle,
oxidative phosphorylation, and glycolytic pathways. Senescent
cells have increased AMP/ADP:ATP and NAD+/NADH ratios,
activating AMPK, which reinforces a TP53-dependent cell-
cycle arrest (166, 167). In addition, senescent cells do not
proliferate, but are resistant to autophagy and apoptosis, and
are thus long living. Importantly, senescent cells can exacerbate
mitochondrial dysfunction, inflammation, and other disease-
promoting pathways through SASP (153).

Accumulation of senescent cells may slow or stop cell
regeneration and tissue maintenance, thus leading to tissue
aging (166). Indeed, clearing senescent cells from tissues of
mouse models was shown sufficient to delay, prevent, or alleviate
multiple age-related disorders (168). Although the underlying
mechanisms regarding the elimination of senescent cells are
poorly understood, the immune system has been recognized to
be critical (169). Different immune cells have been suggested
to be involved in the surveillance of senescent cells, including
neutrophils, macrophages, natural killer cells, and CD4+ T
cells (170). These immune cell-derived senescent cells can be
immunogenic by expressing stimulatory ligands (e.g., MICA/B)
that bind to NKG2D and activating their killing by NK cells
(171). Furthermore, senescent cells can recruit immune cells to
eliminate senescent cells by secreting cytokine and chemokines
(172). Interestingly, recent studies support a balance between
activating and inhibitory signals that will determine whether NK
and T-cells respond to senescent cells. These studies also suggest
a novel mechanism whereby the increased expression of HLA-
E on senescent fibroblasts reduced the clearance of senescent
cells by NK and CD8+ T cells expressing inhibitory receptor
NKG2A (157). This represents a novel therapeutic approach to
improve the immune clearance of senescent cells by blocking the
interaction between HAL-E and NKG2A. In addition, the SASP-
related cytokine IL-6 contributes to the increased expression
of HAL-E in senescent cells, and that persistent inflammation
may result in remaining of senescent cells in tissues, further
contributing to the diseases.

CELLULAR SENESCENCE AND ASTHMA

Mitochondrial dysfunction has been demonstrated to be able
to drive a cell into premature senescence, which affects airway
diseases (151, 152). Indeed, the potential role of cell senescence
in the pathogenesis of asthma has drawn great attention (162).
Studies have implicated that cell senescence in the lung may
be an important risk factor for the development of asthma
(39, 173). Both COPD and idiopathic pulmonary fibrosis (IPF)
are increased in prevalence with age and have been associated
with senescence (174, 175). Senescence-related changes are
also found in the lungs of adults with asthma, and in the
airways of asthmatic children (176). However, mechanistic links
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between environmental pollutants, allergens, senescence, and
pathophysiology of asthma have not been established. Studies
have demonstrated that exposure to PM2.5 can induce senescence
of human dermal fibroblasts (177). Increased exposure to PM2.5

is correlated with shortened telomeres in placental tissues
and umbilical cord blood (178). Similarly, Bisphenol A (BPA)
can induce Th2 inflammatory cascade and trigger DSB-ATM-
p53 signaling pathway leading to cell cycle arrest, senescence,
autophagy, and stress response in human fetal lung fibroblasts
(179). Telomeres are critical to the cellular senescence (160), and
telomere shortening is a strong indication of cellular senescence.
In a study of 730 mother-baby pairs, increased exposure to
PM2.5 has been shown to correlate with shortened telomeres in
placental tissue and umbilical blood (178). Telomere shortening
was also associated with airway hyper-responsiveness and is
an inducer of accelerated replicative senescence of bronchial
fibroblasts in patients with asthma (154). This was supported by
findings in the chronic asthmatic patients who also displayed
shorter telomere lengths and suggested that asthma chronicity
may be associated with telomere length even at early ages (155).
Furthermore, TSLP-induced cellular senescence with elevated
p21 and p16 in human epithelial cells was essential for airway
remodeling in vitro (39). This was further supported by the fact
that inhibition of TSLP signaling attenuates epithelial senescence,
airway hyper-reactivity, and airway remodeling in anOVAmouse
model (39). Plasminogen activator inhibitor (PAI-1), a well-
known cell senescence and fibrosis mediator, could activate p53
and mediate bleomycine- and doxorubicin-induced alveolar type
II (ATII) cell senescence (180). Further studies suggest that PAI-
1 mediates TGF-β1-induced ATII cell senescence, which may
contribute to lung fibrogenesis in part by activating alveolar
macrophages via secreting pro-fibrotic and pro-inflammatory
mediators. Interestingly, this effect is highly dependent on the
target cell, because it seems that PAI-1 has opposite effects on
fibroblasts and ATII cells in patients with IPF (181). Together,
these findings suggest a significant role of senescence in airway
fibrosis and remodeling.

Many studies also support the rationale that senescence
is associated with a higher pro-inflammatory cytokine profile
(182). Of note, higher amounts of IL-6 have been found in
patients with asthma and have been shown to trigger or to
reinforce premature cellular senescence (183). This IL-6 driven
immune-senescence may serve as part of a feed forward loop
that drives asthma progression and reduces the efficacy of anti-
inflammatory treatments. SASPs released from senescent cells
contain inflammatory cytokines that may increase inflammation
and impair cellular function in asthma. Furthermore, elevated
p21 expression in asthmatic epithelium is not reduced with
corticosteroid treatment (40), and in turn, loss of p16INK4a

protein results in decreased cell sensitivity to dexamethasone
treatment (184), raising the possibility that senescence may play
an important role in glucocorticoid resistance in the patients
with asthma. Indeed, lymphocyte senescence in COPD has been
suggested to be associated with loss of glucocorticoid receptor
(GCR) expression by pro-inflammatory/cytotoxic lymphocytes
(185). Thus, investigation into the role of senescence in
glucocorticoid resistance may provide novel approaches for

the treatment of asthma. In addition, although current studies
suggest a role of senescence in asthma, little is known about
the pathway regarding the environmental pollutants/allergens,
ROS, mitochondrial dysfunction, and senescence. Furthermore,
it is poorly understood about the mechanistic links between cell
senescence and asthma pathophysiology. Additionally, asthma
is typically associated with an imbalance between Th1 and
Th2 pathways, and over-driven Th2-mediated inflammation can
result in airway inflammation and asthma (186). On the other
hand, immune-senescence has been associated with lung aging,
and that altered Th1/Th2 imbalance may contribute to the
process of accelerated lung aging and immune-senescence (187).
Indeed, with aging, mouse lungs showed typically increased
Th1 cells with increased levels of IFN-gamma. However, the
link between Th1/Th2 cells and senescence remains largely
un-explored. Thus, further research is needed to establish the
mechanistic links between increased cytokines with aging and
senescent cell induction, and asthma pathophysiology.

AUTOPHAGY/MITOPHAGY AND
CELLULAR SENESCENCE

Autophagy plays a role in homeostatic energy supply and
elimination of aggregate-prone proteins, damaged organelles,
and intracellular microbes. Autophagy also plays a critical role
in the regulation of innate and adaptive immune responses
in response to environmental stresses. In contrast, cellular
senescence is caused by insufficient regulatory mechanisms of
homeostasis. One of the most common causes for cellular
senescence is that mitochondrial dysfunction results in cellular
senescence due to excessive ROS production (153). Although
autophagy and senescence are known to share similar properties,
recent studies suggest a “double-edged” sword that autophagy
can either accelerate the development of senescence or prevent
senescence (188, 189). Especially, autophagy can produce large
amounts of recycled amino acids, which trigger the production
of SASP (e.g., IL-6, IL-8) through the activation of mTOR,
thereby leading to senescence (190). By contrast, inhibition of
autophagy or insufficient autophagymay promote cell senescence
(190). Recent studies suggest that autophagy could be either
pro-senescent or anti-senescent, depending on the type of
autophagy (general or selective), stimulatory signals, and can
be cell-type specific (189). Although it seems that autophagy
and senescence are highly related, a great deal of questions
remain unanswered regarding the mutual relationship between
autophagy and senescence at both molecular and cellular levels
in diseases like asthma.

THERAPEUTIC INTERVENTIONS

Autophagy, mitophagy, and cellular senescence are potential
targets that can be manipulated at various levels, and inhibition
of these processes have been considered as potential therapeutic
strategies. For example, Liu et al. found that 3-methyladenine
(3-MA), an inhibitor of autophagy, suppresses the formation
of autophagosomes through the inhibition of PI3K (36).

Frontiers in Immunology | www.frontiersin.org 9 November 2019 | Volume 10 | Article 2787

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sachdeva et al. Autophagy, Mitophagy, and Senescence in Allergic Asthma

Chloroquine (CQ), another inhibitor of autophagy, also has
the ability to inhibit HDM-induced airway remodeling through
modulating autophagy pathways (191). In addition, bafilomycine
(Baf-A), a macrolide antibiotic derived from Streptomyces griseus,
can block late-phase autophagy through significant cytosolic
acidification (192). In addition, administration of drugs currently
in use for asthma (e.g., dexamethasone, montelukast, anti-IL-5,
and anti-IgE antibody) can also inhibit autophagy (36). However,
these current drugs for autophagy are far from specific, and may
play a dual role in modulation of autophagy. Thus, addressing
the real impact of autophagy in activation or inhibition of
inflammation in disease models is challenging.

It has also been suggested that targeting mitophagy may
possess therapeutic potential. Rapamycin and metformin as
general autophagy-inducing drugs have been shown to attenuate
AMPK and mTOR activity, and preserve energy metabolism
through regulating mitophagy and mitochondrial biogenesis
stimulation (193, 194). Of note, administration of metformin

can induce mitophagy by promoting Parkin activity through
p53 downregulation. In addition, several naturally occurring
compounds, such as spermidine, resveratrol, urolithin A and
antibiotics, have been demonstrated to maintain mitochondrial
integrity by the induction of mitophagy and promotion
of mitochondrial biogenesis (137). However, the therapeutic
potential in human diseases still remains to be determined.
Thus, identification of mitophagy modulators may result in
therapeutic intervention strategies by targeting mitochondrial-
associated pathologenesis of diseases.

Lastly, there is ongoing research to target senescence in
cases of pulmonary fibrosis and asthma (195). Specifically,
patients with age-related lung diseases (such as COPD and
asthma) showed high levels of oxidative stress in the lung
tissues, Thus, patients with COPD or asthma could benefit
from the use of antioxidants (e.g., NAC, Nrf2 activators,
NOX-4 inhibitors, MitoQ), which suppress inflammation and
reduce the progression of senescence-associated pathways (196).

FIGURE 4 | Contribution of autophagy, mitophagy, and senescence to asthma. Environmental triggers, such as environmental pollutants and allergens, can induce

excessive ROS generation, which serve as “signaling molecules” modulating the process of autophagic cycle through activating signaling molecules and autophagy,

thereby leading to the major phenotypic changes of asthma, including airway inflammation, airway remodeling, and airway hyper-responsiveness. These elevated ROS

levels can also induce mitochondrial damage and mitophagy, thereby leading to the mitochondria-induced inflammation (mito-inflammation). Oxidative stress can

cause DNA damage, telomere shortening, and epigenomic disruption, which convert normal cells into senescent cells, leading to secretion of SASP. SASP can

regulate sensecent cells and induce airway inflammation and remodeling thought the secretion of cytokines, chemokines, MMPs, and growth factors. Additionally, Th1

or Th2 cytokines may induce autophagy/mitophagy/senescence, and in turn, these may also regulate the balance of Th1 and Th2 responses in asthma.
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Moreover, orchestrating SASP modulation could be a better
strategy. Indeed, rapamycin, metformin, sirtuin activators, or
PAI-1 inhibitor have been suggested to have beneficial effects
due to their ability to act as a SASP suppressor (160, 181). For
example, mTOR activation has been shown to be essential for
asthma onset (197), and inhibition of mTOR with rapamycin
can suppress IL-1 translation and reduce mRNA stability of
SASP factors (198). Similarly, metformin can also inhibit mTOR
and could have the potential to inhibit SASP in asthma.
Furthermore, specific induction of apoptosis in senescent cells
using senolytics could also lead to beneficial effects (175).
Additionally, inducing senescence cell clearance [e.g., ABT-263,
also known as navitoclax (199)] by manipulating the immune
system to recognize and clear these cells is also an important
therapeutic approach. However, these current drugs are far from
specific, and some of them may have off-target effects. For
example, metformin and sirt1 are also complex I inhibitor, which
can promote mitochondrial fission and ROS production and
subsequently cell senescence. Furthermore, although SASP is
critical for the immune-mediated clearance of senescent cells, it
also contributes to tissue dysfunction. Similarly, accumulation
of senescent cells with time may lead to age-related loss of
structure and tissue function (160, 200). By contrast, senescence
can be beneficial in inhibiting the proliferation of transformed
cells, and in some of key biological processes such as tissue
repairing and wound healing (164). Because of these opposing
effects, further studies are clearly needed to understand the exact
role of senescence in diseases. Particularly, understanding of
the molecular mechanisms regarding the processes involved in
senescence will be helpful for the identification of modulators of
cellular senescence, which could serve as therapeutic targets for
senescence-associated diseases in the future.

CONCLUSIONS

Dysregulations in autophagy, mitophagy, and cellular senescence
have been associated with environmental pollutant/allergen-
induced oxidative stress, mitochondrial dysfunction, secretion
of multiple inflammatory proteins known as SASP, and
development of asthma. PM2.5 was reported to induce autophagy
through activating AMPK (107), and to drive the mitophagy
through activating PINK/Parkin pathway (132). PM2.5 was
also shown to induce senescence of human dermal fibroblasts
(177), while increased PM2.5 exposure was correlated with
shortened telomeres in placental tissue and umbilical blood

(178). Intriguingly, allergens, including OVA (36), A. alternata
(48), and cockroach allergen (47, 111), have also been shown
to induce autophagy through activating different signaling
pathways. Thus, as hypothesized in Figure 4, environmental
triggers, e.g., environmental pollutants or allergens, can
induce ROS generation, which serve as “signaling molecules”
modulating the process of autophagy through activating
downstream signaling molecules and autophagy, thereby
leading to the major phenotypic changes of asthma, including
airway inflammation, airway remodeling, and airway hyper-
responsiveness. These elevated ROS levels can also induce
mitochondrial damage, thereby leading to the mitochondria-
induced inflammation (mito-inflammation) and major features
of asthma. Furthermore, oxidative stress can also cause DNA
damage, telomere shortening, and epigenomic disruption,
all of which induce cell cycle arrest and cellular senescence.
Senescent cells can secrete SASP, which contains multiple
inflammatory cytokines, chemokines, mtrix metalloproteinases
(MMPs), and growth factors. The SASP leads to airway
inflammation and remodeling. In turn, the SASP can also
induce senescence and senescent cells can secrete ROS, which
further promote the process of senescence. In addition, Th1 or
Th2 cytokines may induce autophagy/mitophagy/senescence,
and in turn, this autophagy/mitophagy/ senescence may also
regulate the balance of Th1 and Th2 responses in asthma.
Although comprehensive studies have been focused on
investigating the role of autophagy, mitophagy and cellular
senescence in the pathogenesis of diseases (e.g., beneficial
or detrimental), many questions still remain untouched and
unanswered. Thus, future studies are clearly needed to better
understand these cellular processes, particularly after exposure
to environmental pollutants and allergens, and to identify
the therapeutic targets to regulate the autophagy/mitophagy/
senescence-associated asthma.
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