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Innate lymphoid cells (ILCs) represent the most recently identified family of innate

lymphocytes that act as first responders, maintaining tissue homeostasis and protecting

epithelial barriers. In the last few years, group 2 ILCs (ILC2s) have emerged as key

regulators in several immunological processes such as asthma and allergy. Whilst ILC2s

are currently being evaluated as novel targets for immunotherapy in these diseases,

their involvement in tumor immunity has only recently begun to be deciphered. Here,

we provide a comprehensive overview of the pleiotropic roles of ILC2s in different tumor

settings. Furthermore, we discuss how different therapeutic approaches targeting ILC2s

could improve the efficacy of current tumor immunotherapies.
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INTRODUCTION

ILCs are the most recently described family of innate immune cells that play a key role in the
preservation of epithelial integrity and tissue immunity (1). ILCs are rapidly activated by both
tissue and immune cell-derived signals providing the first line of defense against bacterial, viral
and helminthic infections (2–6). However, ILCs need to be tightly regulated, given that their
uncontrolled activation and proliferation has been shown to contribute to severe inflammation and
damage in gut, lung, skin, and liver (7). ILCs are classified into three different groups, according
to the expression of specific transcription factors and surface markers, and based on their cytokine
secretion profile (8).

In humans, ILC1s define the T-bet-dependent ILC subset that mainly produce IFNγ and TNFα
(9). ILC3s rely on RORγT for their development and express CD117 (also referred to as c-Kit) on
their cell surface (10). ILC2s comprise the GATA-3-dependent ILC subset that is also characterized
by the expression of the prostaglandin D2 receptor 2 (CRTH2), the IL-33 receptor (IL1RL1 also
referred as ST2) and by variable levels of c-Kit (11).More recently, Nagasawa and colleagues showed
that the killer cell lectin-like receptor subfamily Gmember 1 (KLRG1) is a surfacemarker that arises
during ILC2 development in humans (12). KLRG1 is a co-inhibitory receptor already reported to
be expressed also by CD4+ and CD8+ T cells as well as by NK cells, that binds to themembers of the
cadherin family (13, 14). In mice, the ILC2 phenotype is characterized by the surface expression of
both ST2 and KLRG1 (15). Notably, ST2+KLRG1+/− ILC2s are defined as natural ILC2s (nILC2s)
which respond to IL-33 (15), whilst ST2− KLRG1hi ILC2s represent inflammatory ILC2s (iILC2s)
reported to differentiate during infections. iILC2s are highly responsive to IL-25, but not to IL-33,
and are able to differentiate into ILC3-like cells under type-17 stimulation, thus defining a distinct
subset from nILC2s. ILC2s are able to respond to a wide range of soluble mediators like alarmins
[IL-25, IL-33, and thymic stromal lymphopoietin (TSLP)], survival cytokines (such as IL-2, IL-9,
and IL-7) and eicosanoids. In addition, ILC2s have been shown also to respond to neuropeptides,
including neuromedin U (NMU), vasoactive intestinal peptide (VIP), and calcitonin gene-related
peptide (CGRP) (3, 16–20). More precisely, it has been shown that neuropeptides released by
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pulmonary endocrine cells (PNECs) can stimulate resident
ILC2s to produce cytokines, such as IL-5, which in turn
support downstream type-2 immune responses (21). Similarly,
VIP can stimulate IL-5 release by ILC2s, regulating eosinophil
homeostasis in intestinal tissues (22). On the contrary, an
opposite role for the CGRP was described, as it can negatively
modulate ILC2 effector functions (i.e., cytokine production) in
the context of lung inflammation and also during helminth
infections (23, 24). It has also been reported that ILC2s in the
small intestine, express high levels of the β2- adrenergic receptor
(β2-AR), which acts as a negative regulator of the ILC2-mediated
anti-inflammatory response (25).

Once activated, ILC2s secrete type 2 cytokines, such as IL-4,
IL-5, IL-9, IL-13, and amphiregulin (AREG), that are involved
in airway responses, helminth expulsion, and tissue repair (26).
More recently, it has been reported that activated ILC2s are able
to produce prostaglandin D2 (PGD2) that acts in an autologous
manner supporting ILC2 function via the CRTH2 receptor
(27). A detrimental role of ILC2s in chronic inflammation is
suggested by their increased frequency in the peripheral blood of
asthma and chronic rhinosinusitis patients; and additionally, the
secretion of AREG by intrahepatic ILC2s is thought to contribute
to the process of fibrogenesis in liver diseases (28, 29).

However, in cancer, the role of ILC2s is still controversial.
Elevated numbers of ILC2s have been found in many IL-33-
enriched tumors, such as breast, gastric and prostate cancer
(30–32) as IL-33 is an ILC2 activator that can promote tumor
growth, metastatic dissemination and angiogenesis (33). The
ILC2 pro-tumorigenic activity is mainly ascribed to the IL-33-
triggered IL-4 and IL-13 production. These cytokines have been
reported to support tumor development and progression (34),
in part by the recruitment and activation of monocytic myeloid-
derived suppressor cells (M-MDSCs) that are considered potent
inhibitors of the anti-cancer immune response (35). In addition,
AREG produced by ILC2s, can further suppress the anti-tumor
immune response by boosting the activity of regulatory T
cells (Tregs) (36). Conversely, ILC2-produced IL-5 promotes
blood and tissue eosinophilia that correlates with reduced
tumorigenicity and tumor progression in mice (37). In this
review, we summarize the current knowledge concerning the
presence and functional characteristics of ILC2 populations in
different tumors, using both patient samples and murine tumor
models (Figure 1). Furthermore, we discuss potential strategies
to exploit ILC2 biology to improve the efficacy of current
tumor immunotherapies.

ILC2s IN HEMATOLOGICAL
MALIGNANCIES

Hematological malignancies represent the fourth most common
type of cancer (38). ILCs are a rare cell population, representing
∼0.4% of total circulating peripheral blood lymphocytes in
humans (39), however, we have reported that ILC2s are expanded
in the peripheral blood of acute promyelocytic leukemia (APL)
patients at diagnosis, compared to healthy donors. In particular,
we found that ILC2s have a central role in the establishment

of an immunosuppressive axis, dictated by the tumor-derived
factors PGD2 and B7H6 and their ILC2 receptors CRTH2 and
NKp30, respectively. This interaction triggers the production
of IL-13 which in turn recruits M-MDSCs supporting the
growth of cancer cells [(31); Figure 1, left lower corner]. These
findings were also confirmed in an APL mouse model raising the
possibility of finding the same axis in other tumors, including
solid tumors such as prostate cancer (see “ILC2s in prostate
cancer” section).

In contrast, in treatment-naïve patients with acute myeloid
leukemia (AML), we and others have observed an expansion of
ILC1s. There was no detection of a change in ILC2 frequency
but we observed a lower production of IL-5 and IL-13 following
in vitro short-term activation with phorbol 12-myristate 13-
acetate (PMA) plus ionomycin (40). In this context, the increased
ILC1 frequency might be due to the conversion of ILC3s and/or
ILC2s into ILC1s driven by tumor-derived factors, among others
TGFβ. A putative anti-tumor role of ILC2s has been proposed
in a subcutaneous lymphoma mouse model, where sustained
production of IL-33 induced the upregulation of CXCR2 on EL4
thymoma cells, the expansion of ILC2s and the concomitant
production of CXCR2 ligands (CXCLs). These ligands, mainly
CXCL1 and CXCL2, induced apoptosis in a limited proportion of
lymphoma cells, thus limiting tumor progression [(41); Figure 1,
right middle panel].

ILC2s IN UROGENITAL TRACT CANCERS

ILC2s in Prostate Cancer
Prostate cancer is the most common non-cutaneous malignancy
in men and responsible for about 20% of male cancer-
related deaths (42). Despite the different therapeutic approaches,
including the use of immune checkpoint inhibitors, limited
clinical benefits have been observed in patients (43). In this
context, the tumor microenvironment (TME) seems to play a key
role in driving prostate cancer progression and chemoresistance
(44, 45). Focusing on ILCs in prostate cancer patients, we have
shown that ILC2 levels positively correlate with tumor stage and
with M-MDSC frequency (31). Additionally, DU145 and PC3
prostate cancer cells secrete the ILC2 activator PGD2 and express
high levels of B7H6, the ligand of NKp30, corresponding with
the immunosuppressive axis found in APL patients. Using the
spontaneous TRAMP model, in which mice develop orthotopic
prostate tumors from puberty (46), we observed an increase
of ILC2s both in the blood and the tumor supporting our
findings in prostate cancer patients (31). Conversely, Saranchova
et al. have showed that ILC2s can acquire anti-tumor activities
by influencing the effector functions of cytotoxic lymphocytes,
through the release of IL-5 and IL-13 acting on DCs. They
used the pTAP-1-EGFP-stably-transfected LMD cell line, derived
from a metastatic prostate cancer mouse model, in which TAP-
1 activation in tumor cells indirectly correlates with MHC-I
and EGFP expression. In order to mimic metastatic prostate
cancer conditions in vivo, the authors isolated ILC2s from
tumors of donor mice and cultured them with the LMD cell
lines, CD8+ dendritic cells (DCs), ovalbumin (OVA) peptide
as well as CD8+ OT-1T cells. They observed an increased
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FIGURE 1 | Schematic representation of pro- and anti-tumor roles of ILC2s. Summary of the known pro- and anti-tumor roles of ILC2s, classified by tumor types. For

bibliographic details refer to the work cited in the main manuscript.

expression of EGFP, indicating that the LMD cells had been
stimulated to express MHC-I on their surface by ILC2s.
This suggests that ILC2s via direct interaction or cytokine
secretion, facilitate antigen presentation and the recognition
of tumor cells by T cells, thus improving the anti-tumor
adaptive response [(47); Figure 1, right upper panel]. The use
of tumor-bearing ILC2 KO mice transferred with ILC2s isolated
from wild-type donor mice might represent a good strategy to
dissect the contribution of ILC2s in the T-cell mediated anti-
tumor responses.

ILC2s in Bladder Cancer
Bladder cancer (BC) is broadly divided into two major stages:
non-muscle-invasive (NMIBC) and muscle-invasive bladder
cancer (MIBC) and is the ninth most common cancer
worldwide (48). NMIBC standard treatment involves intravesical
instillation of the Bacillus Calmette-Guérin antigen (BCG)
(49), whereas MIBC treatment involves neoadjuvant cisplatin-
based chemotherapy (NAC) followed by radical cystectomy (50).
Despite these approaches, the rate of recurrence of BC remains
high (51). To better understand the reasons behind BC treatment
failure, immune cell distribution was analyzed in the urine of
NMIBC patients during BCG treatment and ILC2s were found

to be the most abundant innate lymphoid cell subpopulation
present (52). ILC2 frequency positively correlates with M-MDSC
frequency but not with T cell numbers suggesting that ILC2s
may promote the expansion of M-MDSCs. This correlation has
also been confirmed in the blood of patients with MIBC. In
addition, ILC2-associated cytokines measured in blood and urine
samples of NMIBC and MBIC patients showed a significantly
elevated level of IL-13 compared to healthy donors. IL-13
secretion could explain the ILC2-dependent recruitment of M-
MDCS which were shown to express the IL-13 receptor α1
(IL-13Rα1). At mRNA level, the immunosuppressive properties
of IL-13 were demonstrated with upregulation of monocytic
suppressive markers such as arginase 1 (Arg1), inducible nitric
oxide synthase (iNOS) and C/EBPβ [(52); Figure 1, upper
central panel]. These results highlight the concept that the BC
immunosuppressive environment is, at least in part, driven by
ILC2-derived IL-13 that may be contributing to the failure of
current BC therapies. Furthermore, the ratio between T cells and
M-MDSCsmay also have an impact on the response to treatment,
since patients with a high T cell/MDSC ratio show improved
survival with reduced risk of recurrence. However, more research
is needed to better understand the role of ILC2s in this
type of cancer.
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ILC2s IN CANCERS OF THE
GASTROINTESTINAL SYSTEM

ILC2s in Colorectal Cancer
Colorectal cancer (CRC) is the third and second most common
cancer diagnosed in men and women, respectively (53).
CRC mortality rate has decreased over recent years due to
improved cancer screening methods (54). A variety of genetic,
environmental and nutritional factors play a key role in the
pathogenesis and progression of CRC (55). Several immune cell
populations infiltrate the CRC TME by modulating the tumor
response (56). Among them, ILC2s, that are abundant in the
intestinal mucosa (57), have been reported in CRC patients, to
be recruited to the tumor site suggesting their potential role
in CRC development and progression (58). However, there is
still no robust data in human or mouse models, clarifying the
role of ILC2s in colorectal tumorigenesis. Nevertheless, analysis
of human resected CRC specimens has shown that SW480 and
SW620 cells at different stages of the disease are positive for
IL-33 and its receptor ST2 (59–61). IL-33 has been shown to
promote the in vitro proliferation of freshly isolated primary CRC
cells (the HT-29 CRC cell line and the murine MC38 cell line),
through the activation of the ST2 receptor. The IL-33/ST2 axis
activates NF-kB signaling which in turn induces cyclooxygenase-
2 (COX2) expression and prostaglandin E2 (PGE2) synthesis,
triggering CRC cell proliferation (62). Further evidence for
involvement of the IL-33/ST2 axis in CRC pathogenesis comes
from an inflammation-driven model in which ST2 deficiency
in mice conferred protection against tumor development (61)
and secondly from a polyposis mouse model (ApcMin/+), where
abrogation of IL-33 signaling reduced the tumor burden, Th2-
associated cytokine production and mast cell activation (59).
Conversely, Akimoto et al. have reported that sST2, a soluble
form of the IL-33 receptor, is down-regulated in patient serum
and correlates inversely with disease progression. This data
has also been confirmed in nude mice, in which injection of
short hairpin RNA (shRNA) targeting sST2, triggered tumor
development, and progression (60). These findings underline the
potential dual role of the IL-33/ST2 axis in colon cancer (63)
and the need for further analysis of this pathway in different
CRCmodels. AREG is another important molecule that regulates
cancer cell proliferation, invasion and angiogenesis (64) and
has been proposed as a prognostic marker in CRC (65). AREG
upregulation is associated with increased migration and invasion
of CRC cells which is essential for metastasis [(66, 67); Figure 1,
left middle panel]. AREG can be produced by different immune
cell types under pro-inflammatory conditions, such as mast cells,
basophils, tissue resident CD4T cells (68). However, no data is
available to date on ILC2-derived AREG in CRC development
and progression.

ILC2s in Gastric Cancer
With a 65% overall survival rate, gastric cancer is one of
the most common malignancies affecting the digestive system,
with more than one million people newly diagnosed each year
worldwide (69). However, due to poor population strategies for
primary prevention and lack of early symptoms,most patients are
diagnosed at an advanced stage with limited benefit from existing

therapies (70). The use of immunotherapy for the treatment of
metastatic gastric cancer such as pembrolizumab has showed
promising effects in Phase I clinical trials (71), but other strategies
are still needed to improve patient survival. Gastric tumors
are multifactorial in etiology and one of the main risk factors
for disease is chronic infection with Helicobacter Pylori (H.
Pylori) (72). H. Pylori infection causes chronic inflammation of
gastric tissue, favoring the development of gastric carcinoma (73).
Higher numbers of ILC2s have been observed in the tumors
of gastric cancer patients infected with H. Pylori, suggesting a
role for ILC2s in this immunosuppressive type 2 environment
[(74); Figure 1, left lower panel]. Moreover, the frequency
of ILC2s in the peripheral blood mononuclear cell (PBMC)
compartment is higher in gastric cancer patients than in healthy
volunteers and ILC2-associated cytokines, such as IL-4, IL-5,
and IL-13, are increased in gastric cancer patients, both at
mRNA and protein level in PBMCs and plasma, respectively.
In addition, Arg1 and iNOS, expressed in M-MDSCs and M2
macrophages as well as in group 2 ILCs (75, 76) were found
to be highly expressed at mRNA level in PBMCs of gastric
cancer patients (77). Moreover, type 2 cytokines derived from
ILC2s have been reported to mediate Arg1 and iNOS secretion
by MDSCs and M2 macrophages suggesting a role for ILC2s
in promoting M-MDSCs and M2 macrophage phenotype and
favoring their immunosuppressive function (78, 79). However,
using the gp130FF mouse model, validated as a model of
spontaneous gastric cancer, Eissmann et al. (80), demonstrate
that mast cells, rather than ILC2s, promote tumor growth upon
IL-33 stimulation. The authors show that mast cells are more
abundant than ILC2s in gastric tumors and secrete macrophage-
chemoattractant colony-stimulating factor 2 (CSF2), CCL3, and
IL-6 in response to activation by tumor-derived IL-33. In ST2
deficient animals (gp130FF ST2−/− mice), the authors observed
lower tumor burden, which was increased upon adoptive transfer
of ST2+ wild type bone marrow-derived mast cells (BMMC).
Therefore, additional studies with adoptive transfer of ST2+ wild
type ILC2s could help to determine the individual contribution
of mast cells and ILC2s in this cancer setting.

ILC2s IN BREAST CANCER

Breast cancer is the most common cancer affecting women and
its incidence rate in younger women is expected to increase (81).
Despite the progress in breast cancer detection and treatment
(82), aggressive tumors, such as triple negative breast cancer
(TNBC), still lack targeted therapies (83). Immunotherapeutic
strategies provide hope of finding new treatment approaches
(84), but due to the high heterogeneity of breast cancer (85),
much more needs to be done to fully understand the interactions
between immune and breast cancer cells (86). ILC2 frequency
has been shown to be higher in malignant compared to benign
breast tissue in humans (32). Using the 4T1mammary carcinoma
model, Jovanovic et al. have reported an increase in endogenous
levels of IL-33, that correlated with cancer progression and
metastasis. Using the parental 4T1 cell line overexpressing IL-33,
they showed elevated frequencies of IL-5 and IL-13-expressing
ILCs in tumor-bearing mice [(33); Figure 1, left upper panel].
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More precisely, in this model they found that ILC2s trigger
tumor progression andmetastasis development in response to IL-
33, sustaining the immunosuppressive milieu that characterizes
breast cancer patients. This data suggests that ILC2s could be
activated by IL-33 to secrete IL-5 and IL-13 in the 4T1 model of
breast cancer, but further investigation is required to confirm this
finding also in patients. Moreover, it has been shown that AREG
regulates the proliferation and the migration of different mouse
and human estrogen-receptor positive (ER2+) breast cancer cell
lines (87). However, it is still unknown whether ILC2s and ILC2-
derived AREG are involved in this pro-tumoral axis. The use of
ILC2 KO mice could represent a strategy to address the role of
AREG-producing ILC2s in the context of breast cancer.

ILC2s IN MELANOMA

Melanoma is the most aggressive form of skin cancer with a
high mortality rate (88). Whilst early stage melanoma is usually
curable with surgery, metastatic melanoma is difficult to treat
and often fatal. Nevertheless, in the last few years, treatment for
metastatic melanoma has advanced due to the introduction of
cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and the
programmed cell-death protein 1 (PD-1) checkpoint inhibitors
(89). However, despite these promising discoveries, a high
percentage of patients still experience treatment resistance (90)
emphasizing the need to find new therapeutic approaches. The
TME has been identified recently as a potential target for
metastatic melanoma immunotherapy (91). Among the different
TME mediators, IL-33 has been reported to inhibit tumor
growth in a melanoma mouse model, by stimulating the anti-
tumor activity of CD8+ T cells and natural killer (NK) cells
(92). However, this cytokine has also been shown to bind to
and expand ST2+ tumor-infiltrating ILC2s, characterized by
the expression of the immunosuppressive ectoenzyme CD73. In
this setting, ILC2s partially antagonized the IL-33 dependent,
NK cell-mediated anti-tumor response, as evidenced by cell
depleting experiments in which the lack of ILC2 CD73+ cells
led to enhanced NK cell activity and better tumor control (92).
This data shows that IL-33 has both a beneficial anti-tumoral
role via adaptive immune cells but also a pro-tumoral role via
ILC2s. IL-33 is also able to stimulate ILC2s to produce IL-5, a
potent eosinophil chemoattractant. Ikutani et al. showed that,
in a murine model of metastatic melanoma, the main source of
IL-5 was a CD3neg population, characterized by the expression
of CD90, CD127, CD25, and ST2 (bona fide ILC2s). IL-5 was
crucial to induce tumor rejection via eosinophil recruitment,
also resulting in reduced lung metastases [(93); Figure 1, right
lower panel]. The use of neutralizing antibodies directed against
IL-5 may be useful to confirm the involvement of ILC2s in
metastatic melanoma.

ILC2s IN LUNG CANCER

Lung cancer is generally divided into two types, small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC) (94).
It is strongly correlated with cigarette smoking (95, 96) and

is the most common cause of cancer-related deaths. Different
targeted immunotherapies are now being used in lung cancer
patients including anti-PD-1 antibodies that have been recently
approved for the treatment of SCLC (97–99). Nonetheless, a
significant percentage of patients do not respond or develop
resistance to treatment, leading to consequent cancer progression
(96, 100, 101). ILC2s constitute the most prominent ILC subset in
the respiratory tract under physiologic conditions, although their
overall numbers are low (26). They respond rapidly to tissue-
derived alarmins (102), therefore, unsurprisingly, circulating
ILC2s and M-MDSCs were found to be increased in a cohort
of 36 lung cancer patients at diagnosis and correlated with
a strong type 2 phenotype (103). The expansion of ILC2s in
the periphery was accompanied by higher levels of IL-5, IL-
13, IL-33, and Arg1 in the plasma of lung cancer patients
compared to healthy donors. Simoni et al. have also detected
ILC2s within lung tumor tissues. However, no functional assays
were performed in these studies to define the pro- or anti-
tumor roles of ILC2s in lung cancer [(58); Figure 1, central lower
panel]. It can be speculated that the observed strong type 2
phenotype may represent a targetable axis for the development
of new immunotherapeutic strategies, fostering the anti-tumor
immune response. In contrast to these observations, Carrega
et al., reported a reduced frequency of ILC2s in tumors compared
to normal lung tissue (104). However, in the absence of sufficient
data on the function of ILC2s in lung cancer, it is too early to
define their role in this setting.

FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

Tumorigenesis is the result of multiple cell intrinsic (e.g.,
uncontrolled proliferation, cell migration) and cell extrinsic (e.g.,
pro-inflammatory or immunosuppressive microenvironment,
growth factors, angiogenesis) factors (105). Among the latter,
the contribution of the immune system to tumor development
and/or tumor cell clearance has become more and more
accepted/relevant (106). Even though the impact of ILC2s in
malignancy is not currently well defined, the number of studies
focusing on the role of ILC2s in tumor immunity has multiplied
(107), highlighting the importance of this cell type during
cancer development and progression. However, many aspects
still need to be elucidated to achieve a better understanding of
the mechanisms behind ILC2 pro- and anti-tumoral functions.
Moreover, it is known that ILC2s are highly plastic cells that
can easily adapt to the environment to which they are exposed
(12). Hence, the cytokines present in the TME may stimulate
the conversion of ILC2s into other ILC subsets within the
tumor tissues, suggesting that the environment that they are
exposed to can dictate their pro- and/or anti-tumoral roles. In
the nasal polyps of cystic fibrosis patients, ILC2s are reported
to be capable of differentiation into IL-17 producing cells when
stimulated with IL-1β, IL-23, and TGF-β, the concomitant
downregulation of GATA-3 and increased expression of RORγt
were also observed (108). Therefore, ILC2s may be detrimental
in the pathogenesis of IL-17-associated diseases, including some
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types of cancer. Efforts to understand the role of bona fide and/or
plastic ILC2s in tumors represents the next challenging step.
In this endeavor, the use of mouse models will be crucial, for
example, the use of genetically engineered ILC2-depleted mice
would allow dissection of the real contribution of this cell type
to tumor development and/or progression (109). However, ILC2
characterization at any given time point in tumor-bearing mice
will always be difficult due to their inherent plasticity. Moreover,
the contribution of nILC2s and iILC2s remains to be elucidated
in the tumor setting. Given their different abilities to respond to
cytokines and, therefore, their potential distinct pro- and/or anti-
tumor roles, further investigation should consider both subsets
separately. The use of reporter mice, such as the Il13GFP or other
type-2 cytokine reporter animals, represent helpful tools to track
ILC2s, independently of their transcriptional profiles that can
be shaped by the interaction with tumor cells and/or by the
TME. The use of humanized mice (BRGSTHIS mice) to establish
patient-derived xenograft (PDX) models would provide unique
environments for interrogation of the function of the innate
immune system, in particular, the contribution of ILC2s to cancer
development and progression (110). Collectively, these strategies
are expected to accelerate our knowledge of ILC2 biology, and
provide new insight into potential therapeutic targets. One
approach may be to target Th2-associated cytokines and ILC2-
secretedmolecules using neutralizing antibodies. This is the same
technique employed by some NK cell-based immunotherapies,
for example the use of a transforming growth factor beta (TGF-
β) antibody to block TGF-β signaling, restores NK anti-tumor
activity and synergy with α-PD-1 can be achieved (111). These
anti-cytokine-based immunotherapies may also be effective for
altering ILC2 function. However, they are a challenging and
non-specific target due to the diversity of cell types producing

them and their multiple roles in different physiological and
pathophysiological processes. Another attractive strategy for
targeting ILC2s may involve the disruption of transcription

factor signatures, that are emerging as indispensable in ILC2
biology, or the manipulation of their metabolic programs. Lastly,
remarkable success has been recently achieved in the clinics
by immunotherapy based on immune checkpoint blockade,
including agents targeting CTLA4, PD-1, or PD-L1. While the
pattern of CTLA4 and PD-1 expression in various subsets of
CD4+ T and CD8+ T cells are well-understood, little is known
on the expression of immune checkpoints in ILCs. Of note, PD-
1 has been reported as an intrinsic negative regulator of the
functions of the ILC2 subset in mice, raising the possibility that
current treatments targeting PD-1 might significantly impact on
ILC functions (112). Ultimately with constant new discoveries
in the ILC2 field in health and disease, immunotherapies
focusing on the functional targeting of ILC2 are fast approaching
clinical realization.
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