
REVIEW
published: 28 November 2019

doi: 10.3389/fimmu.2019.02794

Frontiers in Immunology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 2794

Edited by:

Antonella Mancusi,

University of Perugia, Italy

Reviewed by:

Sergio Rutella,

Nottingham Trent University,

United Kingdom

Federico Simonetta,

Stanford University, United States

*Correspondence:

Domenico Mavilio

domenico.mavilio@humanitas.it

Specialty section:

This article was submitted to

Alloimmunity and Transplantation,

a section of the journal

Frontiers in Immunology

Received: 31 July 2019

Accepted: 14 November 2019

Published: 28 November 2019

Citation:

Zaghi E, Calvi M, Di Vito C and

Mavilio D (2019) Innate Immune

Responses in the Outcome of

Haploidentical Hematopoietic Stem

Cell Transplantation to Cure

Hematologic Malignancies.

Front. Immunol. 10:2794.

doi: 10.3389/fimmu.2019.02794

Innate Immune Responses in the
Outcome of Haploidentical
Hematopoietic Stem Cell
Transplantation to Cure Hematologic
Malignancies

Elisa Zaghi 1, Michela Calvi 1,2, Clara Di Vito 1 and Domenico Mavilio 1,2*

1Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy, 2Department of Medical

Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy

In the context of allogeneic transplant platforms, human leukocyte antigen

(HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents

one of the latest and most promising curative strategies for patients affected by high-risk

hematologic malignancies. Indeed, this platform ensures a suitable stem cell source

immediately available for virtually any patents in need. Moreover, the establishment

in recipients of a state of immunologic tolerance toward grafted hematopoietic stem

cells (HSCs) remarkably improves the clinical outcome of this transplant procedure

in terms of overall and disease free survival. However, the HLA-mismatch between

donors and recipients has not been yet fully exploited in order to optimize the Graft

vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by

several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD)

and the occurrence of opportunistic viral infections. In this context, the quality and

the kinetic of the immune cell reconstitution (IR) certainly play a major role and several

experimental efforts have been greatly endorsed to better understand and accelerate

the post-transplant recovery of a fully competent immune system in haplo-HSCT. In

particular, the IR of innate immune system is receiving a growing interest, as it recovers

much earlier than T and B cells and it is able to rapidly exert protective effects against

both tumor relapses, GvHD and the onset of life-threatening opportunistic infections.

Herein, we review our current knowledge in regard to the kinetic and clinical impact

of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and

haplo-HSCT. The present paper also provides an overview of those new therapeutic

strategies currently being implemented to boost the alloreactivity of the above-mentioned

innate immune effectors in order to ameliorate the prognosis of patients affected by

hematologic malignancies and undergone transplant procedures.

Keywords: innate lymphocytes, haploidentical hematopoietic stem cell transplantation, immune-reconstitution,

natural killer cells, innate lymphoid cells, γδ T cells, alloreactivity
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INTRODUCTION

Allogeneic (allo-) hematopoietic stem cell transplantation
(HSCT) represents the best curative approach for patients
affected by high-risk hematologic malignancies and several
genetic disorders (1). In the absence of human leukocyte
antigen (HLA)-identical siblings, HLA-haploidentical (haplo)
related donors are a source of hematopoietic stem cells
(HSCs) immediately available for almost any patients in
need (2).

However, the first developed protocols of haplo-HSCT
were mainly associated with graft rejection, high degree
of treatment-related mortality (TRM) and severe graft-vs.-
host-disease (GvHD) due to the partial HLA-mismatch
between donors and recipients. This poor clinical outcome
was also worsened by the increased risk of developing
opportunistic infections, a phenomenon associated with a
delayed immune-reconstitution (IR) following the transplant.
On the other hand, HLA-mismatch remarkably boosted the
so-called Graft-vs.-Leukemia (GvL) effect that eradicates
those malignant cells surviving conditioning regimes (3, 4).
Hence, the mechanisms inducing both GvHD and GvL rely
on immunologic alloreactivity that, indeed, represents the
bad and good side of the same coin in both allogeneic and
haplo-HSCT. The possibility to improve GvL while limiting
life-threatening side effects have firmly driven the development
of new clinical protocols of haplo-HSCT delivering better
clinical outcomes. In this context, a better understanding of
both kinetics and mechanisms of IR is key to improve the
prognosis of patients undergone haplo-HSCT and limit its side
effects (5–13).

Several lines of evidences clearly showed that a full recovery

of adaptive immune responses in transplanted patients take

long time. Indeed, adaptive B- and T-cell effector-functions
are either lacking or not completely competent for several

months after haplo-HSCT, thus leaving the patients in a
deadly condition of immune-deficiency. On the other hand,

innate immune cells reconstitute early after haplo-HSCT,
thus ensuring a certain degree of immune-protections in the

first days/weeks after the transplant (3, 14). In particular,

neutrophils and monocytes recirculate at levels similar to
those of healthy individuals 1 month after the infusion of

HSCs, while innate lymphocyte IR starts from the 2nd week
after the transplant (15–17). Nonetheless, quite a few cell
compartments of innate immunity are greatly impaired in
their functions early after haplo-HSCT (18, 19). This scenario
enforced the implementation of graft manipulations in allo-
and haplo-HSCT setting (i.e., αβ T and/or B cell depletion)
able to preserve Natural Killer (NK), gamma-delta (γδ) T and
innate lymphoid (ILCs), thus avoiding a prolonged immune
suppression and speeding their IR early after the transplant
(Table 1) (12, 26–28). In particular, NK and γδ T cells have
been shown to recover faster in those recipients receiving αβ

T cell depleted grafts rather than the conventional CD34pos

conventional counterparts in the context of the haplo-HSCT
setting (25, 28, 29).

Graft vs. Host Diseases and Opportunistic
Infections
One of the main complications affecting the positive clinical
outcomes of allo-HSCT is still represented by the donor-
derived alloreactive T cell responses against host tissues, a
phenomenon inducing the onset of GvHD mainly affecting skin,
gastrointestinal tract and liver (30, 31). Moreover, the different
expression of tissue antigens between donors and recipients
together with the clinical setting of induced immune-deficiency
in recipients represent additional factors that remarkably worsen
the impact of GvHD (32). In order to limit T cell alloreactivity,
several haplo-HSCT platforms have been developed over the
recent years (summarized in Table 1), including T-cell depleted
(TCD) and T-cell replete (TCRep) approaches (5, 22, 25).
Although the infusion of TCD grafts coupled with a mega-
dose of CD34pos peripheral blood HSCs (on average 10 × 106

cells/kg body weight) ensures high engraftment rates associated
with potent GvL effect and reduced GvHD, the small number
of residual T lymphocytes administered in recipients are still
able to induce high degrees of TRM and to delay IR with
a subsequent increased rates of opportunistic infection onsets
(5, 33). Hence, alternative and more efficient TCRep approaches
able to better target alloreactive T cells have been developed in
haplo-HSCT setting. These new protocols employ the infusion
of high doses of post-transplant cyclophosphamide (PT-Cy),
an immune-suppressant drug that is able to deplete in vivo
all alloreactive and proliferating T cells (34). This new PT-Cy
TCRep strategy showed since from the beginning very good
clinical outcomes in term of engraftment, decreased GvHD and
a faster kinetic of IR. Indeed, while donor T cell infused at
the time of the transplant mediates a strong GvL in the first
days soon after the administration of HSCs, the removal of
those alloreactive and proliferating donor-derived T cells clones
by PT-Cy limited the onset of GvHD afterward. These TCRep
protocols have been then further optimized by infusing colony-
stimulation factor (G-CSF)-primed grafts, by depleting in vivo
selective T cell populations and by using a combination of other
immune-suppressive agents (24, 35, 36).

Both the induced clinical condition of immune-deficiency
early after allo- and haplo- HSCT and the delayed/aberrant IR
facilitate the occurrence of opportunistic infections that greatly
affect the quality and duration of life. Human cytomegalovirus
(HCMV) is one of the most aggressive opportunistic microbes
in allogeneic transplant including haplo-HSCT. Indeed,
while HCMV infection is often asymptomatic or associated
with mild flu-like symptoms in immune-competent hosts,
its reactivation or de novo infection occurs in more than
50% of patients undergone haplo-HSCT within the first 3
months after the procedure and it remains a major cause
of morbidity and mortality especially in TCD procedures
(22, 37–45). Although the efficacy of the novel antiviral therapies
decreased the incidence of HCMV infections/reactivations
(46), this still represents one of main complications of allo-
HSCT (47). In this regard, a careful selection of donors is
recommended particularly within the haplo-HSCT setting,
since their mismatch with the HCMV-serostatus of recipients
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TABLE 1 | Main results of different haplo-HSCT protocols with relative clinical outcomes and immunological recovery.

Sample size and

disease

haplo-HSCT platform Conditioning Relapse/NRM aGvHD/cGvHD Clinical outcomes Immune-reconstitution findings References

67 AML

37 ALL

G-CSF and TCD using

CD34+ cell

immunoselection

TBI

Thiotepa

Fludarabine

ATG

Engraftment: 99%

Relapse: 13,6%

NRM: 36.5%

aGvHD: 8%

cGvHD: 7.1%

EFS rate for AML: 48%

± 8%

EFS rate for ALL: 46%

± 10%

CD4+ T cell count: from 100 ± 40/mm3 to 200 ±

20/mm3 for 10 months;

CD8+ T cell count: 230 ± 80/mm3 day +60;

570 ± 80/mm3 on day +300;

CD16+ NK cell count: 400/mm3 stably by day +30

(5)

66 ALL

51 AML

47 CML

7 MDS

NMAC TCRep ATG

CsA (d −9)

MMF (d −9 to

+30)

Methotrexate (d

+1, +3, +6, +11)

Probability of relapse:

12% at 2 years for

standard-risk

Probability of relapse:

39% at 2 years

for high-risk

aGvHD (III–IV): 23%

cGvHD: 47%

DFS: 68% at 2 years

for standard-risk

DFS: 42% at 2 years

for high-risk

Neutrophil counts recover between 13 and 14 days;

quick recovery of NK cells;

CD8+ T-cell recovery starts at 2nd month after the

transplant;

B- cell reconstitution starts at 6th month;

CD4+ T-cell recovery is slower and can require till

1 year

(20, 21)

67 hematologic

malignancies

1 paroxysmal

nocturnal

hemoglobinuria

NMAC TCRep Cy (d −6, −5, +3,

or +3/+4),

fludarabine (d −6

to −2)

TBI (d −1)

tacrolimus

MMF

Probabilities of

relapse:51% at 1 year

NRM: 4% at days 100;

15% at 1 year

Graft failure: 13%

aGVHD (II-IV): 34% at

day 200

aGVHD (III-IV): 6% at

day 200

OS: 46% at 1 year;

36% at 2 years

EFS: 34% at 1 year;

26% at 2 years

The median times to neutrophil recovery (>500/µL):

day +15;

The median times to platelet recovery

(>20,000/µL): day +24

(22)

52 AML

16 ALL

15 MDS

Unmanipulated G-CSF

mobilized PB with in

vivo TCD

MAC or RIC

NRM: 14% (MAC) or

9% (RIC) at 3 years

Incidence of relapse:

44% (MAC) or 58%

(RIC) at 3 years

aGVHD (II-IV): 16%

(MAC) or 19% (RIC)

cGvHD: 30%(MAC) or

34% (RIC) at 3 years

OS: 45% (MAC) or

46% (RIC)

Platelet count: 20,000/ul at 17 days;

NK count: >100/ul from 3 months;

CD8 count: >200/ul from 3 months;

CD4+ count: >200/ul from at 1 year

(23)

57 AML

14 ALL

CML

1MM

8 HL

4 MDS

2 MFI

NHL

1 Plasma

Cell Leukemia

G-CSF primed,

unmanipulated BM

MAC = 68 or RIC = 29

TBF

ATG

Methotrexate

CsA

MMF

basiliximab

TRM: 36 ± 65% (MAC)

or 28 ± 9% (RIC)

relapse: 22 ± 6%

(MAC) or 45 ± 11%

(RIC)

100 day Cumulative

Incidence of aGvHD

(II-IV): 31 ± 5%

Cumulative Incidence

of overall cGvHD: 12 ±

4% at 2 years

OS: 48 ± 7% (MAC) or

29 ± 10% (RIC)

DFS: 43 ± 7% (MAC)

or 26 ± 10% (RIC)

100 day Cumulative Incidence of neutrophil

engraftment: 94 ± 3%

100 day Cumulative Incidence of platelet

engraftment: 84 ± 4%

(24)

80 acute leukemia

(AL) in pediatric

children

Negative depletion of

αβ T and B cells

MAC

ATG (d −3, −5) 2 graft failure

Relapse: 24%

NRM: 5%

aGVHD (I/II): 30%

cGVHD-free survival:

71% at 5 years

DFS: 71,4% (ALL) or

67.5% (AML)

CD3+ T cells/µL: 231 (1–1,618); CD4+ T cells/µL:

19 (0–442) and CD8+ T cells/µL: 24 (0–910)

γδ T cells/µL: 181 (1–1,335)

CD3-CD56+ NK cells/µL: 236 (47–1,813)

CD19+ B cells/µL: 0 (0–20)

Clinical trial:

NCT01810120

(25)

aGvHD, acute Graft vs. host disease; ALL, Acute lymphoid Leukemia; AML, Acute myeloid Leukemia; ATG, Anti-thymocyte globulin; BM, Bone marrow; CsA, Cyclosporine A; cGvHD, chronic Graft vs. host disease; CML, Chronic myeloid

Leukemia; Cy, Cyclophosphamide; d, days; DFS, Disease free survival; EFS, Event free survival; G-CSF, Growth colony stimulating factor; HL, Hodgkin lymphoma; MAC, Myeloablative conditioning; MDS, Myelodisplastic syndrome;

MFI, Myelofibrosis; NHL, Non-Hodgkin lymphoma; MM, multiple myeloma; MMF, Mycophenolate mofetil; NMAC, Non-myeloablative conditioning; NMR, Non relapse mortality; OS, Overall survival; PB, Peripheral blood; RIC, Reduced

intensity conditioning; TBI, Total body irradiation; TBF, Thiotepa, Busilvex, Fludarabine; TCD, T cell depletion; TCRep, T cell repletion. In immune-reconstitution findings column the cell counts are defined as mean ± SD (first row) or

mean (range) at 1 month (last row).
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greatly impacts the incidence and the virulence of HCMV
reactivation (47). In particular, HCMV-seropositive recipients
receiving a graft from HCMV-seronegative donors have
the highest risks to develop HCMV reactivations. On the
other hand, administering grafts from HCMV-seropositive
donors increases the degree of OS in HCMV-seropositive
patients receiving myeloablative conditioning (40). Hence,
also the type of conditioning regimens plays a role in HCMV
reactivations after allo-HSCT. The protective effect of HCMV-
seropositive donors toward HCMV-seropositive recipient is
also associated with the transfer of anti-HCMV specific T
cell immunity (48). The frequency of primary infections in
HCMV-seronegative recipients receiving a transplant from a
HCMV-seronegative donor is very low since the reactivating
viral strains generally origin from recipients, while their
control is mediated by donor-derived alloreactive immune
cells (45, 49, 50). However, a few other studies denied any
significant impact of donor serostatus on HCMV reactivation
in recipients undergone allo-HSCT (51, 52), thus leaving this
important matter open for further discussion and clinical
investigations. HCMV infections/reactivations also greatly
affects the pattern of IR of both adaptive (53, 54) and innate
immune cells (55, 56). Hence, it is conceivable that the kinetic
of ILCs, NK and γδ T cell IR after haplo-HSCT as well as
their effector-functions are somewhat influenced by HCMV
infections/reactivations (55–58).

INNATE LYMPHOID CELLS

ILCs are a heterogeneous population of non-B and non-T
lymphocytes that originate from common lymphoid progenitors.
Since they lack adaptive antigen receptors, ILCs are able to
rapidly produce and secrete pro-inflammatory and regulatory
cytokines in response to local injuries, inflammation, infections
or commensal microbiota perturbations (59–61). Similar to
T cells, ILCs have been grouped into cytotoxic and helper
lymphocytes and classified into three distinct sub-populations on
the basis of their cytokines production and of the transcription
factors involved in their development. These cell subsets are
named ILC1, ILC2, and ILC3 and functionally mirror the
CD4pos T helper (Th)1, Th2, and Th17 cells, respectively.
More recently, also NK cells have been grouped within ILC
family and resemble the functions of CD8pos cytotoxic T
cells (59, 62–65).

ILC1 are mainly involved in interferon-γ (IFN-γ) production
and represent potent effectors against bacterial and viral
infections (61, 66–68). Despite sharing these functions with NK
cells, ILC1 are currently considered a distinct subpopulation
in terms of phenotype, function and development. Indeed,
ILC1 are generally poorly cytotoxic and, unlike NK cells, are
found at high frequency in tonsil and gut epithelium (i.e.,
intraepithelial ILC1) (69). Instead, ILC1 are rare in peripheral
blood (PB) where they can be easily distinguished from NK
cells due to their lack of CD56 and CD94 surface expression
(63, 70, 71). ILC2 are also mostly tissue-resident lymphocytes

and their effector-functions are triggered by interleukin (IL)-
25 and IL-33 produced by epithelial cells or other immune
cells in response to parasite infections or to allergen exposure.
Following activation, ILC2 produce and secrete type 2 cytokines
including IL-4, IL-5, IL-9, and IL-13 (62, 72–75). Moreover,
ILC2 contribute to the resolution of inflammation by producing
amphiregulin (AREG), a member of the epidermal growth factor
that helps repairing damaged tissues (76). ILC3 are mainly
resident in the gut lamina propria but have been also found
in skin, lung and liver (77). Two different ILC3 subsets have
been identified based on the expression of the Natural Cytotoxic
Receptor (NCR) NKp44 in humans and NKp46 in mice. Both
NCRpos/ and NCRneg/ILC3 subsets are able to produce IL-17,
a cytokine crucial for fungal infection resistance. NCRpos/ILC3
can also secrete IL-22, an important cytokine that regulates
the homeostasis of gut epithelium, prevents the dissemination
of commensal bacteria and limits inflammatory response (78).
Another subset of lymphocytes grouped within ILC family
is represented by the so-called lymphoid tissue-inducer (LTi)
cells that are mainly involved in lymphoid organogenesis in
fetal life. However, LTi-like cells are present also in adult life
where they facilitate the generation of secondary lymphoid
organs (79). LTi/LTi-like cells also produce IL-22 and initiate
protective immune responses against extracellular bacteria.
However, these latter lymphocytes have been grouped separately
from ILC3 since they have a unique transcriptional profile
and are generated from distinct progenitors (80). Moreover,
LTi/LTi-like cells are endowed with specialized functions related
to adaptive immunity as they are involved in T and B cell
development (79).

Despite their differences in term of phenotype and functions,
several lines of evidence indicates that the helper-ILCs (i.e., ILC1,
ILC2, and ILC3) have high degrees of cell plasticity, as each
one of these three subsets can give rise to other members of
the same family if cultured with the proper cytokine stimulation
(81). Moreover, recent findings indicate that, although ILC1,
ILC2, and ILC3 are mainly tissue-resident, they might traffic
through the different organs by recirculating in the bloodstream.
Indeed, gut-resident ILC2 can migrate into the lung and other
peripheral tissues in response to helminthes or upon IL-25
stimulation to either fight the parasite infections or to contribute
to tissue repair (82). This experimental evidence suggests that
helper-ILCs, other than exerting anti-microbial responses and
tissue remodeling in those organs where they reside under
homeostatic conditions, can alsomediate a protective role against
tissue damage in different anatomic compartments following
exposure to inflammatory stimuli. In the context of allo-HSCT,
this phenomenon is highly relevant in the mucositis induced
by chemo/radiotherapies, in the development of GvHD and in
response to infections. However, little is known about the role(s)
played by ILCs in the pathogenesis of hematologic malignancies
as well as in the clinical outcomes of transplantation. Indeed, very
few studies have addressed the role of immune- reconstituting
ILC in the context of allo-HSCT (83), while their functions in
haplo-HSCT remain still completely unexplored. Thus, in the
next paragraphs we will summarize the evidence on ILCs in
allo-HSCT setting.
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Immune-Reconstitution of Innate
Lymphoid Cells
It has been recently disclosed that ILCs have a great clinical
impact in patients affected by Acute Myeloid Leukemia (AML)
either at disease onset or after chemo/radiotherapy and allo-
HSCT (84, 85). In particular, there is a great reduction of
circulating ILCs in AML, a phenomenon associated with a
relative increase of ILC1 and a decrease of NCRpos/ILC3. The
overall frequencies of PB NCRpos/ILC3 but not the ones of
ILC1 are restored to normal levels in AML responders to
chemotherapy. These quantitative changes of circulating ILCs in
AML patients mirror their impaired abilities in producing IFN-
γ and type 2 cytokines (85). Taken together, these data suggest
that either leukemia burden or disease relapse markedly affect
ILC development, a phenomenon also confirmed in vitro by
co-culturing ILC precursors with AML blasts (86).

It has been also reported that conditioning regimens prior
allo-HSCT deplete circulating ILCs that then undergo in
recipients through a slow process of IR taking at last 6 months
for a complete recover. In this setting, reconstituting ILCs
show an increased expression of markers associated with tissue
homing, such as the skin-homing receptors CLA and CCR10,
the gut-homing molecules α4β7 and CCR6, the activation/tissue-
residence marker CD69 and the cell proliferation nuclear protein
Ki-67 (84). After 3 months from the transplant, the levels of
circulating ILC2 are still strongly decreased compared to those of
healthy subjects, while NCRpos/ILC3 outnumber the other ILC
subsets (84). These data suggest that ILC3 play a major role in
ILC IR after allo-HSCT. In line with this working hypothesis, a
study showed that the high amounts of IL-22 produced by ILC3
can enhance both thymic regeneration and a more rapid T cell IR
in a IL2−/− mouse model receiving a TCD allo-HSCT (87).

It has been also reported that both conditioning regimens
and different source of HSCs affects ILC IR after the transplant.
This is of great importance in those children affected by severe
combined immune deficiency (SCID) and carrying mutations
of genes either encoding the common γ-chain subunit of IL-2
receptor or the tyrosine kinase JAK3. These patients lack all ILC
subsets and experience an effective T cell IR following allo-HSCT
only in the presence ofmyeloablative conditioning regimens (88).
Instead, the administrations of cyclosporine or corticosteroids
do not affect ILC IR (84). Another study showed in an in vitro
setting that ILC3 IR is hampered by both pre- and post-transplant
treatments with the mobilizing agent G-CSF (89). Moreover, it
has been also reported that the generation of ILCs (especially
NCRpos/ILC3) is much higher when culturing in vitroHSCs from
bone marrow (BM) and umbilical cord blood rather than their
counterparts from PB following mobilization with G-CSF (89).

Innate Lymphoid Cells and Graft vs. Host Disease
Several lines of evidence demonstrated that ILCs play a key role
in limiting the onset of GvHD after allo-HSCT. In particular, it
has been shown in murine models that ILC3 have a great impact
in protecting recipient gut epithelial cells from alloreactive
responses exerted by donor immune cells. This phenomenon is
mediated by the ILC3 high production of IL-22 (90). Indeed,
IL-22 deficient mice undergone allo-HSCT suffer from severe

intestinal GvHD and intestinal barrier disruption, while the
administration of IL-22 in transplanted wild type animals limits
the onset of intestinal GvHD and enhances both intestinal
stem cell recovery and epithelial cell regeneration (91). In
humans, increased frequencies of circulating NCRpos/ILC3 early
after allo-HSCT correlate with a lower incidence of intestinal
GvHD. Notably, the ability to secrete high amounts of IL-22
by NCRpos/ILC3 exerts a key role in the regeneration of the
mucosal gut barrier after immune depletion following allo-HSCT,
thus protecting from GvHD onset (92, 93). Moreover, higher
expressions on recipients’ circulating ILCs of both CD69 and
α4β7 markers before the transplant reduce the risk of developing
GvHD and can serve as good prognostic factors (84). Even
increased frequencies of CD69pos/ILC1 are associated with lower
incidence of severe cutaneous GvHD since these cells express
high levels of the skin homing markers CLA and CCR10. It
has been also reported in murine models that type 2 cytokines
play a protective role in GvHD development (92). Another
reported mechanism protecting from GvHD is the ability of
ILC2 to produce AREG that, in turn, boosts epithelial cell
regeneration after the tissue damage induced by the conditioning
regimens (76).

Innate Lymphoid Cells and Opportunistic Viral

Infections
Although the role of ILCs in controlling infections in immune-
competent individuals seem marginal, studies in immune-
deficient mice showed that these innate lymphocytes can fight
different pathogens (83, 94). However, very little if nothing is
known in regard to their functional role in allo- and in haplo-
HSCT setting. Since both T and B cell IR start to be effective and
functional relevant only after a few months after haplo-HSCT,
innate immune system certainly plays a key role in controlling
opportunistic infections early after the transplant (19, 48, 95, 96).
In this regard, while NK cells represent an immediate available
source of IFN-γ in the bloodstream, ILC1 can provide large
amounts of the same pro-inflammatory cytokine in tissues as
reported in murine models of CMV, influenza, and Sendai
infections (97, 98). Unlike ILC1, ILC2 are mainly involved in
tissue damage repair during the resolution of the inflammatory
process rather than in controlling the opportunistic infections
(76, 99). Indeed, the proliferation and effector-functions of ILC2
are inhibited by both type I and II IFN that are largely produced
during the course of viral infections (75, 100). Thus, high levels of
IFN-γ produced by tissue-residence ILC1 not only control viral
replication but also limit the dysregulation of ILC2 homeostasis.

NATURAL KILLER CELLS

NK cells are innate lymphocytes playing a major role in the
immune-surveillance mainly against cancer and viral infections
without a prior antigen sensitization and through the signal
delivered by large families of inhibitory and activating NK cell
receptors (aNKRs and iNKRs) (101).

iNKRs recognize, as their natural ligands, “self ” HLA-I
molecules expressed on the surface of all nucleated cells, ensuring
both the recognition of autologous targets and a certain threshold
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of immunologic tolerance especially at tissue levels. On contrary,
tumor-transformed, viral infected, and heterologous cells lack
or have reduced or express heterologous HLA-I molecules,
respectively. NK cells can recognize these abnormalities on “non-
self ” and threatening targets due to the impaired or missing
binding with iNKRs, whose downstream signaling is normally
dominant over the activating stimuli driven by aNKRs in NK
cells (“missing-self hypothesis”). The absence of this dominant
inhibition shifts the balance toward NK cell activation via the
engagement of aNKRs that binds their putative ligands on
heterologous cell targets. These mechanisms trigger NK cell
release of cytotoxic granules (i.e., perforin and granzymes)
and secretion of anti-viral/pro-inflammatory cytokines for the
clearance of both tumor and viral-infected cells (102–105).

The repertoire of NKRs is highly variable among different
individuals and in different anatomic compartment and it is
influenced by genetic factors, environmental exposure to non-
self targets and tissue microenvironments (106, 107). Moreover,
the phenotypic profiles of NK cells also depends by the so
called “education/licensing” process that dictates the avidities of
the interactions between iNKRs and their putative HLA ligands
(108). The main classes of NKRs specific for HLA-I molecules
include Killer Ig-like Receptors (KIRs) that recognize different
HLA-A, -B, and -C allotypes (109) as well as the C-type lectin
receptors CD94/NKG2A and CD94/NKG2C that bind the non-
classical HLA-E molecules (110, 111). KIRs (known as CD158
molecules) represent a highly polymorphic family of NKRs that
serve as regulators of development, tolerance and activation
of NK cells (112). Interestingly, KIR superfamily includes
both activating and inhibitory forms sharing homology in the
extracellular domain, while differing for their cytoplasmatic tails.
Activating KIRs (aKIRs) are characterized by a short intracellular
domains that interact with adaptor signaling molecules carrying
an Immunoreceptor Tyrosine-Based Activating Motif (ITAM)
such as DAP-12 (113). On contrary, long cytoplasmatic tails
containing Tyrosine-Based Inhibitory Motif (ITIM) distinguish
inhibitory receptors (iKIRs) (109, 113, 114).

Similarly, the inhibitory C-type lectin receptor CD94/NKG2A
is characterized by long intracellular tail containing ITIMmotifs,
while the trans-membrane domain of CD94/NKG2C interacts
with the ITAM-containing adaptor molecule DAP-12 driving NK
cell activation (115, 116). Among the other aNKRS driving the
activation of NK cells there are the NCRs NKp30, NKp44, NKp46
together with the co-receptor NKp80 and 2B4 (117, 118).

CD16 (FCγRIII) is an immunoglobulin (Ig) receptor that,
upon binding with the Fc portion of IgG antibodies, induces
series of potent activating signals through the adaptor molecules
CD3ζ and FcεRγ containing the activation ITAM motif.
This down-stream pathway mediates the so-called antibody-
dependent cell mediated cytotoxicity (ADCC) (119). The
sequential expressions of CD16 together with KIRs, NCRs
and C-type lectin receptors characterize the developmental
stages, the effector-functions and the education of NK cells
(120). The main steps of NK cell ontogenesis take place in
BM niche starting from CD34pos HSCs but, differently from
helper ILCs, these innate lymphocytes are mainly enriched
in PB (121). Indeed, under homeostatic conditions, NK cells

account up to 10% of total circulating lymphocytes and
represent an heterogeneous population that can be subdivided
into two main subsets according to the surface expression
of CD56 and CD16 (122). CD56bright/CD16neg−low (CD56br)
NK cells represent 5–15% of total circulating NK cells and
are considered regulatory lymphocytes, as they produce high
amounts of chemokines/cytokines and are involved in the cross-
talk with other immune cells such as dendritic cells (DCs)
and monocytes/macrophages (123–125). On the other hand,
CD56dim/CD16pos (CD56dim) NK cells are the largest NK cell
subset in PB (up to 95%) and mainly exert cytototoxic functions
via the secretion of lytic granules (104, 126–128). CD56br

and CD56dim are also considered two sequential stages of NK
cell maturation with the latter subset being the terminally-
differentiation one characterized by shortest telomere length
(120, 121, 129, 130). CD56br NK cells usually show high
levels of CD94/NKG2A, while almost lack KIRs (131). On
contrary, CD56dim NK cells acquire KIR expression and loose
CD94/NKG2A, thus being fully licensed end-stage effector cells
(115, 132). Despite intense efforts in better disclosing human
NK cell ontogenesis, the mechanisms tuning the appearance of
NKRs and the different NK cell developmental stages remain to
be elucidated (120).

NK Cell Immune-Reconstitution
Given the ability of NK cells to promptly mount effective
alloreactive responses against tumor cells and pathogens, their
kinetic and quality of IR certainly play important roles
in determining the clinical outcome of allo- and haplo-
HSCT. Indeed, delayed recoveries of these donor-derived
alloreactive innate lymphocytes result in poor clinical outcomes
of transplants (133, 134). As a matter of fact, NK cells are the first
lymphocytes to appear soon after allo-and haplo-HSCTs and are
essential for a better engraftment, to avoid tumor relapse and to
limit the onsets of both GvHD and opportunistic viral infection.
Moreover, the possibility to follow human NK cell IR in this
unique in vivo setting is key in disclosing the several unknown
mechanisms and patterns of their ontogenesis and differentiation
(19, 135, 136). Regardless of the graft sources, NK cell chimerism
in recipient is completely donor dependent after one month from
haplo-HSCT. However, although the frequencies and absolute
counts of circulating NK cells reach normal levels after few
weeks post-transplant, their maturation and achievement of
efficient effector-functions takes much longer (6, 15, 19, 130,
135, 137). Similar results have been observed also in recipients
receiving HLA-matched HSCT, where reconstituting NK cells
remain immature for more than 6 months after the infusion
of HSCs. These phenomena are associated with functional
defects that do not ensure an optimal protection against HCMV
infections/reactivations, GvHD onset and tumor relapse in the
first year after HSCT (138).

Reconstituting NK cells derive from CD34pos progenitors
rather than from already mature NK cells infused with the
graft. Indeed, the PT-Cy eliminates proliferating alloreactive NK
cells in haplo-HSCT as they have an even higher proliferation
rate compared to T cells in the first days after the graft
infusion and before the Cy administration. The 2nd wave of
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proliferating donor-derived NK cells occurs after 15 days from
haplo-HSCT and these new innate lymphocytes display an
immature phenotype, thus confirming that they are de novo
generated from donor HSCs (96). Indeed, CD56br NK cell subset
appears much earlier that terminally differentiated CD56dim,
while the NK cell surface distribution of both CD56 and
CD16 return similar to that of healthy donors only several
months later (6, 19, 96, 120, 139–141). Unexpectedly though,
we recently reported that the subset of reconstituting donor-
derived NK cells expanded at the highest frequency in the first
weeks after haplo-HSCT is characterized by an unconventional
CD56dim/CD16neg−low phenotype (unCD56dim). This neglected
NK cell population is present at very low frequency under
homeostatic conditions, but plays a key role in the IR and in
the clinical outcome of haplo-HSCT. In particular, although
armed to be cytotoxic and carrying large amounts of perforin
and granzymes, unCD56dim NK cells are highly defective in
their killing activities due to the transient high expression
of CD94/NKG2A receptor. Hence, this C-lectin type receptor
functions as an inhibitory checkpoint that renders donor-
derived unCD56dim NK cells anergic against residual tumor cells,
recipients T cells and Antigen Presenting Cells (APC). This NK
cell status early after haplo-HSCT makes recipients more at
risk to undergo tumor relapse and to develop acute (a) GvHD.
Similar transient high surface levels of CD94/NKG2A have
been observed also on terminally-differentiated and cytotoxic
CD56dim NK cells that start to reconstitute from the 2nd

month after the transplants and subsequent to the appearance
of unCD56dim NK cells (19, 135, 139, 142). This gained
knowledge paved the ground for a novel therapeutic approach
targeting CD94/NKG2A in order to unleash NK cell cytotoxicity
in haplo-HSCT.

NK Cells and Graft vs. Host Diseases
The HLA-mismatch between donor and recipient cells allow
donor-derived and alloreactive NK cells to both limit the onset
of GvHD and to prevent graft rejection in allo- and haplo-
HSCT (143, 144). Indeed, several studies directly correlated
an efficient NK cell IR in allogeneic transplant with the
reduced incidence of relapse as well as with decreased rates
of opportunistic infections in the presence of lower TRM and
increased OS (134, 145, 146). In contrast, low frequencies of
NK cells in the first weeks after allo-HSCT are associated
with increased non-relapse mortality, shorter OS and higher
degrees of opportunistic infections (133, 145). This clinical
evidence underline the importance of NK cell IR in shaping
the clinical outcomes of allogeneic transplants and its possible
exploitation for developing novel therapeutic strategies (2,
135, 147). However, the exact NK cell-mediated mechanism
preventing GvHD onset are not yet fully elucidated. One working
hypothesis is that alloreactive NK cells could limit GvHD by
killing donor T cells via the NKG2D-mediated recognition of
stress-induced NKG2D-ligands on activated T lymphocytes (148,
149). Another study claimed that high frequency of NK cells in
the first weeks after HSCT might prevent T cell proliferation
through IL-10 production (150). Conversely, it has been also

reported that NK-cell production of pro-inflammatory IFN-
γ could promote tissue damage and consequent GvHD (151).
Notably, also the quality of NK cells IR greatly affects the
occurrence of GvHD after allo-HSCT. Indeed, higher surface
levels of CD94/NKG2A on NK cells have been reported to limit
aGvHD in vivo by inhibiting T cell proliferation and activation
(152). Furthermore, increased frequencies of CD94/NKG2Cpos

NK cells are associated with a lower incidence of GvHD in
allo-HSCT (153).

Even the NK cell maturation stage is important, as
a recent report showed that those haplo-HSCT recipients
developing GvHD display a more differentiated and activated
NK cell phenotype (154). This evidence has been also further
corroborated by other studies reporting that a reduction of
circulating CD56br NK cells in the first 2 months after allo-HSCT
is associated with higher incidence of aGvHD. This latter clinical
correlation was so evident in the recruited cohorts of patients
receiving allo-HSCT to be proposed as an early prognostic factor
to predict GvHD (141, 143). Moreover, a higher ratio of T/NK
during IR after phase correlates with a higher risk to develop both
acute and chronic GvHD in haplo-HSCT (8).

Remarkably, the potential clinical benefits of reconstituting
NK cells in haplo-HSCT might be influenced by pre- and post-
conditioning treatments. In this regard, many studies performing
adoptive transfer of NK cells after haplo-HSCT showed a
reduced risk in aGvHD induction (151). Moreover, GvHD
prophylaxis with Mycophenolate Mofetil has been demonstrated
to inhibit NK cell proliferation and effector-functions (155, 156),
thus affecting the NK cell mediated control of GvHD and
opportunistic infections.

NK Cells and Viral Infections
The occurrence of an optimal quantitative and qualitative NK
cell IR in haplo-HSCT is key for hampering the onset of life-
threatening opportunistic infections. Indeed, lower frequencies
of circulating donor-derived NK cells are associated with
higher susceptibilities to develop viral infections, mainly HCMV
(157). In turn, HCMV infections/reactivations are also able to
influence NK cell homeostasis and differentiation by inducing
the expansion of the CD56neg/CD16pos (CD56neg) NK cell subset
(158, 159). While poorly represented in healthy individuals,
CD56neg NK cells are present at high frequencies in active
and chronic HIV-1 and HCV infections (58, 160, 161) and
display impaired effector-functions due to their abnormal
repertoire of NKRs (162, 163). Indeed, CD56neg NK cells
are defective in the clearance of viral infections and express
markers of cell exhaustion of their surface (164, 165). However,
the ontogenesis and the impact of CD56neg NK cells in
determining the clinical outcomes of allo- and haplo-HSCT
are still being debated. Recent studies revealed that HCMV
infections/reactivations are beneficial rather than detrimental
on NK cell recovery upon haplo-HSCT. In particular, it
has been reported that this virus can accelerate NK cell
maturation and shape their NKR repertoire in haplo-HSCT
by inducing the expansion of terminally-differentiated and
alloreactive CD56dim NK cells which, in turn, exert potent
GvL effects (166). Indeed, upon HCMV infections/reactivations,
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CD56dim NK cells acquire a mature NKG2Cpos/CD57pos/
NKG2Aneg/KIRpos phenotype, thus becoming fully licensed
to efficiently exert anti-viral and anti-tumor properties (i.e.,
production of IFN-γ and Tumor Necrosis Factor (TNF)-α) (167–
169). On the contrary, NK cells from haplo-HSCT patients
that do not experience HCMV infections/reactivations retain
an immature phenotype characterized by high expressions of
CD94/NKG2A (170).

These HCMV-induced NKG2Cpos/CD57pos/NKG2Aneg/
KIRpos/CD56dim NK cell subset can persist even after 1 year
from haplo-HSCT and show higher effector-functions when re-
encountering the same antigen or following a proper activation
with specific pro-inflammatory cytokines. These data suggest
that HCMV infections/reactivations drive the expansion of
NK cells with adaptive properties (167, 170–172). Similar
features have been reported in murine models in vivo, where
the murine CMV (MCMV) infection is responsible for the
expansion of the so-called “memory-like” NK (ml-NK) cells
that specifically recognize the viral glycoprotein m157 through
the activating receptor Ly49H (173, 174). However, neither a
univocal phenotype nor the receptor(s) able to specifically bind
HCMV antigens have been clearly defined in human ml-NK
cell and this is a matter currently being highly investigated in
several models in vitro and ex vivo. In this regard, NKG2C has
been proposed as the best putative candidate binding HCMV
antigens, since those NK cells expressing this aNKR are the ones
preferentially expanded following this viral infection (175, 176).
In this regard, it has also been reported that the HCMV-encoded
UL40 protein stabilizes HLA-E surface expression on target
cells, thus favoring the recognition of viral-infected via the
NKG2C/HLA-E interactions (159, 177). Moreover, another
study claimed that proliferation/expansion of NKG2Cpos NK
cells requires additional signaling pathways including the one
mediated by IL-12 produced by autologous monocyte (178).
Despite all the above-mentioned experimental evidence, the
primary role of NKG2C in the homeostasis and functional
relevance of ml-NK cells is still unclear. Indeed, other subsets
of NKG2Cneg/KIRpos NK cells are also expanded in response to
HCMV infection and they are able as well to recognize viral-
infected cells (106), thus suggesting the existence of additional
aNKRs (i.e., KIRs) involved in the expansion of human ml-NK
cells (179). Furthermore, NKG2C-deficient individuals can
mount equivalent adaptive NK cell response against HCMV
(180). In agreement, in patients receiving cord blood grafts
from NKG2C−/− donors, HCMV infection is still able to
promote NK cell maturation in the absence of this activating
C-lectin type molecule. This latter experimental evidence further
supports the current working hypothesis that other NKRs
such aKIRs play a central role in the generation of ml-NK
cells (181).

More recently, other studies demonstrated that the generation
of ml-NK cells is associated with epigenetic reprogramming
through a specific reconfiguration of adaptormolecules including
tyrosine kinase SYK, the intracellular adaptor EAT-2, and the
transmembrane adaptor protein FcεRγ. The gene expression
of these three factors is regulated by the transcription
factor promyelocytic leukemia zinc finger (PLZF), which is

downregulated in the majority of ml-NK cells upon HCMV
infections. As a matter of fact, the reduced expression of at
least one of the above-mentioned signaling proteins is observed
in the 50% of the HCMV-seropositive donors. Moreover, the
reduced levels of PLZF also decreases the expression of IL-
12 and IL-18 receptors, thus lowering NK cell responsiveness
to these pro-inflammatory cytokines. The lack of FcεRγ, SYK,
and EAT-2 in mature CD56dim NK cells is also correlated with
the expansion of NKG2Cpos NK cells upon HCMV infection
(182–185). In this regard, CD56neg NK cells expanded in
those patients receiving umbilical cord blood transplant and
experiencing HCMV infection/reactivation are characterized
by the downregulation of FcεRγ (186). In addition to the
downregulation of PLZF, FcεRγ, SYK, and EAT-2, ml-NK
cells share with cytotoxic CD8pos T cells similar genome-wide
DNA methylation patterns (182), thus suggesting the existence
of epigenetic determination programs associated with HCMV
infections. Notably and similar to memory Th1 lymphocytes, the
increased production of IFN-γ by ml-NK cells correlates with a
stable demethylation of conserved non-coding sequence 1 of the
IFNG locus (187).

Although there is a phenotypic heterogeneity of ml-NK
cells following HCMV exposure, their rapid maturation in
response to the viral challenges could favor not only the
control of infection, but also NK cell alloreactivity against
residual tumor cells (188). Hence, HCMV infection can represent
a “natural” tool to generate ml-NK cells to then use for
adoptive cellular immunotherapies (132, 189, 190). In this
regard, newborn mice challenged with MCMV showed that
ml-NK cells undergo expansion, release cytokines and provide
a protective anti-tumor immune response in adoptive cell
transfers (173). In humans, the expansion and the functional
relevance of NKG2Cpos ml-NK cells in HSCT recipients
experiencing de novo viral infection or undergone HCMV
reactivations also depends from donor serostatus. Indeed, the
in vivo expanded NKG2Cpos ml-NK showed higher cytokine
productions in those recipients receiving grafts from HCMV-
seropositive donors compared to their counterparts originated
from grafts of HCMV-seronegative donors. However, NKG2Cpos

ml-NK cells also expand in the absence of detectable HCMV
viremia when both donor and recipient are HCMV-seropositive.
These data suggest that also human NKG2Cpos ml-NK cells
are transplantable and require exposure to either active or
latent (subclinical) HCMV antigens in the recipients for the
expansion of alloreactive NK cells from seropositive donors
(191). Moreover, NKG2Cpos ml-NK cells are able to produce
high levels of IFN-γ following in vitro co-culture with K562
erytroleukemia cell line, thus supporting their high potential
in GvL effect (192). Consistent with these findings, the
adoptive transfer of donor-derived or cytokine-induced (i.e.,
activation with IL-12, IL-15, IL-18) ml-NK cells induces in the
recipients affected by refractory AML the expansion of NK cells
producing high levels of IFN-γ when encountering tumor cell
targets (172).

Taken together these results suggest that ml-NK cells can
be potentially exploited in order to both better control HCMV
infection/reactivation and to enhance GvL (193).
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γδ T CELLS

γδ T cells are a group of unconventional T cells that bridge
the gap between innate and adaptive immunity. Similar to
αβ T cells, γδ T cells develop in the thymus and express a
somatically rearranged T cell receptor (TCR) consisting of a
TCR-γ and a TCR-δ chains (65, 194–196). In humans, γδ T cells
normally account for the 1–10% of circulating T lymphocytes,
while in mucosal tissues and skin they constitute the major
subset of resident T cells (194, 196). Different γδ T cell subsets
can be identified based on the Vδ expression (Vδ1, Vδ2,
Vδ3, and Vδ5) (195, 197). Under homeostatic conditions, 95%
of circulating γδ T cells express Vδ2 TCR paired with Vγ9
chain, whereas in mucosa and skin γδ T cells mostly express
Vδ1 or Vδ3 TCRs paired with various Vγ chains (195, 198–
200).

γδ T cells are rapid responders to pathogens and tumor-
transformed cells, since they do not require further peripheral
maturation or extensive clonal expansion to initiate their
effector-functions (194). Therefore, γδ T cells allow a prompt
immune-surveillance in a MHC-independent manner through
the recognition of a diverse array of antigens including peptides,
sulfatides and phospholipids (194, 196, 199, 201, 202). Moreover,
the γδ TCR can bind CD1d expressed by APC loaded with
glycolipids and microbial lipids (203). In addition to their TCR,
γδ T cells express an array of pattern-recognition receptors,
such as toll-like receptors (TLRs) (201, 204), activating and
inhibitory NKRs (201, 205, 206), the NCRs NKp30 and NKp44
(206, 207), the aNKR DNAM-1, the Fc receptor CD16 as well
as the C-type lectin-like receptors NKG2D and CD94/NKG2A
(195, 206, 208, 209). The presence of such receptor repertoire
suggests a tight regulation of the TCR-mediated activity
through an interplay between activating and inhibitory signaling
downstream pathways (206).

Upon their activation, γδ T cells secrete high levels
of Th1 cytokines (i.e., IFN-γ and TNF-α) modulating the
responses of other neighboring immune effectors which, in
turn, induce monocyte-derived DC maturation/activation and
enhance antigen-specific αβ T cell responses (194, 195).
Moreover, γδ T cells are able to directly lyse target cells by
the release of granzymes and perforin and the engagement
of FAS and TRAIL death receptors (195, 197, 210). As
consequence of their high heterogeneity, γδ T cells are
implied in diverse biological functions. First, these cells
exert anti-tumor activities against various types of solid
tumors and hematological malignancies (211). Since they
represent the most abundant population among epithelial-
resident lymphocytes in mucosal tissues and skin, γδ T
cells are also the first line of defense against pathogens in
these anatomic compartments (211, 212). Finally, several γδ

T cell subtypes are involved in the induction of transplant
immune-tolerance both in solid organ transplantation and in
allo-HSCT (211, 213).

γδ T Cell Immune-Reconstitution
The growing interests on the role of γδ T cells IR in HSCT
arose from their potential ability to perform GvL effects and

fight opportunistic infections in the absence of GvHD (205,
211, 214). Indeed, pediatric and adult patients undergone haplo-
HSCT and showing a long-term disease-free survival (DFS)
were coupled with high frequencies of circulating γδ T cells
(215, 216). γδ T cells are also the predominant T cell population
reconstituting early after haplo-HSCT, with the Vδ2 cells showing
a faster recovery compared with B and T lymphocytes in
the PB of recipients receiving αβ and CD19 depleted grafts.
In particular, it has been shown that the recovery of the
complimentary determinant region 3 (CDR3) of the TCR δ

chain is almost completed after 2 months from haplo-HSCT
(25, 28, 29, 48, 95, 217). In the context of allo-HSCT, the majority
of both donor-derived Vδ1 and Vδ2 cell subset recovering in
the first weeks have a CD27pos/CD45RAneg Central Memory
(CM) phenotype and contribute to ensure an early protection
against viruses, bacteria and residual tumor cells that survived
the conditioning regimes (65). The current working hypothesis
of a peripheral expansion of graft-derived mature γδ T cells is
further supported by experimental evidence indicating that the
same γδ T cell clones found in the donor are present in the
recipient after the transplant (218). Later on, within a range
of 14–60 days post-transplantation, the frequency of CM γδ

T cells progressively decreases and it is counterbalanced by
increase frequencies of naïve CD27pos/CD45RApos γδ T cells
originated from donor infused HSCs (28, 65). This latter de novo
generation of reconstituting γδ T cells is confirmed by the fact
that, while the repertoire of the γ and δ chains is qualitatively
comparable between donors and recipients, their clonotype is
different (57).

γδ T cell IR after allo- and haplo-HSCT can be influenced
by different variables including the conditioning regimen,
the administration of immuno-suppressive agents, the GvHD
prophylaxis and the onset of opportunistic infections (211). In
this regard, it has been reported that stem cell mobilization with
G-CSF in allo-HSCT induces higher frequencies of Vδ1 T cells
endowed with potent alloreactivity against AML blasts (214).
Moreover, also donor/recipient characteristics (i.e., gender, age,
disease type, and graft source) affect γδ T cell IR too. Indeed,
patients receiving a transplant from either matched related
(MRD) or haplo-related donors have significant differences in
the recovery of γδ T cells compared to matched unrelated donor
(MUD) (215).

γδ T Cells and Graft vs. Host Diseases
It has been reported in allogenic HSCT that patients developing
aGvHD show an increased frequency of reconstituting γδ T
cells (219). However, this evidence has been denied by more
recent findings indicating that absolute counts of γδ T cells
do not influence the incidence and the severity of GvHD (65,
215). Instead, higher frequencies of donor-derived γδ T cells
in the grafts seem to protect against the development of severe
aGvHD (220). Similarly, patients receiving a TCD haplo-HSCT
and showing increased frequencies of γδ T cells undergo longer
DFS and OS compared to those with normal/decreased immune-
reconstituting γδ T cells. These data corroborate the current
consensus stating that γδ T cells can facilitate GvL effect without
inducing GvHD (196, 216, 221, 222).
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γδ T Cells in Viral Infections
The occurrence of high frequencies of reconstituting γδ T cells
early after haplo-HSCT also protect from bacterial infections and
show a decreased incidence of both viral and fungal infections
(215). Indeed, pediatric patients, receiving αβ TCD grafts in
haplo-HSCT setting have both reduced numbers of γδ T cells
at day 30 post-transplant and higher incidence of HCMV
infections/reactivations (65). At the same time, opportunistic
infections can also shape the homeostasis and maturation of
these cells (28, 55, 57, 195, 223). Indeed, patients undergoing
allo-HSCT and experiencing HCMV reactivations display a
preferential proliferation of specific Vδ1 and Vδ3 T cell clones,
thus suggesting that γδ T cells are capable of adaptive responses
through an oligoclonal selection of specific TCR repertoires
(57). In particular, HCMV reactivation in haplo-HSCT patients
has been associated with a specific expansion of terminally
differentiated cytotoxic Vδ1 T expressing the effector memory
CD45RApos/CD27neg (TEMRA) phenotype (28). This HCMV-
induced expansion of TEMRA γδ T cells also enhance their anti-
tumor functions both against hematological (28, 223) and solid
(224) tumor cell targets in vitro. Taken together, these results
suggest that the adoptive transfer of HCMV-specific Vδ1-donor
γδ T cells can be used as a possible alternative to the common
infusion of HCMV-specific αβ T cells (225). Indeed, this novel
approach could promote viral immunity, protect from HCMV-
related complications while contribute to prevent from leukemic
relapses (214).

NOVEL THERAPEUTIC STRATEGIES TO
IMPROVE IR UPON HSCT

The early protection and the limited side effects following
HSCT render innate immune system a particularly attractive
tool for adoptive cell therapy strategies. In this context, several
approaches have been recently developed to improve NK and γδ

T cell IR and to enhance their reactivity against cancer. These
new therapeutic strategies include the targeting of checkpoint
inhibitors, the stimulation with activating cytokines and genetic
engineering of immune cells (Table 2) (Figure 1).

CHECKPOINT INHIBITOR

NK cells and γδ T lymphocytes share several receptors including
NCRs and iNKRs as CD94/NKG2A (195, 206, 209). The use
of monoclonal antibodies (mAbs) against inhibitory immune
checkpoints represents a promising therapeutic approach for
both hematologic and solid tumors (228, 229). Of particular
relevance, the blockade of NKG2A binding to HLA-E has
been demonstrated to unleash the effector-functions of both
T and NK cells in different kind of tumors (230–233). These
encouraging results have driven the development of humanized
IgG4 anti-NKG2A mAb (IPH2201, monalizumab), currently
under investigation in many clinical trials for the treatment of
solid tumors (clinicaltrials.gov) (Table 2). Conversely, only one
phase I clinical study is now investigating the potential role
of IPH2201 in hematologic malignancies after HLA-identical

transplantation (NCT02921685). In this regard, our recent data
demonstrate that there is a clear clinic indication to extend the
IPH2201 administration early after haplo-HSCT, thus targeting
those hypo-functional NK cells expressing high levels of NKG2A
with the aim of enhancing their alloreactivity (19). Moreover,
given the fast recovery of γδ T lymphocytes following haplo-
HSCT, the post-transplant infusion of IPH2201 could also
positively impact their anti-tumor responses in synergy with NK
cells before the acquisition of a full functional competence of the
adaptive immune response (i.e., T and B cells).

Among other receptors regulating NK cell missing-self
responses, KIRs cover an important place. Indeed, their clinical
impact have been firstly shown in AML patients undergoing
haplo-HSCTwhere themismatch between KIRs and their ligands
in the recipient has been exploited to promote alloreactive NK
cell-mediated GvL effect (135). In this context, therapeutic anti-
KIR mAb (IPH2101, 1-7F9, lirilumab) has been generated and its
administration showed positive outcomes in AML and multiple
myeloma (MM) patients (Table 2) (226, 227).

CYTOKINES

As anticipated, NK cell anti-tumor responses are finely governed
by an array of NKRs tuning their balance between inhibition and
activation. This gained knowledge allowed to implement several
protocols of in vitro NK cell manipulation that use cytokines to
regulate the aNKR repertoire, thus boosting their killing ability
against tumor targets (Table 2).

IL-2 and IL-15 represent the first molecules used to induce
the proliferation and increase the cytotoxic potential of both
T and NK cells for adoptive cell transfer therapies in different
tumor settings (234). Later on, IL-21, another cytokine involved
in NK cell maturation (235) also gained clinical relevance for the
treatment of hematologic malignancies. Indeed, a recent phase I
clinical trial using K562-based feeder cells expressing membrane-
bound chimeras of IL-21 (mbIL21) was conducted in patients
affected by AML/myelodysplastic syndrome and demonstrated
that the infusion of ex vivo–expanded NK cells from BM
haplo-donor could control tumor relapse without major toxicity
(236). Other clinical trials exploiting the same technology are
currently ongoing for AML in haplo-HSCT setting (Table 2)
(NCT02809092, NCT01787474, NCT01904136). In order to
optimize NK cell expansion and effector-functions, other
experimental approaches also tested the combination of different
cytokines. In particular, the stimulation with IL-15, IL-12, and
IL-18 together drive the expansion of a particular subset of NK
cells displaying adaptive traits similar to those of ml-NK cells
re-challenged by HCMV (172). The adoptive transfer of these
donor-derived and cytokine-induced ml-NK cells in patients
affected by refractory AML is associated with higher levels of
IFN-γ encountering and eliminating tumor cell targets (172).
Two clinical trials are currently administering cytokine-induced
ml-NK cells in AML patients undergone haplo-HSCT (Table 2)
(NCT02782546, NCT01898793).

The combination of IL-2 and IL-15 either alone or in synergy
with other stimulant agents have been extensively used also to
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TABLE 2 | Clinical trials targeting NK/γδ T cells in HSCT to cure patients with hematologic malignancies.

Therapeutic

approach

Study title Study

phase/

status

Hematologic disease

investigated

Cell sources/

targets

Drug/CAR

construct

NCT number

Blocking mAbs Study of a humanized antibody initiated 2

months After an HLA matched allogenic

stem cell transplantation

Phase I/

recruiting

Hematologic malignancies

(AML, ALL, MDS, MM, CLL,

CML, myeloproliferative

neoplasm, HD, NHD)

T, NK Anti-NKG2A mAb,

IPH2201,

monalizumab

02921685

Blocking mAbs Combination study of IPH2201 with

Ibrutinib in patients with relapsed,

refractory, or previously untreated chronic

lymphocytic leukemia

Phase I-II/

active, not

recruiting

Relapsed and refractory

CLL

T, NK Anti-NKG2A mAb,

IPH2201,

monalizumab

02557516

Blocking mAbs Study on the anti-tumor activity, safety,

and pharmacology of IPH2101 in patients

with smoldering multiple myeloma

Phase II/

completed with

results (226, 227)

Smoldering MM NK Anti-KIR mAb,

IPH2101,

Lirilumab

01222286

Blocking mAbs Evaluation of activity, safety and

pharmacology of IPH2101 a human

monoclonal antibody in patients with

multiple myeloma

Phase II/

completed with

results (226, 227)

MM NK Anti-KIR mAb,

IPH2101,

Lirilumab

00999830

Blocking mAbs A safety and tolerability extension trial

assessing repeated dosing of anti-KIR

(1-7F9) human monoclonal antibody in

patients with acute myeloid leukemia

Phase I/

completed

AML NK Anti-KIR mAb,

IPH2101,

Lirilumab

01256073

Cytokines and

drug stimulation

Interleukin-21 (IL-21)- expanded natural

killer cells for induction of acute myeloid

leukemia

Phase I-II/

recruiting

AML NK IL-21 02809092

Cytokines and

drug stimulation

Donor natural killer cells in treating patients

with relapsed or refractory acute myeloid

leukemia

Phase I-II/

recruiting

AML NK IL-21 01787474

Cytokines and

drug stimulation

Natural killer cells before and after donor

stem cell transplant in treating patients

with acute myeloid leukemia,

myelodysplastic syndrome, or chronic

myelogenous leukemia

Phase I-II/

recruiting

AML, MDS, CML NK IL-21 01904136

Cytokines and

drug stimulation

Cytokine induced memory-like NK cell

adoptive therapy after haploidentical

donor hematopoietic cell transplantation

Phase II/

recruiting

AML NK IL12-IL15-IL18 02782546

Cytokines and

drug stimulation

Cytokine-induced memory-like NK cells in

Patients With Acute Myeloid Leukemia

(AML) or Myelodysplastic Syndrome (MDS)

Phase I–II/

recruiting

AML NK IL12-IL15-IL18 01898793

Cytokines and

drug stimulation

Zoledronic acid in combination with

interleukin-2 to expand Vγ9Vδ2T cells

after T-replete haplo-identical

allotransplant

Phase I/

recruiting

Hematologic malignancies γδ T Zol+IL2 03862833

Cytokines and

drug stimulation

Expanded/activated gamma delta T-cell

infusion following hematopoietic stem cell

transplantation and post-transplant

cyclophosphamide

Phase I/

not recruiting

AML, CML, ALL, MDS γδ T CliniMACS-

Prodigy

technology

03533816

Genetic

engineering

Genetically modified haploidentical natural

killer cell infusions for B-lineage acute

lymphoblastic leukemia

Phase I/

completed

ALL CAR-NK Anti-CD19-BB-

zeta

00995137

Genetic

engineering

Pilot study of redirected haploidentical

natural killer cell infusions for B-lineage

acute lymphoblastic leukemia

Phase I/

suspended

ALL CAR-NK Anti-CD19-BB-

zeta

01974479

Genetic

engineering

Umbilical and Cord Blood (CB) derived

CAR-engineered NK cells for b lymphoid

malignancies

Phase I–II/

recruiting

ALL, CLL, NHL CAR-NK Anti-CD19-CD28-

zeta-2A-iCasp9-

IL15-transduced

CB NK cells

03056339

ALL, Acute lymphoid Leukemia; AML, Acute myeloid Leukemia; CB, Cord blood; CLL, Chronic lymphoid Leukemia; CML, Chronic myeloid Leukemia; HL, Hodgkin lymphoma; IL,

interleukin; MDS, Myelodisplastic syndrome; NHL, Non-Hodgkin lymphoma; mAb, monoclonal antibody; MM, multiple myeloma; Zol, Zoledronic acid.
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FIGURE 1 | Targeting γδ T, Natural Killer, and Innate Lymphoid cells in haplo-HSCT. (1–3) MHC-independent activation of innate immune cells: γδ T lymphocytes (1)

and NK cells (2) can kill hematologic tumors by direct cytotoxicity and cytokine secretion. Innate Lymphoid cells (ILCs and ILC3 in particular) (3) play an indirect role in

the clearance of tumors cells by improving both thymic regeneration and T cell maturation via their secretion of IL-22. (4–6) Novel therapeutic strategies implemented

to enhance NK and γδ T cell alloreactivity against cancer: administration of monoclonal antibodies (mAbs) against NK cell inhibitory checkpoints (4); use of cytokines

and zoledronic acid to activate γδ T cells (5); CAR editing and genetic engineering of γδ T and CAR on NK cells (6). (7) Ad hoc manipulation/editing/engineering of ILCs

in transplant setting have not yet been explored.
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expand γδ T cells (237). In this regard, one of the more promising
protocols is represented by in vivo post-transplant administration
of Zoledronic Acid (ZA) that improves the cytotoxicity of γδ T
cells against leukemic cells (Table 2). This latter strategy relies on
the use of ZA and IL-15 to expand terminally-differentiated and
anti-tumor CD45ROneg/CD27neg effector memory (TEMRA)
Vδ2 cells. In this setting, the use of IL-15 is meant also to
simultaneously boost the cytotoxicity and the proliferation of
NK cells, thus targeting the two main anti-cancer effectors at the
same time (28, 238, 239). In haplo-HSCT platforms, two very
recent phase I studies propose to expand/activate γδ T cell prior
(NCT03533816) or after (NCT03862833) cell infusion to provide
innate GvL responses and to limit the onset of GvHD (Table 2).

GENETIC ENGINEERING

Genetic manipulation of immune cells allows the generation of
highly specific anti-tumor effectors effectively targeting several
tumor antigens. The introduction of chimeric antigen receptor
(CAR)-T cells in HSCT opened new insight for the treatment
of hematologic malignancies. Despite the very good clinical
outcomes given by autologous CAR-T cell therapies against
several tumors (240–243), the occurrence of life-threatening
side effects such as tumor relapses (240, 244) and higher
frequencies of GvHD and cytokine release syndrome onsets
(245) have arisen major limitations in the use of allogeneic
CAR-T cells. In this regard, engineering CAR-NK and CAR-
γδ T cells may provide alternative procedures to improve their
anti-tumor potentials, while overcoming allogeneic CAR-T cell
therapy obstacles (Table 2) (139, 246–249). Notably, CAR-NK
cells and CAR-γδ T cells retain the expression of their NKR
repertoire and γδ TCR, respectively (214, 250). Hence, they can
recognize tumor targets by their native receptors independently
from CAR-restriction, thus reducing antigen-driven escape of
tumor cells and further increasing their killing activities. CAR-
NK cells are also characterized by relatively short life-span. If
this latter feature certainly limits NK cell cytotoxicity over the
time after transplantation, it can then prevent long-term side
effects (such as cytopenia) that are observed upon CAR-T cell
infusion (251).

A multitude of preclinical studies have tested the efficacy
of CAR-NK cells against a variety of target antigens such
as CD19 (252, 253) and CD20 (254, 255) for hematological
malignancies as well as solid tumors. Another methodology
used to promote the persistence of CAR-NK cell is to
incorporate genes for IL-2 (256, 257) or IL-15 (258) within
the CAR construct to constantly provide cytokine support
to the CAR-transduced cells. In particular, this approach
showed improved tumor control and prolonged survival in
a mouse model of Raji lymphoma (258). These encouraging
pre-clinical data opened new insights for the transfer of such
protocols into human clinical trials such as the one that is
optimizing the dose of IL-15-transduced CAR-NK cells for
the treatment of B cell lymphoma (Table 2) (NCT03056339).
Finally, genetic engineered CAR-NK cells mimicking ml-
NK cells have been obtained redirecting NKG2C-mediated

NK cell responses against cells expressing HLA-E. This
protocol allows to overcome the dominant NKG2A-mediated
inhibition, while boosting CAR-redirected NK cell activation via
NKG2C (259).

Besides NK cells, also γδ T cells have been engineered against
tumor targets using CAR technology (260). However, although
CAR-γδ T cells were firstly introduced in 2004 (249), relatively
few studies report their benefic potential in the treatment of
hematologic and solid tumors.

Among these trials, PB-derived Vg9Vd2T cells transduced
with retroviral vectors encoding either disialoganglioside GD2-
or CD19-specific CARs showed a higher capacity to secrete
antigen-specific IFN-γ and to exert potent cytotoxicity against
GD2pos neuroblastoma cells and CD19pos leukemic blasts in
vitro (249). Furthermore, γδ T cells can be also transduced with
exogenous αβ TCR directed against tumor associated antigens
(214, 261). However, no clinical trials using CAR-γδ T cells have
been initiated yet.

CONCLUDING REMARKS

Great efforts have been put in place to ameliorate the clinical
outcome of allo-HSCT, to find an ideal donor for every
patient in need and to limit the life-threatening complication
of this transplant procedure. The development of haplo-
HSCT platforms certainly represents a great step forward on
these matters, although quite a few side effects, including the
occurrence of GvHD and opportunistic infections, still affect the
quality and the duration of life of these patients. In this regard,
the quantity and quality of IR play a central role and require
a deep understanding of all the mechanisms tuning the kinetic
and the effector-functions of those immune cells that can better
control the onset of tumor relapse, GvHD, and opportunistic
infections. In this context, innate immune responses are key as
they act immediately after the transplant. Several experimental
and clinical studies clearly highlighted the importance to
boost both adaptive and innate IR, ameliorate anti-tumor
alloreactivity and develop alternative immunotherapy weapons
against cancer.

The advances of current technologies have optimized the
ex vivo expansion/activation of immune effectors and have
selectively targeted checkpoint inhibitors also in the field of
haplo-HSCT, where NK cells and γδ T lymphocytes early
provide protection against cancers. Although helper ILCs could
theoretically play a key role against tumors, the investigations of
their clinical and functional impacts following HSCT are still in
their infancy and must be deeper exploited. Our challenges and
clinical perspectives over the next decade rely on our ability to
give answers to the several important biological questions we still
have on these matters.
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