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Accumulating data on cellular and molecular pathways help to develop novel therapeutic

strategies in skin inflammation and autoimmunity. Examples are psoriasis and atopic

dermatitis, two clinically and immunologically well-defined disorders. Here, the elucidation

of key pathogenic factors such as IL-17A/IL-23 on the one hand and IL-4/IL-13 on the

other hand profoundly changed our therapeutic practice. The knowledge on intracellular

pathways and governing factors is shifting our attention to new druggable molecules.

Multiple cytokine receptors signal through Janus kinases (JAKs) and associated signal

transducer and activators of transcription (STATs). Inhibition of JAKs can simultaneously

block the function of multiple cytokines. Therefore, JAK inhibitors (JAKi) are emerging

as a new class of drugs, which in dermatology can either be used systemically as

oral drugs or locally in topical formulations. Inhibition of JAKs has been shown to be

effective in various skin disorders. The first oral JAKi have been recently approved for

the treatment of rheumatoid arthritis and psoriatic arthritis. Currently, multiple inhibitors

of the JAK/STAT pathway are being investigated for skin diseases like alopecia areata,

atopic dermatitis, dermatomyositis, graft-versus-host-disease, hidradenitis suppurativa,

lichen planus, lupus erythematosus, psoriasis, and vitiligo. Here, we aim to discuss the

immunological basis and current stage of development of JAKi in dermatology.

Keywords: inflammatory skin diseases, JAK (Janus kinase), JAK inhibition, pathophysiology,

immunopathogenesis, autoimmune skin diseases, JAK/STAT pathway

INTRODUCTION

The classification of skin diseases and their treatment options are becoming more and more
complex. While for a long period of time the morphology of diseased skin was prominent
for disease classification and therapeutic procedures, we now have the methodologies for a
deep analysis of molecular processes and immunological pattern analysis responsible for the
pathophysiological alterations. These advances enlarged our therapeutic repertoire in dermatology
remarkably. Deep analysis of skin biopsies allows us to define pathophysiological factors like
cytokines, receptors or signaling molecules that are ultimately present at different levels in distinct
skin diseases (1–3). This ultimately leads to the identification of new targets and, if these targets
are druggable, to new treatments. One striking example of the aforementioned process is the
development of a therapeutic variety with monoclonal antibodies (mabs) and small molecules
in the treatment of psoriasis (PSO). Traditionally, PSO was treated with topical corticosteroids
or dithranol, with phototherapy or immunosuppressive drugs such as cyclosporine. Nowadays,
patients with this chronic inflammatory disease are frequently treated with biologicals, either of
the first generation (anti-TNF) or the second generation (anti-IL-17/anti-IL-23) (4–7). In recent
years, our better understanding of further inflammatory skin diseases such as lupus erythematosus
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(LE), lichen planus (LP) or atopic dermatitis (AD) also resulted
in the development of novel treatment strategies (8–11). At
the same time, we have gained more insight into the role
of proteins propagating the intracellular effects of activated
cytokine receptors (12). Again, when we pay attention to PSO,
small molecules like dimethylfumarate or apremilast are good
examples of intracellularly acting compounds that interfere
directly or indirectly with signaling pathways (13). Most recently,
first inhibitors of signaling proteins directly linked to cytokine
receptors have been introduced into the clinics for treating
patients with psoriatic arthritis (tofacitinib) and rheumatoid
arthritis (tofacitinib and baricitinib). These inhibitors target so-
called Janus kinases (JAKs), a family of four proteins: JAK1, JAK2,
JAK3, and TYK2 (12). These proteinsmodulate the inflammatory
process by activation of intracytoplasmic transcription factors
called signal transducer and activator of transcription (STAT).
Once activated, these proteins form dimers, translocate into
the nucleus and either positively or negatively modulate the
expression of thousands of different genes (12, 14) (Figure 1).
Since JAK inhibition is not only restricted to systemic drugs
administrated orally but has also been developed as a topical
treatment option, it is not surprising that inhibitors of JAKs are

FIGURE 1 | Schematic presentation of the JAK/STAT pathway and the role of JAK inhibitory drugs. Binding of cytokines to receptors, which rely on the JAK/STAT

pathway for signal transduction, leads to phosphorylation of JAK and STAT proteins. The latter dimerize, translocate into the nucleus and regulate the expression of

inflammatory factors. JAK inhibitors (JAKi) prevent JAK phsophorylation and STAT activation. Figure was created with the help of Biorender.com.

receiving growing attention from dermatologists and are tested
as systemic and/or topical treatment options in various skin
diseases (15).

THE JAK FAMILY AND THEIR FUNCTION

The importance of protein kinases and their crucial enzymatic
activity was initially determined in 1966 by the work of Krebs
and Fischer who showed the essential role of phosphorylation as
a mechanism of cell physiology (16). The primary function of
protein kinases is to transfer phosphate groups from adenosine
triphosphate (ATP) or guanosine triphosphate (GTP) to the
hydroxyl groups of amino acids of their protein targets (12). This
mechanism is also important for cytokine receptors, which lack
intrinsic enzymatic activity (Figure 2). In principle, the binding
of cytokines to their receptors typically initiates an inflammatory
signal (Figure 1). A large group of cytokines composed of central
interleukins (IL) such as IL-2, IL-6, IL-12, IL-21, IL-22, IL-23,
or interferons such as IFN-γ interacts with so-called type I and
II cytokine receptors (Figure 2). Both of these receptor types
lack intrinsic enzyme activity and strongly rely on JAKs for
signal transduction (17). After binding, recruited JAKs initiate a
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FIGURE 2 | Selectivity of JAKi toward type I and type II cytokine receptors. JAKi display different capacities to block cytokine receptor signaling. Pan-JAK inhibitors

for example have a broad inhibitory effect, while drugs, which target selectively JAK3 or TYK2 have a more limited mode of action (+, inhibition; -, no inhibition). Figure

was created with the help of Biorender.com.

signaling pathway from cellularmembrane that ultimately should
end in the nucleus: cytokine receptors of type I and II undergo
oligomerization, leading to the recruitment of JAKs, which
(auto-)phosphorylate tyrosine residues including such within the
receptor chains (Figure 1). Successively, STAT proteins will be
recruited, which then bind to the phosphorylated residues and
become activated due to phosphorylation by JAKs. The now
activated STAT proteins undergo dimerization. This last step
enables the translocation of STAT proteins into the nucleus and
the modulation of gene expression (14). Interestingly, most of
cytokine receptors use a combination of JAKs for their activity;
this could therefore hamper the idea of targeting single JAKs and
instead favor a rationale for the use of pan-JAKi under certain
settings. However, one should consider that toxicities may limit a
strong and ubiquitous JAK blockade (Table 1).

JAK DEFICIENCY IN HUMANS AND MICE

The crucial role of JAKs and the relevance of their function
can be observed in patients with mutations in genes encoding

JAKs or in mice carrying JAK mutations. Here, we will briefly
summarize some loss of function (LOF) mutations of JAKs
found in humans or by genetic manipulation of mice. Functional
deletion of JAK1 or JAK2 in mice results in perinatal or
embryonic lethality, respectively. Likewise, reports regarding
individuals with deficiency of either JAK1 or JAK2 proteins
have not been described, indicating that functional JAK1 and
JAK2 are required for embryonic development and survival.
In contrast, JAK3 knockout (KO) mice and TYK2 KO mice
are both viable. JAK3 is widely expressed in immune cells.
Consequently, JAK3 KO mice present a strong reduction of
T and B cell numbers and residual immune cells show an
impaired activity, exposing mice to multiple infections (18). In
agreement with these findings, mutations within the JAK3 gene
can present in humans as severe combined immunodeficiency
syndrome (SCID) (19, 20). Patients with SCID lack T, NK and
diverse B cell populations in the peripheral blood. As a result
of this mutation, these patients are constantly exposed to a
risk of bacterial, fungal or viral infections (21). The devastating
effect on lymphocytes explains the crucial role of JAK3 in
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TABLE 1 | Selected adverse effects observed under treatment with JAK inhibitors.

Frequent adverse events observed under treatment with JAK inhibitors

Infections

- Nasopharyngitis

- Upper respiratory tract infections

- Urinary tract infections

Herpes virus reactivation

- Herpes Zoster

- Lip/oral herpes simplex infections

Gastrointestinal disorders

- Nausea

- Diarrhea

Blood/serum changes

- Elevation of liver enzymes [aspartate aminotransferase (AST). alanine

aminotransferase (ALT)]

- Hyperlipidemia (increase in cholesterol, triglycerides)

- Increase in bilirubine

- Increase in creatine phosphokinase

Blood cell count alteration

- Decrease in hemoglobin level

- Decrease in white blood cell count

- Neutropenia

Rare adverse events reported under treatment with JAK inhibitors

- Thromboembolic events

- Non-melanoma skin cancers

- Solid cancers

lymphocyte biology. JAK3 is the only JAK protein capable of
phosphorylating receptors carrying the γc receptor and this
receptor chain is exclusively used by receptors for IL-2, IL-
4, IL-7, IL-9, IL-15, and IL-21 (20). LOF mutations within
the TYK2 gene are even rarer than JAK3 mutations (22). The
few patients reported carrying the mutation show an increased
susceptibility for infections, like severe infections of the skin.
TYK2 LOF mutations essentially block the signal transduction
of the receptors for IL-12, IL-23, and type I IFN (IFN-α/β),
resulting in impaired IFN-γ+ Th1 responses and possibly IL-
17+ Th17 responses (23). Similarly, TYK2 KO mice present
a defective response to aforementioned stimuli and have an
impaired macrophage activity with increased risk for viral and
bacterial infections (24). Based on the selective expression and
function of JAK3 in the hematopoietic system, early research
focused on the generation of selective JAK3 inhibitors. However,
the first inhibitors brought to clinical practice were less selective
than expected. The JAK3 inhibitor tofacitinib showed additional
activities against JAK1 and to some extent toward JAK2. In
contrast, baricitinib is a JAK1/JAK2 inhibitor. However, even
these less selective JAKi seem to have acceptable toxicities.
Yet, recent efforts in the field of pharmacological chemistry
demonstrated that it is possible to generate JAKi with improved
selectivity. For instance, second generation JAK3 inhibitors with
high selectivity have been synthesized in the last years (25–
28). Accumulating data from published studies and ongoing
clinical trials will show which type of JAK blockade—low or
highly selective compounds—will improve skin diseases without
inducing major side effects.

RATIONAL FOR THE USE OF JAKi IN
DERMATOLOGY

The perpetuation of inflammation in diseased skin strongly
relies on the interaction between cytokines, immune, and tissue
cells propagating distinct inflammatory cascades. Some of these
immunological processes in the skin, as in PSO or AD, have
been deeply elucidated in recent years. The findings led to a
radical change of therapeutic approaches. Based on our better
understanding of the immunological mechanisms in PSO and
AD, a variety of mabs targeting cytokines and small molecules
interfering with intracellular signaling pathways have been
developed. In this context, it is not surprising that JAKi are
gaining increasing attention for the treatment of inflammatory
skin diseases (15, 29, 30). Differently than biologics, which target
cytokines by intravenous or subcutaneous injection, JAKi target
cytokine signaling by either oral or topical administration. The
latter way of application may minimize the risk of side effects as
observed by systemic JAK inhibition (Table 1). Moreover, topical
JAKi do not bear the risk of skin atrophy or telangiectasia as
observed under long-term use of topical corticosteroids. In the
following paragraphs, we aim to present the current position of
JAKi in dermatology focusing on inflammatory skin diseases for
which JAKi are at least in phase II investigation according to
announced trials at clinicaltrials.gov.

ALOPECIA AREATA

Alopecia areata (AA) is the most common immunological cause
of hair loss (31). AA can affect both, adults and children.
Although certain ethnic groups are more frequently affected than
others, the disease does not prefer certain hairs types or color
(31). Sudden hair loss is a hallmark of AA. In most of the cases,
it appears in a circular well-circumscribed region of the scalp or
the beard. AA can eventually lead to the loss of all the hairs of
the scalp (alopecia totalis) or, in its most severe form, to the loss
of hair of the whole body (alopecia universalis) (31). Frequently,
the disease is accompanied by atopic dermatitis or by other
autoimmune disorders such as autoimmune thyroiditis (32, 33).
AA is determined by the loss of the immune privileged status of
the hair follicles, which are then attacked by autoreactive CD8+ T
cells and by NK T cells. Remarkably, hair follicles have developed
different mechanisms to maintain their privileged immune
status. For example, they express molecules such as transforming
growth factor (TGF-)β1 and TGF-β2, α melanocyte stimulating
hormone (α-MSH) and macrophage migration inhibitory factor
(MIF), which hinder activation of T cell and NK T cell functions
(31). Additionally, genetic background plays a prominent role in
AA. Studies revealed that patients with positive family history
for AA have a poorer prognosis and show a recalcitrant disease
course often not responding to any treatments (34). Genome-
wide-association studies (GWAS) showed the presence of diverse
susceptibility loci possibly involved in the pathogenesis of AA
like genes encoding for HLA, ULB1, IL12RA, and PTPN22
(35). ULB1 encodes for ligands involved in the activation of
NKG2D cells, which in C3H/HeJ mice have been shown to
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FIGURE 3 | Efficacy of JAKi in dermatology. The scheme summarizes the level of efficacy (as represented by colors) and the level of evidence (as represented by size

of circles) in the indicated skin diseases. In diseases, where results from phase II/III studies are available as published, evaluation of JAKi in case series or single case

reports was omitted. The scheme was adapted from Eyerich et al. (1). AA, alopecia areata; AD, atopic dermatitis; DM, dermatomyositis; GVHD, graft versus host

disease; LE, lupus erythematosus (efficacy on skin lesions); LPP, lichen planopilaris; PSO, psoriasis; PsA, psoriasis arthritis; S’S, Sjögren’s syndrome; SScl, systemic

sclerosis; SAR, sarcoidosis; VIT, vitiligo; (L), left; and (R), right half of the circle.

be responsible for the destruction of hair follicles (36). Recent
findings increased the evidence that JAKs play a crucial role in the
pathogenesis of AA. Recipientmice of skin grafted C3H/HeJmice
were treated with mabs targeting IFN-γ, IL-2, and IL-15 each
preventing the development of severe AA (36). Furthermore,
Xing et al. showed that AA patients and experimental AA
mouse models present increased levels of phosphorylated STAT
proteins, specifically STAT1, STAT3, and STAT5. These STAT
proteins are activated downstream the signals from IFN-γ, IL-
2, and IL-15. When using the experimental model of C3H/HeJ
mice, systemic treatment with the JAK1/JAK3i tofacitinib or
with the JAK1/JAK2i baricitinib protected from hair loss and
topical application of tofacitinib stimulated hair regrowth in
C3H/HeJ mice (36, 37). In addition, three AA patients were
treated orally with the JAK1/JAK2 inhibitor ruxolitinib. This
therapeutic approach led to a decrease of CD8+NKG2D+ cells
and a rapid amelioration of AA (36). Further, microRNAs that
influence the expression of the IL2RA gene seem to be implicated
in AA pathogenesis (38). Although the rationale for treating
AA with JAKi is given, the clinical introduction of JAKi for the
treatment of AA is still at an early stage (Figure 3) (39). Data
from phase 2 and 3 studies are needed to clarify the clinical
impact of JAKi in patients with AA (Table 2; Figure 3). Some
first clinical experiences with JAKi for the treatment of AA have
been published and seem to be promising (40–42). Treatment
with oral ruxolitinib showed hair regrowth in 9 out of 12 treated

patients without causing severe adverse events. JAK1/JAK2
inhibition by ruxolitinib reduced the expression of cytotoxic
markers and IFN-γ expression in lesional skin (43). Similarly,
Kennedy-Crispin et al. reported hair regrowth in a subset of
patients with AA, AA totalis, or AA universalis treated with
tofacitinib 5mg twice daily. During this study, only low-grade
infections were documented (Table 1). However, the positive
effect on hair regrowth was lost after treatment discontinuation
(NCT02197455 and NCT02312882) (44). A recently published
case series also reports from the phenomenon of hair loss
rebound in AA patients following discontinuation of tofacitinib
(45). These first experiences were confirmed by subsequent
studies in adults and children using oral or topical JAKi,
respectively (46–49). Currently, various double-blind placebo-
controlled phase II and III trials testing the efficacy and safety of
oral and topical JAKi in AA are ongoing, underlining the growing
interest toward these compounds (Table 2). One caveat of this
promising approach in AA is the preliminary experience that the
effect of oral JAKi seems to be timely restricted and hair loss
has been reported to reappear upon cessation of pharmacological
JAK inhibition in a substantial number of patients (50).

ATOPIC DERMATITIS

Atopic dermatitis (AD) is a common chronic disease of the skin,
which severely impairs patient’s quality of life. The prevalence
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TABLE 2 | Clinical trial program of JAKi in alopecia areata and subtypes

according to clinicaltrials.gov.

Disease

subtype

Inhibitor Target Administration Phase Study number

AA AU

AT

Tofacitinib JAK1

JAK3

Topical Phase II NCT02812342

ATI-501 JAK1

JAK3

Oral Phase II NCT0359427

ATI-502 JAK1

JAK3

Topical Phase II NCT03759340

AA AT Ruxolitinib JAK1

JAK2

Topical Phase II NCT02553330

Baricitinib JAK1

JAK2

Oral Phase II/III NCT03570749

Tofacitinib JAK1

JAK3

Oral Phase IV NCT03800979

Tofacitinib JAK1

JAK3

Oral Phase II NCT02299297

Delgocitinib PanJAK Topical Phase II NCT02561585

PF06651600 JAK3 Oral Phase II NCT02974868

PF06700841 JAK1

TYK2

PF-06651600 JAK3 Oral Phase II NCT03732807

CTP-543 JAK1

JAK2

Oral Phase II NCT03811912

CTP-543 JAK1

JAK2

Oral Phase II NCT03137381

eAA Delgocitinib PanJAK Topical Phase II NCT03325296

ATI-502 JAK1

JAK3

Topical Phase II NCT03551821

AA, alopecia areata; AU, alopecia universalis; AT, alopecia totalis; eAA, eyebrows

alopecia areata.

of AD is higher in children and adolescents, but the disease
can manifest at any age. Clinically, AD is characterized by
the presence of pruriginous eczematous lesions, typically on
flexural sites (8). In almost 80% of AD patients, skin integrity
is altered due to LOF mutations within the gene encoding
filaggrin (FGN). Impaired FGN expression promotes the loss of
transepidermal water resulting in xerosis and eczema. The skin
barrier dysregulation together with the “atopic” cytokine milieu
increases the risk for skin superinfections with bacteria or viruses
(51). Historically, AD is thought to be a Th2 dominated disease.
Nonetheless, there is growing evidence that the immunological
environment of AD is not solely defined by Th2 cells and
related cytokines (IL-4, IL-5, IL-10, IL-13, and IL-31) but also
by cytokines linked to other Th cell responses such as IFN-γ
(Th1), IL17, or IL-22 (Th17) and IL-33 (an alarmin) (8, 52–
56). Dupilumab, a mab against IL-4Rα has shown efficacy in
a large number of patients and is the first approved biological
for AD (57). Nonetheless, the cytokine microenvironment in
AD seems to be complex and patients seem to present with
different cytokine signatures at different stages. Several mabs are
in phase 2/3 development, including mabs neutralizing IL-13
(tralokinumab and lebrikizumab), IL-31 (nemolizumab) (58–60),
and IL-33 (etokimab) (61). The neutralization of other cytokines

TABLE 3 | JAKi tested for atopic dermatitis.

Disease

subtype

Inhibitor Target Administration Phase Study number

AD Baricitinib JAK1

JAK2

Oral Phase III NCT03334396

Baricitinib JAK1

JAK2

Oral Phase III NCT03334422

Upadacitinib JAK1 Oral Phase II NCT02925117

Upadacitinib JAK1 Oral Phase III NCT03738397

Upadacitinib JAK1 Oral Phase III NCT03607422

Ruxolitinib JAK1

JAK2

Oral Phase II NCT03011892

Ruxolitinib JAK1

JAK2

Oral Phase III NCT03745651

Delgocitinib PanJAK Topical Phase I NCT03826901

Delgocitinib PanJAK Topical Phase II NCT03725722

PF-04965842 JAK1

JAK2

Oral Phase III NCT03796676

PF-04965842 JAK1 Oral Phase III NCT03422822

PF-04965842 JAK1 Oral Phase III NCT03720470

PF-04965842 JAK1 Oral Phase III NCT03627767

PF-04965842 JAK1 Oral Phase II NCT02780167

PF-04965842 JAK1 Oral Phase III NCT0334960

PF-04965842 JAK1 Oral Phase III NCT03575871

pAD Upadacitinib JAK1 Oral Phase I NCT03646604

AD, atopic dermatitis; pAD, pediatric atopic dermatitis. Clinical trial program according

to clinicaltrials.gov.

is being tested in patients with AD including secukinumab and
ustekinumab, mabs against IL-17A and p40 subunit of IL-23/IL-
12, respectively. Given the diversity of cytokines implicated in
the inflammatory processes of AD, there is growing interest
toward JAKi, which could interfere with the signaling of multiple
cytokines simultaneously (62). Tofacitinib and baricitinib are so
far the best-studied JAKi in AD (63). The JAK1/JAK3i tofacitinib
abrogates IL-4 signaling and the differentiation of Th2 cells (64).
Oral tofacitinib has been shown to be effective in patients with
moderate to severe AD (65, 66) and topical tofacitinib is effective
in mild forms of AD (67). The latter formulation is of special
interest in topical AD treatment, which is mostly based on topical
corticosteroids or calcineurin inhibitors (67). The JAK1/JAK2i
baricitinib is also being tested in AD patients. Guttman-Yassky
et al. showed that oral baricitinib at a dose of 2 or 4mg strongly
ameliorates AD, helping patients to spare long-lasting application
of topical corticosteroids (68). Other compounds, like the JAK1i
oclacitinib or the pan-JAKi JTE-052 showed efficacy when orally
administrated in small-sized cohorts (69, 70). Currently, two
different phase III studies are investigating the efficacy and safety
of oral baricitinib as a monotherapy for AD. Other systemically
applied JAKi under clinical investigation for AD include the
JAK1 inhibitors upadacitinib (71) and PF-04965842. Topically
applied JAKi tested for adult and pediatric AD include the pan-
JAKi delgocitinib (LEO124249) (Table 3). Positive results, in
absence of severe side effects when using topical JAKi, could
enormously help young patients in which the application of
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TABLE 4 | JAKi trial in patients with dermatomyositis.

Disease

type

Inhibitor Target Administration Phase Study number

DM Tofacitinib JAK1 JAK3 Oral Phase I NCT03002649

Clinical trial program according to clinicaltrials.gov. DM, dermatomyositis.

topical corticosteroids and systemic immunosuppressive drugs
are often precarious.

DERMATOMYOSITIS

Dermatomyositis (DM) is an ab-mediated autoimmune disease,
which affects skin and muscles with variating extent (72, 73). A
complex auto-ab profile (74) is helpful for diagnosing DM and
for estimating the risk for developing distant organ involvement
like lung, larynx, gastrointestinal tract, or heart during the disease
course. Adult DM is frequently associated with malignancies
(75). The pathophysiology is not completely understood,
nonetheless multiple studies showed a pivotal role played by
IFN-γ producing Th1 cells in DM (72, 76, 77). The standard
treatment regimen in DM includes high-dose corticosteroids,
non-steroidal immunosuppressants like azathioprine and often
requires additional intravenous immunoglobulins (IVIG) (73,
78). In addition, diagnosis and treatment of disease-associated
cancer is important. More recently, different case reports and
small case studies showed a positive outcome of recalcitrant
chronic DM after treatment with either ruxolitinib or tofacitinib
(79–82) (Figure 3). Remarkably, JAKi seem to have a positive
effect on lung involvement in DM (79, 82–84), which often
represents a high-risk-mortality complication. The efficacy of
tofacitinib is currently under investigation in a small cohort of 10
patients with recalcitrant DM (NCT03002649) (Table 4). If JAKi
can improve non-cancer associated DM with limited toxicities,
this treatment option would be of help and spare long-term use
of high dose corticosteroids.

GRAFT-VERSUS-HOST DISEASE

Graf-versus-Host Disease (GVHD) is a serious though
common systemic reaction following hematopoietic stem
cell transplantation or donor lymphocyte infusion (85). It is
caused by donor T lymphocytes activated by host antigens.
Different organs may be affected during GVHD and the skin
is one of the most commonly targeted organs. Cutaneous
GVHD presents in an acute and/or a chronic form. Acute
(aGVHD) is clinically characterized by maculopapulous rash,
disseminated erythematous skin areas, which can eventually
converge in a generalized erythroderma (86). The chronic
GVHD (cGVHD) shows a heterogeneous clinical presentation
and can develop from the acute form. Lesions often present
as LP-like or scleroderma-like lesions, nonetheless the disease
can present differently and resemble PSO or keratosis pilaris
(86). Immunologically, the aGVHD of the skin shows a T cell
infiltration made up mostly by Th2 type cells. In contrast,

in cGVHD the skin contains an infiltrate rich in type 1
and type 17 cells. In peripheral blood, cGVHD patients
present lower numbers of Treg cells and the expression
of their transcription factor FOXP3 is strongly reduced
(87, 88). Glucocorticosteroids, both as topical and in oral form
together with other immunosuppressants and phototherapy
or extracorporeal photopheresis are the mainstay treatment
for cGVHD (89). Given the important role of T cells and their
associated cytokines, the application of JAKi may theoretically be
of benefit for patients with GVHD. Experimental studies showed
that pro-inflammatory mediators such as IL-6 and IFN-γ play
a major role in the pathogenesis of GVHD (90). Furthermore,
polymorphisms on genes encoding for IL-6 and IFN-γ have
been associated with disease severity (91, 92). Accordingly, Choi
et al. showed that IFN-γ receptor (IFN-γR)-deficient allogeneic
Tconv reduced the risk for GVHD in mice (93). They tested the
efficacy of ruxolitinib in wild type T cells in two murine MHC
mismatched models, showing that inhibition of JAK proteins
induce an effect similar to the genetic loss of IFN-γR in vitro and
in vivo (93). Other experimental studies confirmed that JAKi like
ruxolitinib (94) or tofacitinib improve or even prevent severe
GVHD (95). The benefit of ruxolitinib in preclinical models was
translated to humans and, also here, showed improvement of
GVHD in six patients (96). After preliminary encouraging results
regarding the effect of ruxolitinib in cGVHD in humans (97)
(Figure 3), different studies are now investigating the possibly
beneficial role of JAK inhibition in aGVHD and cGVHD. A
multicenter, randomized phase 2 trial has been initiated, to test
the efficacy of oral ruxolitinib in steroid-refractory aGVHD
(98). The GRAVITAS-301 study (NCT03139604) is investigating
the efficacy of itacitinib (a JAK1 inhibitor) in acute GVHD
in a randomized, double-blind placebo-controlled phase 3
study. This compound as well as ruxolitinib and baricitinib
are currently under investigation in cGVHD (Table 5). Most
recently, itacitinib even entered two phase I studies for
prophylactic use to prevent GVHD after cell stem transplantation
(Table 5).

HIDRADENITIS SUPPURATIVA

Hidradenitis suppurativa (HS) (also designated as acne inversa)
is a chronic debilitating inflammatory skin disease frequently
occurring in skin areas with substantial presence of follicles
(99). The disorder is characterized by occlusion of follicular
ducts with consequent increase in local bacteria. This process
evolves in cyst rupture and generalized local tissue inflammation
(99). Of note, it is probable that a sublatent skin inflammatory
process precedes bacterial accumulation; this could be triggered
e.g., by behavioral factors like smoking and obesity, which
typically worsen the course of HS (99). Moreover, HS patients
often carry mutations in the γ-secretase encoding gene PSEN
(100). Due to the important role played by bacteria in HS,
first line treatments are based on antibiotic therapy with anti-
inflammatory properties (101, 102). Nonetheless, recent studies
elucidated the role of cytokines present in the inflammatory
milieu of HS skin showing an overexpression of IL-17A, IL-26,
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TABLE 5 | Clinical trials using JAKi in Graft-versus-Host-Disease according to

clinicaltrials.gov.

Disease

subtype

Inhibitor Target Administration Phase Study number

Prophylaxis

of GVHD

Itacitinib JAK1 Oral Phase I NCT03320642

Itacitinib JAK1 Oral Phase I NCT03755414

aGVHD Ruxolitinib JAK1

JAK2

Oral Phase II NCT02396628

Ruxolitinib JAK1

JAK2

Oral Phase III NCT02913261

Ruxolitinib JAK1

JAK2

Oral Phase II NCT03702698

Ruxolitinib JAK1

JAK2

Oral Phase II NCT03491215

Ruxolitinib JAK1

JAK2

Oral Phase II NCT02953678

Itacitinib JAK1 Oral Phase I NCT03497273

Itacitinib JAK1 Oral Phase I/II NCT03721965

Itacitinib JAK1 Oral Phase III NCT03139604

Itacitinib JAK1 Oral Phase II NCT03846479

Pacritinib JAK2 Oral Phase I NCT02891603

aGVHD

cGVHD

Ruxolitinb JAK1

JAK2

Oral Phase II NCT02997280

cGVHD Baricitinib JAK1

JAK2

Oral Phase I/II NCT02759731

Itacitinib JAK1 Oral Phase III NCT03584516

Ruxolitinib JAK1

JAK2

Oral Phase II NCT03616184

Ruxolitinib JAK1

JAK2

Oral n/a NCT03147742

Ruxolitinib JAK1

JAK2

Oral Phase III NCT03112603

Ruxolitinib JAK1

JAK2

Topical Phase II NCT03395340

aGVHD, acute Graft-versus-Host-Disease; cGVHD, chronic graft-versus-host-diseases.

IFN-γ, IL-27, and IL-β, and, a concomitant downregulation of IL-
22 (103, 104). Thismoved the focus of researchers from the role of
bacteria to the function of cytokines in HS. Adalimumab, a mab
against TNF, is the first biological approved for the treatment of
HS (105). Targeting cytokines like IL-1 or IL-17/IL-23 have been
reported to have mixed results (37, 106) or are presently under
intensive clinical investigation. Given that cytokines are crucial
in HS pathogenesis, inhibition of the JAK/STAT pathway could
help to regulate the expression of inflammatory factors like IL-6
or IL-23 simultaneously. Clinical studies like NCT03607787 and
NCT03569371 are evaluating the safety of INCB054707, a JAK1
inhibitor in HS (Table 6).

LICHEN PLANUS

LP is a common inflammatory disease of the skin and mucous
membranes, clinically characterized by polygonal papules
presenting a characteristic white, reticulate on their surface
(Wickham striae). Frequently, the oral cavity is affected by LP
(OLP) (107). Rarely, LP can affect the scalp, LP planopilaris

TABLE 6 | Trials on JAKI in hidradenitis suppurativa according to clinicaltrials.gov.

Disease

type

Inhibitor Target Administration Phase Study number

HS INCB054707 JAK1 Oral Phase II NCT03607487

INCB054707 JAK1 Oral Phase II NCT03569371

HS, hidradenitis suppurativa.

TABLE 7 | Trial on JAKi in lichen planus.

Disease

type

Inhibitor Target Administration Phase Study number

cLP Ruxolitinib JAK1 JAK2 Topical Phase II NCT03697460

Clinical trial program according to clinicaltrials.gov. cLP, cutaneous lichen planus.

(LPP), or the nails (nail LP) (107). A classic feature of this
inflammatory disorder is the histological presence of a dense
T cellular infiltrate disposed in a band like pattern (lichenoid
infiltrate) (10). The need of new therapeutic options is given,
since LP often presents a challenging chronic recalcitrant
course (especially OLP) and the traditional therapeutic options
are of limited efficacy. Treatment of LP is mainly based on
oral or topical glucocorticosteroids, phototherapy, retinoids or
immunosuppressive drugs such as cyclosporine or methotrexate
(107). There is growing evidence that LP is a Th1 driven disease
(10, 108, 109), although Th17-associated cytokines have also been
reported in LP (110–112). A recent study showed that the T
cell infiltrate presents high numbers of Th1/Tbet+ cells and the
presence of IL-17A+ cells, disposed beneath the basal cells of
the epidermis (10). Peripheral Th1/Th17 cell reactive against
skin autoantigens further underlines the proposed autoreactive
pathophysiology of LP (10). Finally, therapeutic blockade of
IL-17 or of IL-23 seems to be a promising approach for the
treatment of LP (11). The dominance of IFN-γ in LP skin
suggests that JAK inhibition could be a therapeutic option. A
small retrospective study consisting of 10 patients with LPP
treated with oral tofacitinib as monotherapy or as adjunctive
therapy showed mixed clinical efficacy in 8/10 patients (113).
According to clinicaltrials.gov, the study NCT03697460 is testing
the efficacy of ruxolitinib cream in LP (Table 7). It is likely,
that JAKi will be a therapeutic option for patients with steroid-
refractory LP variants. Given the beneficial effect of tofacitinib on
nail PSO (114), a possibly similar effect on nail LP is conceivable.
This should be addressed in the future, since nail LP is very
painful and cicatrial.

LUPUS ERYTHEMATOSUS

Lupus erythematosus (LE) is a severe, chronic autoimmune
ab-mediated disorder with variable clinical presentation and
difficult-to-treat clinical course. The disease is widely known
for the presence of a butterfly-like rash on the face of affected
patients with systemic LE (SLE) (115). Based on the diverse
subtypes, LE can be restricted to the organ skin or present a
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systemic course with manifestation at multiple organs (115).
Both environmental and behavioral factors (such as smoking
or sun exposure) and genetic factors are meant to play a role
in the pathogenesis of LE (115–117). Possibly, gut pathobionts
and in general, bacterial and viral stimuli could trigger the
onset of the disease (118). In LE there is evidence that multiple
cytokines such as IL-16, IL-17, IL-18, and TNF are implicated
in the inflammatory process. In any event, type I IFNs are
thought to play a major role in LE pathogenesis (119). The latter
family of cytokines strongly relies on the JAK/STAT pathway
for signal transmission (Figure 2). In addition, the role of STAT
proteins has been widely investigated (120). The pivotal role
of STAT1 in LE has been analyzed in mice and in humans. In
the MRL/lpr mouse model, STAT1 is overexpressed in both B
and T cells. STAT1 gene silencing (STAT1−/−) in this mouse
model is accompanied by a decrease of CD4+ producing IFN-γ
T cells, a milder course of nephritis and a remarkable decrease
of auto-ab levels (121–123). In humans diagnosed with LE
as in mice, STAT1 is overexpressed in T and B cells. STAT1
levels correlate with clinical disease activity and with the level
of expression of IFN-γ-induced genes (124–126). In addition,
STAT3 and STAT4 seem to be relevant in the pathogenesis of LE.
The lack of STAT3 seems to be protective in a LE murine model
(127, 128). In MRL/lpr LE prone mice treatment with tofacitinib
led to a decrease of auto-ab production and amelioration of
nephritis and skin inflammation. Similarly, two different LE
mouse models showed a decrease of several cytokines (IL-12, IL-
17A, IFN-γ, and TNF), and a decrease of antinuclear auto-ab
levels upon treatment with CEP-33779, a JAK2 inhibitor (129).
However, in humans, the JAK1 inhibitor GSK2586184 showed to
be ineffective in a small size study of patients with SLE (130).
Conversely, baricitinib has been tried in patients with SLE in
a double blind, randomized, placebo-controlled phase 2 trial
(NCT02708095) (Figure 3) (131). Baricitinib was administered
at 2 or 4mg daily. Results showed that the 4mg dose leads to a
consistent clinical improvement in SLE, especially on arthritis.
Of note, adverse events were almost comparable to the placebo
group (132). At the time of this writing, different compounds
targeting different JAKs are under clinical investigation for the
treatment of SLE or discoid LE (Table 8).

PSORIASIS VULGARIS

PSO is a common inflammatory skin disease with well-defined
pathogenesis. Based on the research of recent years numerous
targeted treatments have been developed for PSO (4). In its classic
appearance, this chronic inflammatory disorder presents with
erythematous scaly plaques, which are preferentially disposed
at extensor sites and in areas of mechanic stress. In addition,
scalp, nails and inverse regions are frequently affected. In around
20–30% of cases, patients with PSO also suffer from joint
involvement (psoriatic arthritis, PSA) (4). There is a wide range
of treatment possibilities for PSO. Topical treatments include
glucocorticosteroids, vitamin D derivatives, and dithranol. While
phototherapy is becoming less important, oral drugs like
methotrexate, acitretin, dimethylfumarate, or apremilast are

TABLE 8 | Clinical trials of JAKi in systemic and/or discoid lupus erythematosus

according to clinicaltrials.gov.

Disease

subtype

Inhibitor Target Administration Phase Study number

SLE Tofacitinib JAK1

JAK3

Oral Phase I NCT02535689

Baricitinib JAK1

JAK2

Oral Phase III NCT03843125

Baricitinib JAK1

JAK2

Oral Phase III NCT03616912

GSK2586184 JAK1 Oral Phase II NCT01777256

PF06835375 TYK2 Oral Phase I NCT03334851

PF06700841 JAK1

TYK1

Oral Phase II NCT03845517

BMS986165 TYK2 Oral Phase II NCT03252587

SLE/DLE Tofacitinib JAK1

JAK3

Oral Phase 1 NCT03159936

SLE, systemic lupus erythematosus; DLE, discoid lupus erythematosus.

widely used (4). Cyclosporine should be avoided due to its
toxicities compared to the numerous less-toxic alternatives.
Besides oral drugs, various biologics have been established for
PSO (6). The first generation of antipsoriatic biologics targets
TNF. Since PSO is widely accepted as the prototypic Th17
driven disease, multiple second-generation biologics have been
approved in the meanwhile. These either neutralize IL-17A, bind
its receptor or target IL-23. Although the neutralization of IL-
17A is effective in most patients, some patients do not respond.
The implication of multiple cytokines like IL-6, IL-22, IL-23,
or IFN-γ in psoriasis pathogenesis suggests that the inhibition
of JAKs could be a powerful and more profound treatment
than a treatment with a single mab. Of note, STAT3 is a key
factor in IL-23/Th17 signaling. Active JAKs and active STAT3 are
typically found in psoriatic skin (133, 134). The role of IL-23 and
Th17 cells has also been studied in the imiquimod (IMQ) PSO
mouse model. In this model, silencing of TYK2 by gene targeting
abrogated skin inflammation (135). Likewise, the use of JAKi
successively ameliorated skin inflammation with a concomitant
decrease of cytokine levels in the IMQ PSO mouse model (136).
In humans, Krueger et al. showed in a small cohort (n= 12) that
treatment with tofacitinib (10mg twice daily) ameliorated PSO
and this was accompanied at a molecular level by the decrease
of phosphorylated STAT1 and STAT3. Similarly, tofacitinib
decreased epidermal thickness, reduced the number of T cells
infiltrating the skin and suppressed the IL-23/Th17 pathway
(137). These preliminary findings paved the way for JAKi
application in humans with PSO. A phase III randomized double-
blind placebo-controlled study (NCT01815424) demonstrated
the efficacy of tofacitinib at doses of 5 or 10mg twice daily in
patients with moderate to severe PSO (138). The oral PSO trial
(OPT) pivotal I and II studies confirmed these positive results by
oral tofacitinib in chronic plaque PSO (Figure 3). Importantly,
only 6% of treated patients experienced adverse events (139).
Notably, treatment discontinuation was associated with a risk of
relapse; however, re-initiation of the treatment rapidly resolved

Frontiers in Immunology | www.frontiersin.org 9 December 2019 | Volume 10 | Article 2847

https://www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Solimani et al. JAK Inhibitors in Dermatology

psoriatic inflammation (140). Another phase III randomized
multicenter study showed that the efficacy of tofacitinib 10mg
twice daily is similar to the efficacy of etanercept 50mg twice
weekly in PSO (141). Tofacitinib (5 or 10mg daily) is also
beneficial in nail PSO (114). The OPAL study showed that the
JAK1/JAK3i is highly effective in the control of PSA in patients
not responding to anti TNF-α treatment. In 2018, tofacitinib 5mg
twice daily was approved by the FDA for the treatment of PSA
(142). Under this therapeutic regimen tofacitinib seems to have
an acceptable safety profile without severe adverse events even
during long-term application (143, 144). Based on the experience
with tofacitinib, numerous JAKi are tested as oral drugs or as
topical formulation for PSO (Table 9) (145–147). So far, the
efficacy of topical JAKi for psoriasis is not convincing (148–150).
In a double-blind study, topical application of the JAK1/JAK2i
ruxolitinib (1 or 1.5%) showed comparable reduction of skin
inflammation as calcipotriene 0.005% cream or betamethasone
dipropionate 0.05% cream (151). Oral JAKi are more promising.
In a randomized, double blind, placebo controlled phase IIb
study the JAK1/JAK2i baricitinib at 2, 4, 8, or 10mg daily
dose showed encouraging results in the treatment of moderate
to severe PSO (152). Lastly, selective inhibition of TYK2 with
the oral compound BMS-986165 seems to be another very
promising therapeutic option for the treatment of PSO. In a
phase II trial BMS-986165 given at 3, 6, 9, or 12mg daily over
a period of 12 weeks resulted in an impressive clearing of PSO
compared to placebo (153). According to clinicaltrials.gov, the
number of registered studies on JAKi for PSO is rapidly growing
(Table 9). Both oral and topical compounds are currently under
clinical investigation for PSO. These include the oral compounds
solcitinib, filgotinib, upadacitinib, and delgocitinib (LEO124249),
a topical pan-JAKi (154). The selective TYK2 inhibitors PF-
06826647 and BMS-986165 are under investigation for PSO
or PSO/PSA, respectively (Table 9). The expected results from
these clinical trials will be a major step toward extending the
therapeutic spectrum of PSO and PSA by oral compounds.

VITILIGO

Vitiligo is a skin disease with severe psychological impact on
patients. The disease is characterized by the presence of white
depigmented skin spots due to melanocytic destruction by self-
reactive CD8+ T cells (155). There is an enormous need for
effective treatment options since presently the limited treatment
modalities are only effective in some patients. Currently, patients
with vitiligo are either treated with topical glucocorticosteroids,
topical calcineurin inhibitors (off-label), or with phototherapy
(narrowband UVB). In addition, systemic administration of
glucocorticosteroids or other immunosuppressive drugs are used.
Mechanistically, type I immune responses seem to be responsible
for the development of vitiligo (156–159). In lesional skin,
overexpression of IFN-γ, which translates its intracellular signal
through STAT1, and associated chemokines like CXCL10 and
its receptor CXCR3 are found (158). The biological relevance
of these clinical findings was confirmed in mouse models of
vitiligo. For instance, transfusion of CXCR3−/− PMEL T cells

in vitiligo prone mice did not evolve to phenotypic alterations.
Similarly, interfering with the CXCL10-CXCR3 interaction
through targeting of CXCL10 with mabs results in vitiligo
reversal in mice with established disease (160). These and
other findings helped to elucidate the copious immunological
players dominating vitiligo and underlined the crucial role of the
JAK/STAT pathway and their related factors in the pathogenesis
of this disorder. First small-size case series report from the
efficacy of JAKi in vitiligo (161). Rothstein et al. used ruxolitinib
1.5% cream over a period of 20 weeks in a small group of 12

TABLE 9 | JAKi trials in psoriasis vulgaris, psoriatic arthritis and psoriasis inversa

according to clinicaltrials.gov.

Disease

subtype

Inhibitor Target Administration Phase Study number

PSO Ruxolitinib JAK1

JAK2

Topical Phase II NCT00617994

Peficitinib PanJAK Oral Phase II NCT01096862

PF-06826647 TYK2 Oral Phase II NCT03895372

PF-06826647 TYK2 Oral Phase I NCT03210961

PF-06700841 JAK1

TYK2

Topical Phase II NCT03850483

PF-06763809 n/a Topical Phase I NCT03469336

BMS-986165 TYK2 Oral Phase III NCT03624127

BMS-986165 TYK2 Oral Phase III NCT03611751

PSA Itacitinib JAK1 Oral Phase II NCT01634087

Upadacitinib JAK1 Oral Phase III NCT03104374

Upadacitinib JAK1 Oral Phase III NCT03104400

Tofacitinib JAK1

JAK3

Oral Phase III NCT03736161

Tofacitinib JAK1

JAK3

Oral Phase III NCT03486457

Tofacitinib JAK1

JAK3

Oral Phase III NCT01976364

Filgotinib JAK1 Oral Phase II NCT03320876

BMS-986165 TYK2 Oral Phase II NCT03881059

iPSO Delgocitinib PanJAK Oral Phase II NCT02695940

PSO, psoriasis vulgaris; PSA, psoriasis arthritis; iPSO, psoriasis inversa.

TABLE 10 | Clinical trials on JAKi for treating patients with vitiligo according to

clinicaltrials.gov.

Disease

type

Inhibitor Target Administration Phase Study

number

Vitiligo Ruxolitinib JAK1

JAK2

Topical Phase II NCT03099304

Ruxolitinib JAK1

JAK2

Topical Phase II NCT02809976

ATI-502 JAK1

JAK3

Topical Phase II NCT03468855

PF-

06651600

PF-

06700841

JAK3

JAK1

TYK2

Oral Phase II NCT03715829
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patients with vitiligo. They reported successful repigmentation
of facial spots, while repigmentation of other anatomical sites
showed mixed results (162). Similar results with better responses
of facial spots than non-facial spots were reported by a recently
published cohort study with 16 patients receiving 2% tofacitinib
cream (163). A retrospective case study of 10 patients treated with
oral tofacitinib 5 or 10mg once daily suggests that a combination
of phototherapy with JAKi is therapeutically more effective
than JAKi monotherapy (164) (Figure 3). These reports indicate
that JAKi in combination with UV exposure are required for
stimulating repigmentation. Currently, different JAKi are under
investigation in phase II trials for topical application in patients
with vitiligo (Table 10).

POSSIBLE FUTURE APPLICATIONS

The introduction of JAKi is enlarging the therapeutic repertoire
of dermatologists and is proving efficacy in numerous
inflammatory diseases. Disorders like vitiligo or AA are in high
need for efficient treatments. Increasing evidence confirming the
beneficial role of systemic or topical JAKi in the treatment of
these disorders is accumulating. Since the JAK/STAT signaling
pathway plays a crucial role for many cytokines (Figure 2), a
variety of inflammatory dermatological disorders may benefit
from this new class of immunomodulators. For instance, lichen
sclerosus et atrophicans (LSA) is an inflammatory disorder of
skin and genital mucosa associated with severe pruritus and
scaring. Many patients do not respond adequately to topical
steroids (165). Due to its frequent recalcitrant course, there is an
urgent need of new therapeutics for LSA. Inflammatory factors
like IFN-γ, CXCL10, and CCR5 are highly expressed in lesional
skin, suggesting that LSA is a Th1-dominated disorder (166).
Oral or topical application of JAKi could stop the inflammatory
circuit in LSA. Case reports on positive effects of JAKi exist for
LSA and for patients with other sclerosing skin diseases like
morphea, eosinophilic fasciitis, or systemic sclerosis (167, 168).
These results are in agreement with experimental findings
demonstrating a pivotal role of STAT3 in the activation of
profibrotic pathways in vivo and in vitro (169). JAK inhibitors
also improve inflammatory bowel diseases (IBD) like ulcerative
colitis. Based on this data, it can be argued that IBD-associated
skin diseases such as cheilitis granulomatosa (CG), pyoderma
gangrenosum (PG) or erythema nodosum (EN) could also
benefit from JAKi. CG shows a similar immunological profile
as Crohn’s disease with overexpression of IFN-γ (170–172).
Patients with CG benefit from drugs such as thalidomide or
lenalidomide (173, 174), which suppress Th1 cell responses
(175). In contrast, analysis of PG and EN lesional skin revealed
overexpression of TNF and STAT3, the latter one suggesting
a rationale for the application of JAKi in these diseases (176).
Other inflammatory diseases, where the use of JAKi seems to be
desirable include sarcoidosis (177–180), and Sjögren’s syndrome
(SS), autoimmune diseases with strong molecular association
to the JAK/STAT signaling pathway (181–184). Patients with
blistering skin diseases like bullous pemphigoid, dermatitis
herpetiformis Duhring and pemphigus vulgaris may also benefit

TABLE 11 | Clinical trials of JAKi in chronic hand eczema. cHE, chronic hand

eczema according to clinicaltrials.gov.

Disease

type

Inhibitor Target Administration Phase Study number

cHE Delgocitinib PanJAK Topical Phase II NCT03683719

Delgocitinib PanJAK Topical Phase II NCT02664805

from JAKi (185–187). JAKi have been shown to inhibit auto-ab
production in preclinical models (188). Moreover, different
studies highlighted the crucial role of STAT1 and STAT3 in
transporting the signals derived from IL-6 and IL-21, two crucial
cytokines for germinal centers formation. Lack of IL-6 and IL-21
leads to a strong reduction of T follicular helper (TFH) cell levels
and consequently to impaired germinal center formation and
suppression of IgG levels, since TFH cells provide unavoidable
help for B cells’ ab production (189, 190). Due to this preliminary
data, JAKi could dramatically improve patients’ quality of life
in auto-ab-mediated bullous skin disorders, where high doses
of oral glucocorticosteroids are currently the therapeutic gold
standard and where the need of new therapeutic approaches is
high, even though the B cell depleting mAb rituximab has been
approved recently (191, 192). Another group of skin disorders
that could benefit from JAKi are eczema. Delgocitinib, a pan-JAKi
is currently under investigation in patients with chronic hand
eczema (Table 11) and shows some first promising results (193).
In nickel-induced allergic contact dermatitis there is evidence
of an important involvement of the JAK/STAT pathway (194).
Accordingly, mouse models for contact dermatitis show positive
response to treatment with topical tofacitinib (JAK1/JAK3i)
(195, 196), thus suggesting a possible application of topical
JAKi also in humans. In Behcet’s disease, an autoimmune
disorder with unsolved pathogenesis experimental studies
showed overexpression of Th17 related genes, overexpression
of type I IFN-inducible genes and activation of the JAK/STAT
pathway (197–199). These first experimental results pave the
way for a future tentative application of JAKi in this disorder.
Lastly, JAKi could improve autoinflammatory disorders. A
patient with synovitis, acne, pustulosis, hyperostosis, and osteitis
(SAPHO), has been successfully treated by a combination of
methotrexate and oral tofacitinib (200). Similarly, the clinical
trials NCT01724580 and NCT02974595 proved efficacy of
baricitinib in a small group of patients affected by CANDLE
(chronic atypical neutrophilic dermatosis with lipodystrophy
and elevated temperatures) and SAVI (stimulator of IFN-genes
associated vasculopaty with onset in infancy) (201, 202).

CONCLUDING REMARKS

The introduction of JAKi in dermatology will revolutionize
the therapeutic outcome of various inflammatory skin diseases.
There is growing evidence that the JAK/STAT signaling pathway
is a key pathway in numerous skin disorders. However, we
are facing several hurdles. First, the development of selective
JAKi was harder than initially thought. First generation JAKi,
like tofacitinib and baricitinib, which were thought to be highly

Frontiers in Immunology | www.frontiersin.org 11 December 2019 | Volume 10 | Article 2847

https://www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Solimani et al. JAK Inhibitors in Dermatology

selective, target more than one single JAK. This is not necessarily
a disadvantage regarding efficacy, but of course may bear a
higher risk for toxicities (17). For instance, significant inhibition
toward JAK2 leads to anemia. Some unexpected adverse events
were also observed when using first generation JAKi (203–
205). One example is the increase in cholesterol levels by
tofacitinib (144, 206–208), which could be a paradox effect
induced by the reduction of inflammation (209). The more
recently developed JAKi seem to have improved selectivity
(25, 27, 210). The other caveat for treating skin disorders
via topical route is to generate formulations that allow small
molecules like JAKi to penetrate the skin. Here, improvements
like nanocarriers may be helpful (211–213). We still have a
high therapeutic need for several skin diseases like vitiligo,
AA, AD, LPP, LSA, and others. JAKi as topical formulation or
systemic drug could be an outstanding improvement without
side effects typically observed when using topical or systemic
glucocorticosteroids. Yet, in the majority of the aforementioned
skin diseases, we urgently need more evidence and larger double-
blind placebo-controlled studies to confirm efficacy and safety
of JAKi. The safety profile of JAKi reported so far seems
to be acceptable, at least when used as monotherapy. One
important question, which could favor the introduction of JAKi
in dermatological daily routine, is the comparison of these with
the well-established application of mabs. Even though studies
directly comparing JAKi with biologicals are widely missing for
dermatological indications, the anti-inflammatory properties of
JAKi are conceivably profound. Nonetheless, the safety profile
of these new compounds compared to the safety profile of
mabs seem not to be very different (214–216). Experience from
the here discussed studies show that severe adverse events
are rare. Common adverse events like infections of the upper
respiratory tract or common disturbances such as headache
or diarrhea can be frequent, but easy to manage (217–219)
(Table 1; Supplementary Tables 1–3). The reactivation of herpes
zoster infection seems to be more frequent in patients treated
with JAKi compared to those receiving biologicals and therefore
vaccination prior to treatment initiation should be discussed
(220–223). Blood count alterations seem to be reversible and
normalize after withdrawal (224, 225) (Table 1). Published
studies with different JAKi indicate an increased risk for bacterial

and viral infections (226–230). From an economic point of
view the lower production costs of JAKi compared to mabs
may favor their application in dermatology (231). However, the
simultaneous inhibition of multiple cytokines by systemic JAKi
bears the risk for fatal outcomes during severe infections and
possibly also the risk for cancer development on the long run
(232). Moreover, the dose and half-life of JAKi is an important
issue. It will be crucial to lower the threshold of JAK/STAT
activation but not to permanently block this pathway. Notably,
another major issue which must be addressed in the future and
which is presently unknown is the impact of these drugs on
long-term treatments setting. First data from non-dermatological
studies will be available soon, but data from longer observational
periods after approval for dermatological indications are needed
(233–236). This will be important for calculating the risk for
both, infectious and tumor diseases (237). In conclusion, JAK
inhibitory drugs are emerging as a new and effective treatment
for various diseases. So far, the results arouse enthusiasm among
dermatologist; nonetheless, further studies will decide about
the real-world efficacy and safety profiles of this new class
of immunomodulators.
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