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Viperin is an interferon-inducible protein that responsible for a variety of antiviral

responses to different viruses. Our previous study has shown that the ribonuclease

UL41 of herpes simplex virus 1 (HSV-1) can degrade the mRNA of viperin to promote

HSV-1 replication. However, it is not clear whether other HSV-1 encoded proteins can

regulate the function of viperin. Here, one novel viperin associated protein, glycoprotein

D (gD), was identified. To verify the interaction between gD and viperin, gD and viperin

expression plasmids were firstly co-transfected into COS-7 cells, and fluorescence

microscope showed they co-localized at the perinuclear region, then this potential

interaction was confirmed by co-immunoprecipitation (Co-IP) assays. Moreover, confocal

microscopy demonstrated that gD and viperin co-localized at the Golgi body and lipid

droplets. Furthermore, dual-luciferase reporter and Co-IP assays showed gD and viperin

interaction leaded to the increase of IRF7-mediated IFN-β expression through promoting

viperin and IRAK1 interaction and facilitating K63-linked IRAK1 polyubiquitination.

Nevertheless, gD inhibited TRAF6-induced NF-κB activity by decreasing the interaction

of viperin and TRAF6. In addition, gD restrained viperin-mediated interaction between

IRAK1 and TRAF6. Eventually, gD and viperin interaction was corroborated to significantly

inhibit the proliferation of HSV-1. Taken together, this study would open up new avenues

toward delineating the function and physiological significance of gD and viperin during

HSV-1 replication cycle.
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INTRODUCTION

Herpes simplex virus 1 (HSV-1), a widespread human pathogen that can cause lytic infection in
mucosal epithelial cells and life-long latent infection in neurons, is a nuclear-replicating DNA virus
with a genome encoding∼80 different proteins, among which at least 44 proteins are the structural
components of the virions. According to their known or putative localizations in the virions, the
proteins can be classified into five groups, namely envelope, tegument, capsid, unclassified, and
non-structural proteins (1, 2).
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HSV-1 glycoproteins are found in the virion envelope as well
as membrane of the infected cell, and gD is a multifunctional
protein that can interact with three cellular receptors for entry
(3), including nectins (nectin 1 and 2) (4, 5), a modified heparin
sulfate (6) and herpesvirus entry mediator (HVEM, also named
herpesvirus entry protein A) (7), hence it defines the viral
tropism. Once binding to the receptor, an ensuing change in
gD conformation exposes to profusion domains, which enables
fusogenic glycoprotein gB, gH, and gL to complete fusion of
the envelope with the plasma membrane (8). Therefore, binding
of gD to a cell surface receptor is an essential step of virus
entry (8, 9). gD also plays a key role in multiple events during
HSV-1 infection, including cell-to-cell spread and virus-induced
syncytia formation. However, packaging of gD into virions is
almost completely blocked in the absence of tegument protein
UL16 (10).

It is well-known that innate immune response is the first line
for host defense. When viral infection, virus can activate the
host innate antiviral response and result in the expression of
series cellular protective genes, e.g., proinflammatory cytokines
and type I interferon (IFN-I, including IFN-α, and IFN-β), which
then induces a subset of interferon-stimulated genes (ISGs) to
reinforce IFN-I signaling and prime cells with enhanced antiviral
activity to inhibit viral replication (11, 12).

Viperin is an evolutionarily conserved iron-sulfur (Fe-S)
cluster-binding protein (13–15), which can be induced in various
cell types by distinct stimuli of IFN-I and IFN-II, viral DNA,
dsRNA, polyI:C, LPS, and by infection with diverse viruses,
such as human cytomegalovirus (HCMV) (16), pseudorabies
virus (17), Japanese encephalitis virus (18), West Nile virus (19),
hepatitis C virus (HCV) (15), Chikungunya virus (20), rhinovirus
(21), yellow fever virus (22), lymphocytic choriomeningitis virus
(23), and dengue virus (DENV) (24). Nevertheless, viperin shows
antiviral ability tomany types of viruses. For example, viperin can
reduce cholesterol/sphingomyelin on the membranes that are the
main components of lipid rafts, which are essential for the entry,
assembly, and budding of rabies virus in RAW264.7 cells (25).
Viperin also can inhibit the release of influenza A virus (IAV)
by down-regulating cholesterol synthesis and perturbing lipid
rafts, which are required for the stability and infectivity of IAV
(26, 27). In addition, viperin can associate with some host and
viral proteins, such as mitochondrial antiviral signaling protein
(MAVS) (28), signal mediators interleukin-1 receptor-associated
kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6)
(29), DENV-2NS3 (30), HCVNS5A (15), andHCMVvMIA (13),
and its function is therefore regulated.

Since IFN-I and nuclear factor B (NF-κB) play key roles
in regulating the antiviral response (31), HSV-1 has evolved
multiple strategies to escape these two innate systems (11, 32).
Specifically, US3 protein kinase inhibits the IFN-β-signaling
pathway by interacting with and hyperphosphorylating IFN
regulatory factors 3 (IRF3) (33), UL36 ubiquitin specific protease
deubiquitinates TRAF3 and then blocks IFN-β production
(34), VP16 abrogates the interferon antiviral response by
suppressing NF-κB and preventing IRF3 to recruit its co-
activator, CREB binding protein (35). Our previous study has
demonstrated that the ribonuclease UL41 can degrade themRNA

of viperin to restrain its antiviral function (36). However, it
is still not clear whether other HSV-1 encoded proteins can
interact with viperin, and what is the effect or mechanism
of their interaction? Therefore, given viperin plays a very
important role in the regulation of host antiviral response, a
screening of fluorescence microscope was firstly carried out
to find which HSV-1 protein can co-localize with viperin or
alter its normal subcellular localization, then their interaction
was tested by co-immunoprecipitation (Co-IP) assays, and
other experiments such as confocal microscopy, dual-luciferase
reporter (DLR) assays and real-time quantitative PCR (RT-
qPCR), were performed to explore how this interaction regulates
the signaling pathways of IFN-β and NF-κB in the host innate
immune system.

MATERIALS AND METHODS

Cells
COS-7 and HEK293T cells were cultured at 37◦C in Dulbecco’s
modified MEM (DMEM. Gibco-BRL) supplemented with 10%
heat inactivated fetal bovine serum (FBS, Gibco-BRL).

Antibodies
Mouse anti-Flag, anti-Myc, anti-hemagglutinin (HA), and anti-
β-actin monoclonal antibodies (mAbs) were purchased from
ABmart. Rabbit anti-Flag polyclonal antibody (pAb) was
purchased from Proteintech. Mouse non-specific control IgG
antibody was purchased from eBioscience Inc. Rabbit anti-gD
pAb was gifted by Dr. Roselyn J. Eisenberg (School of Veterinary
Medicine, University of Pennsylvania), and mouse anti-gD mAb
was purchased from Santa Cruz Biotechnology.

Plasmids Construction
The ORF of viperin was amplified by PCR using pViperin-Flag
expression plasmid (provided by Dr. Yi-Ling Lin, Genomics
Research Center, Academia Sinica, Taiwan) (18) as the template,
which was then cloned into pEGFP-N1 (Clontech) to yield
pEGFP-viperin. The US6 ORF of HSV-1 (F strain) glycoprotein
D (gD) was also amplified from HSV-1 DNA pYEbac102
(37, 38), with forward primer 5′-AGG AAT TCA TGG GGG
GGG CTG CCG CCA GG-3′ and reverse primer 5′-CGG
GAT CCT TGT AAA ACA AGG GCT GGT G-3′. The
purified PCR product was digested with EcoRI and BamHI
and then inserted into the corresponding digested pEYFP-N1
(Clontech) to yield plasmid pgD-EYFP, as described previously
(39–43). Reporter plasmids pNF-κB-Luc, pIFN-β-Luc and pRL-
TK were offered by Dr. Chunfu Zheng (School of Basic
Medical Sciences, Fujian Medical University) (40–43). Ubiquitin
expression plasmids pEFIRES-HA-Ub, pEFIRES-HA-Ub (K48)
and pEFIRES-HA-Ub (K63) were provided by Dr. Jun Cui
(School of Life Sciences, Sun Yat-sen University) (44). Other
expression plasmids including IRAK1-HA (Dr. Hongyan Wang,
Shanghai Institutes for Biological Sciences, Chinese Academy of
Sciences) (45), pCMV-Flag-IRAK1 (Dr. Hongbin Shu, School of
Life Sciences, Wuhan University), TRAF6-myc (Dr. Jiahuai Han,
School of Life Sciences, Xiamen University) (46), Flag-tagged
IRF3/5D (Dr. Rongtuan Lin, Department of Medicine, McGill
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University) (47), Flag-tagged IRF7/6D (Dr. John Hiscott, Lady
Davis Institute, Jewish General Hospital) (48), pcDNA3.1-gD
(Dr. Gary H. Cohen, University of Pennsylvania), pECFP-Golgi
(Dr. Suzanne R. Pfeffer, Department of Biochemistry, Stanford
University School of Medicine) (49), mCherry-KDEL (Dr. Lee
H. Wong, Department of Biochemistry and Molecular Biology,
Monash University; Dr. Philippe Collas, Institute of Basic
Medical Sciences, University of Oslo) (50) and TOM70-CFP (Dr.
Frits Kamp, Adolf-Butenandt-Institute, Ludwig-Maximilians-
University) (51) were gifts from the providers shown as indicated.

Plasmid Transfection, Indirect
Immunofluorescence Assays (IFA), and
Confocal Microscopy
COS-7 cells were grown overnight to 80% confluence on
microscopy cover glass (NEST) placed in six well plate (Corning),
then plasmid transfection and fluorescence microscopy
experiments were carried out as described previously (40–43, 52).
Briefly, COS-7 cells were transfected with the indicated plasmids
DNA mixed with polyethylenimine (PEI) transfection reagent
(Polysciences) according to the manufacturer’s instructions.
Twenty-four hours post-transfection, cells were fixed with 4%
(v/v) paraformaldehyde (Beyotime Biotechnology) for 20min at
room temperature, washed for 3 times with PBS, and incubated
with 0.2% Triton X-100 (Beyotime Biotechnology) for 30min.
Subsequently, cells were incubated with rabbit anti-gD pAb or
mouse anti-Flag mAb, followed by incubation with tetramethyl
rhodamine isocyanate (TRITC)-conjugated goat anti-rabbit IgG
(Pierce) or fluorescein isothiocyanate (FITC)-conjugated goat
anti-mouse IgG (Sigma-Aldrich), then stained with or without
Nile Red (Sigma) for lipid droplets for 30min, and finally stained
with DAPI (4′6-diamidino-2-phe-nylindole) (Cell Signaling
Technology) for 5min when needed. Images were obtained
with a confocal microscope (Axio-Imager-LSM-800, ZEISS,
Germany) using a 600× oil-immersion objective. Each image
represents a vast majority of the cells with similar subcellular
distribution, and white color shows the co-localization of
colors merged with green, blue and red, yellow color shows the
co-localization of colors merged with green and red. All scale
bars indicate 10 um.

DLR Assays
The DLR assays were performed as described previously (38,
40–42, 53). In short, HEK293T cells were plated on 24 well
dish (Corning) at a density of 1 × 105 cells per well-overnight
before transfection. Cells were then co-transfected with 100 ng
of the indicated expression plasmid, 100 ng of IFN-β or NF-
κB promoter reporter and 10 ng of pRL-TK (internal control)
to normalize transfection efficiency. Twenty-four hours post-
transfection, the luciferase activity was detected with a luciferase
assay kit (Promega).

Viral Proliferation
HSV-1 bacterial artificial chromosome (BAC) Luc (F strain,
synchronally expressing firefly luciferase, and GFP fluorescent
protein) was offered by Dr. Chunfu Zheng (54), which was
reproduced and reposited in our lab. HEK293T cells were

FIGURE 1 | Co-localization of gD with viperin. (A,B) Subcellular localization of

viperin and gD in live cells. COS-7 cells were transiently transfected with

EGFP-viperin (A) or gD-EYFP (B) expression plasmid. Fluorescence image of

EGFP-viperin fusion protein was presented in its original color green, and

gD-EYFP fusion protein was presented in pseudo-color red. (C,D) Subcellular

localization of viperin and gD in chemically fixation cells. Viperin-Flag (C) or

3.1-gD (D) expression plasmid was transfected into COS-7 cells, then IFA was

performed with primary antibody mouse anti-Flag mAb or rabbit anti-gD pAb,

and secondary antibody FITC-conjugated goat anti-mouse IgG or

TRITC-conjugated goat anti-rabbit IgG, respectively. Fluorescence images of

FITC-conjugated protein and TRITC-conjugated protein were presented in

their original colors green and red, respectively. (E) Co-expression of

EGFP-viperin and gD-EYFP in live cells. COS-7 cells were co-transfected with

EGFP-viperin and gD-EYFP expression plasmids. Fluorescence images of

fusion proteins were presented as indicated in (A), and yellow color shows the

co-localization of colors merged with green and red. (F) IFA analysis of COS-7

cells co-expressed with Viperin-Flag and 3.1-gD, with primary antibodies

mouse anti-Flag mAb and rabbit anti-gD pAb, and secondary antibodies

FITC-conjugated goat anti-mouse IgG and TRITC-conjugated goat anti-rabbit

IgG. Twenty-four hours post-transfection, all the cells were stained with DAPI

(blue) for 5min, and analyzed with confocal microscopy. All of the

photomicrographs were taken at a magnification of 600×. Each fluorescence

image was representative of the vast majority of the cells observed. All scale

bars indicate 10 um.
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FIGURE 2 | Verification of the interaction between gD and viperin. (A–C) Co-IP of viperin and gD from the lysates of transfected cells. HEK293T cells were

co-transfected with plasmids combination pViperin-Flag/pcDNA3.1-gD (A), Flag vector/pcDNA3.1-gD (B), or pViperin-Flag/pcDNA3.1 (C). Twenty-four hours

post-transfection, cells were lysed and immunoprecipitated with mouse anti-Flag mAb or mouse IgG control. Immunoprecipitated proteins, as well as the cell lysates,

were separated in denaturing 10% SDS-PAGE, and analyzed by IB with mouse anti-Flag mAb or mouse anti-gD mAb. (D) Co-IP of viperin and gD from the lysates of

HSV-1 infected cells. HEK293T cells transfected with pViperin-Flag for 24 h were infected with HSV-1 BAC Luc at an MOI of 1 for 16 h. Then, cells were lysed and

Co-IP assays were carried out, and analyzed by IB with mouse anti-Flag mAb or anti-gD mAb.

plated on 12 well-plate (Corning) overnight before infection,
then HSV-1 BAC Luc was dissolved in DMEM medium and
added to the cells at an MOI (multiplicity of infection) of 1.
The virus was incubated for 1.5–2 h at 37◦C in a 5% CO2

incubator and replaced with medium supplemented with 2%
FBS to continue culture for the indicated times, then cells
were harvested for luciferase reporter assays to determine the
replication kinetics of HSV-1 (33, 34). Here, all experiments
related to HSV-1 infection were carried out in the Biosafety
Level II laboratory, and all operations were strictly performed
in accordance with the biosafety operation requirements of
Guangzhou Medical University.

RNA Isolation and RT-qPCR
HEK293T cells cultured in 6 well plate were transfected
with indicated amounts of expression plasmid. Twenty-
four hours post-transfection, total RNA was extracted with
TRIzol reagent (Invitrogen). Samples were then subjected to
reverse transcription to cDNA with RT reagent (TSINGKE).
The acquired cDNA was taken as a template for qPCR,
to detect the expression of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (internal control) and IFN-β,
using a qPCR instrument (BIO-RAD, CFX96). Primers used
for GAPDH (forward primer 5′-AGG TCG GTG TGA ACG
GAT TTG-3′ and reverse primer 5′-TGT AGA CCA TGT
AGT TGA GGT CA-3′) and IFN-β (forward primer 5′-
ATGACCAACAAGTGTCTCCTCC-3′ and reverse primer 5′-

GGAATCCAAGCAAGTTGTAGCTC-3′) were referred to Bing
Tian’s report (55).

Co-IP Assays
Co-IP assays were performed as previously described (40–
42, 56–58). In brief, HEK293T cells were co-transfected with
expression plasmids combination bearing EYFP, Flag, Myc or
HA tag. Twenty-four hours post-transfection, transfected cells
were infected with or without HSV-1 BAC Luc for 16 h, then
cells were collected and lysed on ice with RIPA lysis buffer
(Beyotime Biotechnology). For each immunoprecipitation (IP),
an equivalent of lysate was incubated with mouse anti-Flag, anti-
Myc or anti-HA mAb or non-specific control mouse antibody
(IgG) and a 1:1 slurry of protein A/G PLUS-Agarose (Santa
Cruz Biotechnology) at 4◦C overnight. The Sepharose beads were
then washed at least three times with lysis buffer added with
500mM NaCl. Finally, immunoprecipitated proteins and cell
lysates were subjected to immunoblotting (IB) assays with the
indicated antibodies. The original IB results are shown in the
Supplementary Material.

Statistical Analysis
Statistical analyses were performed using Graphpad Prism
6 software. All data were normally distributed, and the
homogeneity of variances was examined with Levene’s test. As the
samples were normally distributed and displayed homogenous
variance, statistical analyses were performed using one-way
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FIGURE 3 | Viperin is accumulated at the Golgi body and lipid droplets in the presence of gD. (A–H) Expression plasmid of GFP-Viperin or gD-EYFP was transiently

co-transfected with the subcellular marker expression plasmid of TOM70-CFP (Mitochondrial marker) (A,E), ECFP-Glogi (Golgi marker) (B,F) or mCherry-KDEL (ER

marker) (C,G) into COS-7 cells seeded on the coverslip in six well-plate. Twenty-four hours post-transfection, cells were stained with or without Nile Red (lipid droplets

marker) (D,H) for 30min and/or DAPI (blue) for 5min when needed (only GFP-Viperin/mCherry-KDEL and GFP-Viperin/Nile Red panels can stained for DAPI, since the

emission wavelength of CFP is similar with that of DAPI), then fixed and visualized with a confocal microscope using a 600× oil-immersion objective. Fluorescence

(Continued)
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FIGURE 3 | image of fusion protein EGFP-viperin was presented in its original color green, subcellular organelle makers TOM70-CFP (A,E) and ECFP-Golgi (B,F)

were presented in pseudo-color red, mCherry-KDEL (C,G) and Nile Red (D,H) were presented in their original color red, and gD-EYFP fusion protein was presented in

pseudo-color green. Yellow color shows the co-localization of colors merged with green and red (C,D). (I–K) Plasmids combination of gD-EYFP/EGFP-viperin were

transiently co-transfected with the subcellular maker TOM70-CFP (I), ECFP-Golgi (J), or mCherry-KDEL (K) into COS-7 cells seeded on the coverslip in six well plate.

Twenty-four hours post-transfection, cells were stained with or without Nile Red (L) for 30min and/or DAPI (purple) for 5min when needed. Then, confocal experiments

were performed as described for (A–H). Fluorescence image of fusion protein EGFP-viperin was presented in its original color green, subcellular makers TOM70-CFP

(I) and ECFP-Golgi (J) were presented in pseudo-color red, mCherry-KDEL (K) and Nile Red (L) were presented in their original color red, and gD-EYFP fusion protein

was presented in pseudo-color blue. White color shows the co-localization of colors merged with green, blue and red (J,L). All scale bars indicate 10 um.

ANOVA. In the event of a difference being present, Bonferroni-
adjusted post hoc tests were performed to identify specific effect.
Moreover, Student t test (unpaired two-tailed t-test) was used
when needed. Data were expressed as means and standard
deviations (mean ± SD) from three independent experiments,
with significant differences marked on the figures. Significance
levels were defined as ns, not significant, P > 0.05; ∗P < 0.05; ∗∗P
< 0.01; ∗∗∗P < 0.001; and ∗∗∗∗P < 0.0001.

RESULTS

gD Co-localizes With Viperin
To find out which HSV-1 protein may interact with viperin,
some HSV-1 encoded cytoplasmic localization proteins (2) were
firstly screened, by co-transfection of viperin and HSV-1 protein
expression plasmids and analyzing which HSV-1 protein can co-
localize with viperin or alter its subcellular localization, and gD
(US6), US4 (gG), and UL1 (gL) were identified. Our preliminary
experiments found that there were significant differences in
the interaction mechanisms among viperin-gD, viperin-US4 and
viperin-UL1 (unpublished data). Therefore, the in-depth study
of the interaction mechanisms between viperin and each protein
of gD, US4, or UL1 would be an independent big project, and
they need to be investigated separately. In addition, gD, US4
or UL1 encode glycoproteins, they (especially gD) play a very
important role in the invasion of HSV-1. Accordingly, gD was
firstly selected to investigate the potential interaction mechanism
with viperin. To this end, pEGFP-viperin, pViperin-Flag, pgD-
EYFP, or pcDNA3.1-gD expression plasmid was individually
transfected into COS-7 cells to characterize their subcellular
localizations in live cells or chemically fixed cells. As shown in
Figure 1, viperin was absolutely distributed in the cytoplasm
in cells transfected with EGFP-Viperin (Figure 1A) or Viperin-
flag (Figure 1C) expression plasmid, and gD mainly exhibited
nuclear membrane or cytoplasmic membrane localization in cells
transfected with gD-EYFP (Figure 1B) or 3.1-gD (Figure 1D)
expression plasmid, which are consistent with previous studies
(59–61). In an attempt to pursue whether gD binds to
viperin, EGFP-Viperin, and gD-EYFP expression plasmids were
co-transfected into COS-7 cells to detect whether gD co-
localizes with viperin, since co-localization experiment is one
of the important and popular methods to detect the potential
interaction between different proteins. As results, gD co-localized
with viperin and predominantly accumulated at the perinuclear
region (Figure 1E, yellow signal). Furthermore, IFA also proved
the co-localization of gD and viperin at the perinuclear region
(Figure 1F, yellow signal), confirming the potential interaction
between gD and viperin.

gD Interacts With Viperin
To further prove the interaction between gD and viperin,
Co-IP assays were carried out. HEK293T cells were co-
transfected with pcDNA3.1-gD and pViperin-Flag expression
plasmids, then cell lysates were immunoprecipitated with
anti-Flag mAb or non-specific control mouse IgG. As a
result, gD was immunoprecipitated by Viperin-Flag with
anti-Flag mAb (Figure 2A), whereas no such protein was
immunoprecipitated with the control mouse IgG (Figure 2A).
As negative controls, HEK293T cells were co-transfected with
plasmids combination pcDNA3.1-gD/Flag vector (Figure 2B) or
pViperin-Flag/pcDNA3.1 vector (Figure 2C). Then, cell lysates
were immunoprecipitated with anti-Flag mAb or mouse IgG.
Similarly, no target protein was immunoprecipitated by Flag
vector (Figure 2B) or Viperin-Flag (Figure 2C), indicating gD
could interact with viperin.

To continue determine the interaction between gD and
viperin in the context of viral infection, HEK293T cells were
transfected with pViperin-Flag expression plasmid, then infected
withHSV-1 at anMOI of 1. Subsequently, cells were collected and
Co-IP assays were performed. As shown in Figure 2D, gD again
was immunoprecipitated by Viperin-Flag with anti-Flag mAb,
whereas no such protein was immunoprecipitated with control
mouse IgG, confirming gD could interact with viperin under
physiological condition.

Viperin Accumulates at Golgi Body and
Lipid Droplets in the Presence of gD
It is known that the N-terminal amphipathic a-helix is important
for viperin to target to ER (60) and lipid droplets (62), and
this subcellular localization is essential for suppressing viral
replication (63). However, the vMIA-mediated mitochondria
localization of viperin is favorable for HCMV replication (13).
In order to probe the underlying mechanism of gD and viperin
interaction, we continued to analyze whether gD can alter the
normal localization of viperin. As control, GFP-Viperin or gD-
EYFP was transiently co-transfected with the subcellular marker
expression plasmid of TOM70-CFP (Mitochondrial marker)
(Figures 3A,E), ECFP-Glogi (Golgi marker) (Figures 3B,F)
or mCherry-KDEL (ER marker) (Figures 3C,G) into COS-7
cells, or cells were stained with Nile Red for lipid droplets
(Figures 3D,H), and the cells were subsequently examined by
confocal microscopy, to test the normal subcellular localizations
of viperin and gD. As expected, viperin could co-localize with
mCherry-KDEL (Figure 3C, yellow signal) and lipid droplets
(Figure 3D, yellow signal), but not TOM70-CFP (Figure 3A) or
ECFP-Glogi (Figure 3B) (13, 60, 62). However, gD-EYFP could
not co-localize with all of the mentioned subcellular markers
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FIGURE 4 | gD facilitates IRF7-mediated IFN-β promoter activity through enhancing the interaction of viperin with IRAK1 and increasing K63-linked polyubiquitination

of IRAK1. (A–C) HEK293T cells were co-transfected with IFN-β-Luc reporter, pRL-TK and gD-EYFP or pViperin-Flag or plasmids combination of gD-EYFP and

pViperin-Flag, with or without IRF3/5D (A) or IRF7/6D (B,C) expression plasmid. Twenty-four hours post-transfection, luciferase activity was analyzed. (D) HEK293T

(Continued)
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FIGURE 4 | cells were co-transfected with the indicated plasmids as described in (C), except for the reporter plasmids. Twenty-four hours post-transfection,

RT-qPCR was performed to analyze the relative mRNA expression level of IFN-β. Data were expressed as means ± SD from three independent experiments. (E,F)

HEK293T cells co-transfected with expression plasmids pViperin-Flag, IRAK1-HA and gD-EYFP, or EYFP control construct were harvested and immunoprecipitated

with mouse anti-Flag mAb or non-specific mouse IgG, and IB analysis was probed with the indicated antibodies. Densitometry of the IRAK1 and viperin interaction

bands were normalized to the loading control β-actin. (G,H) HA-tagged Ub (WT), Ub (K48), or Ub (K63) expression plasmid was co-transfected with plasmids

combination of pCMV-Flag-IRAK1 and pViperin-Flag into HEK293T cells, with or without the presence of gD-EYFP. Twenty-four hours post-transfection, cells were

collected, followed by Co-IP with mouse anti-Flag mAb and IB analysis with mouse anti-HA mAb. Densitometry of IRAK1 polyubiquitination bands were normalized to

the loading control β-actin. Data were expressed as means ± SD from three independent experiments. Statistical analyses were performed using one-way ANOVA,

except (F) using student t test. *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001.

(Figures 3E–H). Then, expression plasmids combination of
gD-EYFP/EGFP-viperin were transiently co-transfected with
TOM70-CFP (Figure 3I), ECFP-Golgi (Figure 3J), or mCherry-
KDEL (Figure 3K) into COS-7 cells, or cells were stained with
Nile Red for lipid droplets. As results, co-expression of gD and
viperin resulted in a pronounced co-localization with Golgi and
lipid droplets markers (Figures 3J,L, white signal). Nevertheless,
no obvious overlap area could be detected when gD and
viperin were co-transfected with expression plasmid TOM70-
CFP (Figure 3I) or mCherry-KDEL (Figure 3K). Therefore,
viperin could accumulate at the Golgi apparatus and lipid
droplets in the presence of gD.

gD Facilitates IFN-β Activity in the
Presence of Viperin
It is reported that viperin can enhance TLR7/9-dependent
production of IFN-I (29). To examine whether gD and viperin
interaction is involved in the regulation of IFN-β expression,
expression plasmid of gD-EYFP or pViperin-Flag or plasmids
combination of gD-EYFP and pViperin-Flag were co-transfected
with or without expression plasmid IRF3/5D or IRF7/6D into
HEK293T cells, along with pIFN-β-Luc and pRL-TK reporter
plasmids. As shown in Figure 4, both IRF3/5D and IRF7/6D
alone could activate IFN-β expression, but no IFN-β activity was
detected when HEK293T cells were only co-transfected with gD-
EYFP and pViperin-Flag (Figures 4A–C). gD or viperin alone or
combination of gD and viperin did not affect IRF3/5D-induced
IFN-β activity (Figure 4A), however, gD or viperin alone could
enhance IRF7/6D-induced IFN-β activity (Figure 4C). More
importantly, the co-existence of gD and viperin activated a higher
IFN-β promoter activity than that of gD or viperin (∼2-fold)
(Figure 4C). To further explore whether gD facilitates IFN-β
activity through IRF7 in the presence of viperin, experiments
were carried out as described in Figure 4C except for the reporter
plasmids, and IFN-β mRNA accumulation was measured by RT-
qPCR. As a result (Figure 4D), the change tendency of IFN-β
mRNA was consistent with the DLR result shown in Figure 4C,
suggesting the gD and viperin interaction could promote IRF7
mediated interferon expression.

gD Enhances the Interaction Between
Viperin and IRAK1
Saitoh’s study shows that viperin can interact with the signal
mediators IRAK1 and TRAF6, so as to recruit them to the lipid
bodies, which can regulate TLR7- and TLR9-IRAK1 signaling
axis to mediate the expression of functionally important immune

molecules in plasmacytoid dendritic cell (29). To determine
whether the gD and viperin interaction can affect the interaction
between viperin and IRAK1, pViperin-Flag, and IRAK-HA
expression plasmids were co-transfected with gD-EYFP or EYFP
control vector into HEK293T cells, then cells were harvested and
analyzed by Co-IP assays. In constrast to the EYFP control, the
association of viperin and IRAK1 was enhanced in the presence
of gD (Figures 4E,F).

gD Increases the K63-Linked
Polyubiquitination of IRAK1
It is shown that the viperin-related K63-linked
polyubiquitination of IRAK1 is crucial for the TLR7- and
TLR9-dependent IFN-β production (29). To probe whether gD
and viperin interaction participates in the polyubiquitination of
IRAK1, HA-tagged Ub (WT), Ub (K48), or Ub (K63) expression
plasmid was co-transfected with plasmids pCMV-Flag-IRAK1
and pViperin-Flag into HEK293T cells, with or without the
presence of gD-EYFP. Then, Co-IP assays were performed. As
results, polyubiquitinated forms of IRAK1 were detected when
cells were co-expressed with viperin and Ub (WT) (Figure 4G,
lane 1, Figure 4H), and this polyubiquitination was reinforced
in the presence of gD (Figure 4G, lane 2, Figure 4H). Notably,
gD catalyzed IRAK1 polyubiquitination with the expression of
Ub (K63) (Figure 4G, lane 4, Figure 4H), but not Ub (K48)
(Figure 4G, lane 3, Figure 4H), indicating gD interacted with
viperin to promote K63-linked IRAK1 polyubiquitination. In
short, we demonstrated that gD could facilitate IFN-β production
through enhancing the interaction of viperin with IRAK1 and
increasing K63-linked polyubiquitination of IRAK1.

gD Attenuates NF-κB Activity in the
Presence of Viperin
Viperin is proved to be involved in the activation of NF-κB
and AP-1 in T cells (64). To detect whether gD and viperin
interaction also can modulate the NF-κB activity mediated by the
key regulatory component of NF-κB signaling pathway, TRAF6
(11), expression plasmid gD-EYFP or pViperin-Flag or plasmids
combination of gD-EYFP and pViperin-Flag were co-transfected
with or without TRAF6-myc expression plasmid into HEK293T
cells, along with pNF-κB-Luc and pRL-TK reporter plasmids. As
results, overexpression of TRAF6 efficiently activated the NF-κB
reporter, but no NF-κB activity was tested when HEK293T cells
were only co-transfected with plasmids gD-EYFP and pViperin-
Flag (Figure 5A). The expression of gD or viperin alone did not
affect TRAF6-induced NF-κB reporter activity, however, gD and
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FIGURE 5 | gD attenuates NF-κB activity by reducing the interaction between TRAF6 and viperin, but does not affect the polyubiquitination of TRAF6. (A,B) HEK293T

cells were co-transfected with NF-κB-Luc reporter, pRL-TK and gD-EYFP or pViperin-Flag or plasmids combination of pViperin-Flag and gD-EYFP (with different

amounts), with or without the presence of TRAF6-myc construct. Twenty-four hours post-transfection, luciferase activity was analyzed. Data were expressed as

(Continued)
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FIGURE 5 | means ± SD from three independent experiments. (C,D) HEK293T cells were co-transfected with expression plasmids of TRAF6-myc, pViperin-Flag and

HA-Ub (WT) or HA-Ub (K63), along with or without gD-EYFP expression plasmid. Twenty-four hours post-transfection, cells were collected, followed by Co-IP with

mouse anti-Myc mAb and IB analysis with mouse anti-HA mAb. Densitometry of TRAF6 polyubiquitination bands were normalized to the loading control β-actin. (E,F)

HEK293T cells co-transfected with expression plasmids of pViperin-Flag, TRAF6-myc and gD-EYFP or the control EYFP construct were harvested and Co-IPed with

mouse anti-Flag mAb. IB analysis was probed with the indicated antibodies. Densitometry of the TRAF6 and viperin interaction bands were normalized to the loading

control β-actin. Data were expressed as means ± SD from three independent experiments. Statistical analyses were performed using one-way ANOVA, except (F)

using student t test. **P < 0.01; ***P < 0.001; and ****P < 0.0001.

viperin combination significantly inhibited TRAF6-induced NF-
κB reporter activity. Additionally, gD and viperin interaction
constrained TRAF6-induced NF-κB promoter activity in a
gD dose-dependent manner (Figure 5B), suggesting gD could
modulate TRAF6-mediated NF-κB activity through viperin.

gD Does Not Affect the Polyubiquitination
of TRAF6
Polyubiquitination has emerged as an important regulatory
mechanism in NF-κB signaling, and TRAF6 acts as a key
substrate of K63-linked polyubiquitin chains in TNFR pathway,
which serves as a mechanism to recruit TAK1 and IKK kinases
and finally stimulate downstream NF-κB activation (65). To
investigate whether gD and viperin interaction can affect
the polyubiquitination of TRAF6, HEK293T cells were co-
transfected with TRAF6-myc, pViperin-Flag and HA-Ub (WT)
or HA-Ub (K63) constructs, along with or without gD-EYFP
expression plasmid. Then, Co-IP assays were performed. As
shown in Figure 5, no apparent difference of the TRAF6
polyubiquitination in the presence of gD or gD and viperin
combination (Figures 5C,D), indicating gD and viperin
interaction could not inhibit the polyubiquitination of TRAF6.

gD Reduces the Interaction Between
TRAF6 and Viperin
To further elucidate a clear molecular mechanism of how
gD and viperin interaction inhibits NF-κB activity, pViperin-
Flag, and TRAF6-myc expression plasmids were co-transfected
into HEK293T cells, along with gD-EYFP or EYFP control
plasmid. Then, Co-IP assays were carried out. In contrast
to the EYFP control, gD significantly reduced the interaction
between TRAF6 and viperin, suggesting gD could inhibit
TRAF6-mediated NF-κB activity through competive binding
viperin with TRAF6 (Figures 5E,F). Taken together, these results
support that gD downregulated NF-κB activity by reducing the
interaction between TRAF6 and viperin, but not affecting the
polyubiquitination of TRAF6.

gD Inhibits the Interaction Between IRAK1
and TRAF6 in the Presence of Viperin
It is documented that the signal mediators IRAK1 and TRAF6
can interact with each other at the lipid bodies (29). To
test whether gD and viperin interaction affects the interaction
between IRAK1 and TRAF6, IRAK1-HA and TRAF6-myc
expression plasmids were co-transfected into HEK293T cells,
along with pViperin-Flag or expression plasmids combination
of gD-EYFP and pViperin-Flag. Then, Co-IP assays were
performed. As results, overexpression of viperin alone indeed

induced significantly stronger interaction of IRAK1 and TRAF6
(Figure 6A, lane 2, Figure 6B), since viperin is critical for the
recruitment of IRAK1 and TRAF6 to lipid bodies, which are
the transfer points of TLR7 and TLR9 signaling pathways (29).
However, the IRAK1 and TRAF6 interaction became weaker in
the presence of gD and viperin (Figure 6A, lane 3, Figure 6B),
which was similar to that of the negative control (Figure 6A,
lane 1, Figure 6B), indicating gD and viperin interaction could
impede the interaction between IRAK1 and TRAF6.

gD and Viperin Interaction Inhibits HSV-1
Replication
In order to investigate the physiological significance of gD
and viperin interaction during HSV-1 infection, HEK293T cells
weremock-transfected or transfected with plasmid pViperin-Flag
or plasmids combination of 3.1-gD and pViperin-Flag. Twelve
hours post-transfection, cells were infected with HSV-1 BAC
Luc at an MOI of 1 for 6, 12, or 24 h. Then, luciferase activity
assays were performed to determine the replication kinetics of
HSV-1. As shown in Figure 7, the luciferase activity gradually
increased with the time extension of HSV-1 infection, and
transfection with plasmid pViperin-Flag alone had no inhibitory
effect on the HSV-1 propagation, which is consistent with our
previous study (36). However, the HSV-1 proliferation was
remarkably impaired when cells were co-transfected with 3.1-gD
and pViperin-Flag expression plasmids. More importantly, this
inhibitory trend was consistent at different time points of the
infection (Figures 7A–C). Accordingly, these results indicated
that the interaction between gD and viperin indeed could
obstruct the reproduction of HSV-1.

DISCUSSION

Many viruses can induce the up-regulation of viperin during
infection, and viperin is shown to have critical roles in inhibiting
viral replication and facilitating TLR7- and TLR9-mediated
production of IFN-I (29), yet its function can be dampened by
some viruses (66). Our previous study has demonstrated that
HSV-1 infection can not induce the up-regulation of viperin,
since UL41 blocks the expression of viperin by reducing its
mRNA accumulation (36). However, a small amount of viperin
mRNA and its corresponding protein is not degraded (36),
which is surprising and promotes us to probe whether other
HSV-1 encoded proteins can interact with viperin to facilitate
or inhibit the propagation of HSV-1. Accordingly, we utilized
a simple and quick method at the beginning of screening, to
analyze whether there are HSV-1 proteins (fused with EYFP) can
co-localize with EGFP-viperin or change its normal subcellular
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FIGURE 6 | gD suppresses IRAK1 and TRAF6 interaction in the presence of

viperin. (A,B) HEK293T cells were co-transfected with the expression

plasmids of IRAK1-HA and TRAF6-myc, along with pViperin-Flag or plasmids

combination of gD-EYFP and pViperin-Flag. Twenty-four hours

post-transfection, cells were collected, and followed by Co-IP with mouse

anti-Myc mAb. IB analysis was developed with the indicated antibodies.

Densitometry of the IRAK1 and TRAF6 interaction bands were normalized to

the loading control β-actin. Data were expressed as means ± SD from three

independent experiments, and statistical analyses were performed using

one-way ANOVA. **P < 0.01.

localization. In the above cases, othermethods were used to verify
the potential interaction and interaction mechanism. In fact, we
found that not only gD could co-localize with viperin, but also
other HSV-1 proteins (unpublished data), indicating there are
other potential interactions exist between HSV-1 proteins and

viperin, which needed to be verified by further deep exploration.
Certainly, there is bound to be a missed screening of interactions
between HSV-1 proteins and viperin, although the method of
fluorescence co-localization or localization change can help us to
screen for potential interactions. Therefore, it is difficult for us
to say when there is no interaction exist between HSV-1 proteins
and viperin. Perhaps new interactions will be discovered by using
other experimental methods.

In our previous experiment design, we had considered to
detect the co-localization of endogenous gD and viperin during
HSV-1 infection, but most of the endogenous viperin mRNA
will be degraded by UL41 when HSV-1 infection. Western
blot analysis showed that viperin was almost degraded, with
very low remaining protein amount, hence in our previous
experiment the expression of viperin could not be detected by
IFA using endogenous viperin antibody (unpublished data), we
therefore would not be able to study the interaction mechanism
between gD and viperin without viperin overexpression (36).
Actually, the interaction experiments were carried out under
some physiological conditions, which were performed when
HSV-1 infection using gD antibody (Figure 2). Furthermore, gD
can not be deleted in the viral genome, since it is an essential
protein for HSV-1 replication. Once deleted, HSV-1 can not
proliferate. Thus, we can not study the interaction mechanism
between gD and viperin during HSV-1 mutant (gD deletion
or knockdown) infection (3, 8, 9), since it is difficult for us
to determine whether the effect of gD-viperin interaction on
the proliferation of HSV-1 (after gD knockdown or deletion)
is caused by the decrease of gD and viperin interaction or the
reduce of gD directly affects the propagation of HSV-1. Besides,
various literatures have shown that the combination of plasmid
transfection and viral infection (using virus protein specific
antibody) is sufficient to validate the interaction between cellular
protein and viral protein (35, 41, 67–69).

After screening, our confocal results found that gD could
co-localize with viperin at the Golgi body and lipid droplets,
and Co-IP results demonstrated that gD interacted with viperin.
It is shown that MAVS can interact with viperin to act as
a negative regulator of the interferon response (28). IRAK1
and TRAF6 are two other target proteins that can interplay
with viperin and be recruited to the lipid bodies to induce the
nuclear translocation of transcription factor IRF7 (29). Viperin
also can interact with DENV-2 NS3 protein to restrict early
DENV-2 RNA production/accumulation (30), and viperin can
inhibit HCV replication via its interaction with NS5A (15).
Surprisingly, viperin can enhanceHCMV infection by interacting
with the mitochondrial trifunctional protein, which mediates
fatty acids β-oxidation to generate adenosine triphosphate (ATP)
(13). Therefore, we wondered what is the effect of gD and
viperin interaction.

It is well-known that toll-like receptors can recognize various
pathogens (including viruses and bacteria) when they stimulate
the innate immunity defense system (70), subsequently myeloid
differentiation factor 88 (MyD88) is induced to recruit IRAK1
and form a complex through their respective death domains
(71). Then, IRAK1 is phosphorylated and rapidly degraded in a
proteasome-dependent manner, resulting in the down-regulation
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FIGURE 7 | gD impairs HSV-1 replication in the presence of viperin. HEK293T cells were infected with HSV-1 BAC Luc at an MOI of 1 for 6 h (A), 12 h (B), or 24 h (C),

after transfection with plasmid pViperin-Flag or plasmids combination of 3.1-gD and pViperin-Flag for 12 h. Then, cells were harvested for luciferase reporter assays.

Data were expressed as means ± SD from three independent experiments, and statistical analyses were carried out using one-way ANOVA. *P < 0.05; **P < 0.01.

FIGURE 8 | Overview of the molecular mechanism of HSV-1 gD and viperin interaction. HSV-1 gD can interact with viperin, and co-localize with it at the lipid droplets

and Golgi body. The gD and viperin interaction facilitates IRF7-mediated IFN-β activity by promoting viperin and IRAK1 interaction and facilitating K63-linked IRAK1

ubiquitination, whereas gD attenuates TRAF6-induced NF-κB activity by inhibiting the viperin and TRAF6 interaction, but not affecting the polyubiquitination of TRAF6.

Viperin alone promotes the interaction of IRAK1 and TRAF6, which is inhibited in the presence of gD and viperin. Eventually, gD and viperin interaction is corroborated

to significantly inhibit the proliferation of HSV-1.

of IFN-I signaling and inflammatory responses (72). Upon
receptor recognition, TLR2 dimerizes with either TLR1 or TLR6
and recruits MyD88. The next, TRAF6, which is an E3 ubiquitin

ligase, catalyzes the synthesis of polyubiquitin chains bound to
itself and TAK1, thereby activates TAK1 and leads to downstream
NF-κB activation (73). Undoubtedly, IRAK1 and TRAF6 both are
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key regulatory components of the signaling pathway to mediate
IFN-I production and canonical NF-κB-initiated cytokines.
Accordingly, the expression of IFN and activation of NF-κB can
be regulated through IRAK1 and TRAF6. For instance, newcastle
disease virus facilitates K63-linked ubiquitination of IRAK1 to
increase TLR7/9-dependent IFN-I production and subsequent
expression of viperin (29). The nucleotide-binding domain and
leucine-rich-repeat-containing (NLR) protein attenuates NF-
κB activation through its interaction with the component of
TRAF6 pathway (74). Therefore, we wanted to test whether gD
and viperin interaction had any effect on the IFN-β or NF-
κB pathway.

Our DLR assays showed that gD and viperin interaction
could up-regulate IRF7 (but not IRF3) mediated IFN-β activity.
Further Co-IP assays demonstrated that gD strengthened the
interaction of viperin with IRAK1 and improved K63-linked
IRAK1 polyubiquitination, suggesting the co-localization of gD
with viperin at the Golgi body and lipid droplets can improve
the antiviral ability of viperin. However, the presence of gD and
viperin significantly inhibited TRAF6-mediatedNF-κB activity in
a gD dose-dependent manner. Co-IP results further showed gD
reduced the interaction of TRAF6 with viperin, but not affected
the ubiquitination of TRAF6 (Figure 8). Moreover, gD bound to
viperin constrained the interaction between IRAK1 and TRAF6,
which can interact with each other at the lipid bodies (29).
Consequently, gD and viperin interaction was proved to restrain
HSV-1 replication in physiological significance.

At the level of plasmid transfection, we had elucidated the
specific interaction mechanism between gD and viperin, and
we also analyzed and verified the effect of gD and viperin
co-expression (overexpression) on HSV-1 proliferation. As
mentioned above, the mRNA of viperin will be degraded by UL41
when HSV-1 infection, and the specific interaction mechanism
between gD and viperin can not be studied after viperin is
degraded. Therefore, we considered it was not necessary to carry
out the viperin knockdown experiment, since viperin is actually
degraded during HSV-1 infection.

Generally, a modest level of IFN-I expression is driven by the
activation of NF-κB (75), however, excessive IFN-I expression
can be restrained after NF-κB activation (76), this means that
NF-κB can be activated but IFN-I is suppressed, and vice versa.
Hence, gD interacts with viperin to inhibit NF-κB activity
while stimulates IRF7-mediated IFN-I transcriptional activity
is reasonable. This interaction is supposed to occur in HSV-1
lytic cycle rather than latent infection, since most of the HSV-
1 proteins are silent when HSV-1 is latent in neurons, and
only latency associated transcript (LAT) and a small amount of
proteins are expressed (77).

When virus invades the cell, it activates a series of signaling
pathways and then induces the expression of hundreds of ISGs
to perform antiviral effects. Among them, viperin is an IFN-
induced protein, which plays an important role in this process
(11, 12). We supposes that in order to successfully infect the
cells and establish effective replication, the HSV-1 encoded
tegument protein UL41 can be released into the cytoplasm
when HSV-1 invades cells, and the mRNAs of some ISGs (such
as viperin) are degraded by UL41, so as to inhibit the host

innate immunity and promote the proliferation of HSV-1 (36).
However, HSV-1 has evolved very delicate mechanisms that
if the functions of most of the ISGs are prohibited or HSV-
1 continues to replicate strongly, it is bound to quickly cause
the death of HSV-1 infected and adjacent cells, thereby HSV-
1 does not have enough time to replicate, which is certainly
not favorable for the survival of HSV-1. Accordingly, HSV-1
may take advantage of other encoded proteins (such as gD) to
enhance the host’s IFN response, by interacting with the pre-
existing viperin or HSV-1-induced viperin, to compensate for the
mRNA degradation of viperin, since the up-regulation of IFNwill
in turn promote the expression of viperin. Consequently, HSV-1
may balance the amount of viperin in a very sophisticated way,
to regulate the relationship between host’s innate immune status
and its self-replication, but the specific mechanism needs to be
further explored.

In conclusion, here we identified HSV-1 gD could interact
with antiviral protein viperin, and co-localize with it at the Golgi
body and lipid droplets. Our further results proved that gD and
viperin interaction improved IRF7-mediated IFN-β activity to
strengthen the antiviral ability of viperin, through enhancing
the interaction between viperin and IRAK1, and increasing
the K63-linked polyubiquitination of IRAK1. However, gD and
viperin interaction could not affect the polyubiquitination of
TRAF6, but decrease the interactions of TRAF6 with viperin
and IRAK1, which finally inhibited the proliferation of HSV-1.
It is noteworthy that the gD and viperin interaction may help
us to explore and elucidate the roles of viperin and gD during
HSV-1 infection.
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