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Well-adapted pathogens have evolved to survive the many challenges of a robust

immune response. Defending against all host antimicrobials simultaneously would

be exceedingly difficult, if not impossible, so many co-evolved organisms utilize

immunomodulatory tools to subvert, distract, and/or evade the host immune response.

Bordetella spp. present many examples of the diversity of immunomodulators and

an exceptional experimental system in which to study them. Recent advances in this

experimental system suggest strategies for interventions that tweak immunity to disrupt

bacterial immunomodulation, engaging more effective host immunity to better prevent

and treat infections. Here we review advances in the understanding of respiratory

pathogens, with special focus on Bordetella spp., and prospects for the use of

immune-stimulatory interventions in the prevention and treatment of infection.
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INTRODUCTION TO THE STRATEGY OF IMMUNOMODULATION
FOR HEALTH

We are exposed to vast numbers of pathogens during our lifespan, but only a small number
manage to cause disease. Invading bacteria face a hostile environment in hosts with arrays of
antimicrobial compounds and components of immunity. To persist in such an environment,
bacteria must find a way to survive this onslaught of antibacterials. The strategy of resisting them
all may be exceedingly challenging or impossible; instead, most of the best-studied pathogens have
mechanisms that allow them to evade the full effects of host defenses (1–12). In this review, we will
consider examples of novel approaches in vaccine and therapeutic development that have been
guided by the better understanding of bacterial immunomodulatory abilities. We will focus on
findings with Bordetella spp., considering novel adjuvants that enhance host immune response
and new immunostimulatory therapies that can augment the most effective aspects of the host
immune response. The results highlighted in this review demonstrate that the manipulation and/or
disruption of bacterial immunomodulatory properties are providing a highly promising approach
that could replace antibiotics in a near future. Understanding the mechanisms that bacteria utilize
to manipulate host immune response, as well as the immune signaling pathways that lead to greater
protective immunity, can guide the development of targeted interventions that can enhance the
host immune response to more effectively kill the bacterial hazard.
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GRAPHICAL ABSTRACT | Areas of investigation focused on the use of immunomodulation in prevention and therapy of infectious diseases. Created with BioRender.

THE BORDETELLAE; BIOLOGY; AND
EXPERIMENTAL SYSTEM

Pertussis disease is caused by B. pertussis, a highly transmissible
human pathogen that causes a respiratory illness also known
as the 100-day cough (13). Among the proposed reasons for
its resurgence are waning immunity (13), the end of the
“honeymoon period” (14), the past vaccination calendar (15), and
the failure of the current acellular vaccine to confer sterilizing
immunity and long-lasting herd immunity. The increase in the
number of cases is associated with more advanced diagnostic
tools than ever before, allowing for an increase in the number
of identified cases (16–31), but also with increased morbidity and
mortality that creates an unambiguous imperative for improved
prevention methods.

Vaccination has greatly increased life expectancy by
preventing several historically notorious infectious diseases
(32–36). However, we are witnessing a rise in several preventable
diseases previously thought to be controlled (37), such as
pertussis (38). Around 1945, a whole-cell vaccine against B.
pertussis was introduced, causing an unprecedented decrease
in the number of reported pertussis cases. However, due to
undesirable adverse effects such as fever, erythema, swelling,
drowsiness and others, this was replaced in several industrialized

countries by an acellular vaccine that contains between 3 to 5
bacterial proteins (39–44). Despite the fact that both types of
vaccines generate antibodies that impede bacterial adhesion and
have bactericidal action, these have not been sufficient to halt
the increase in the number of cases. In response to this increase
a boost was introduced to extend immunological memory, and
new vaccination strategies targeted to pregnant women and close
family have also been introduced as an attempt to protect highly
susceptible newborns (45–48).

As the number of cases continues to increase, the scientific
community is working to understand the causes that drive
this reemergence (13, 49). Amongst the proposed causes of
this increase are, limitation to the protection conferred by the
current acellular vaccine. Not only does the acquired anamnestic
response wane rapidly (50), but the acellular vaccine still allows
for bacterial colonization of the nasal cavity and shedding.
Combined, these factors illuminate the fact that the current
vaccines used in most industrialized countries still permit
transmission of pertussis from host to host (51–54), which has
even more significant impacts when considered in tandem with
the rise of anti-vaccination movements. Yet another cause for
the increase is the differences detected in the immune response
triggered by the whole cell vaccine (Th17) vs. the acellular vaccine
(Th2) (51, 55–57). It is important to highlight that while neither
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whole-cell nor acellular vaccines confer long-lasting immunity,
and the merits of both responses have been debated in recent
years, the general consensus agrees on advantages to skewing T
cell response toward Th1/Th17 immunity (58–61).

The “gold standard” of immunity to pertussis is considered to
be the classical Th1/Th17T cell response induced by convalescent
immunity (62); however, there is significant cumulative evidence
that infection-induced immunity is imperfect and shorter-lived
than it could be (50). Current discoveries contribute to better
understanding of the immune response to Bordetellae, and
the important role that CD4 resident T cells play in a local
memory response has been recently demonstrated (63). Another
hypothesis is that Bordetellae are evolving, and due to the genome
plasticity and adaptability of this pathogen, current isolates of B.
pertussis have lost some of the antigens included in the acellular
vaccine. This phenomenon is referred to as “vaccine driven
evolution,” which helps justify why immunity is not as robust as
it has previously been (64–67).

These are only some of the potential causes that are currently
being considered, and it is most likely an uneven combination
of all of them that is truly driving this pertussis resurgence.
Although the whole-cell vaccine is still used, the trend is shifting
toward a safer acellular vaccine, and efforts on improving their
performance and the length of protective memory these generate
will be discussed in this manuscript.

The current strategy for the development of vaccines is driven
by the hypothesis that antibodies provide strong protection.
As a consequence, most of the current acellular vaccines are
highly safe and generate a rapid antibody response that is
protective, albeit limited (68, 69). Importantly, infection triggers
a complex and well-orchestrated sequence of responses involving
many interacting components of innate and adaptive immunity,
directed by several signaling pathways that present numerable
known, and probably many more unknown, opportunities to
interfere in the succession of events that can skew the resulting
immune response.

Bordetellae harbor multiple mechanisms that allow them to
modulate the host immune response (1, 70, 71). Some of the
proteins that these organisms utilize to manipulate immune
cells include adenylate cyclase toxin (ACT), a pore forming
protein that leads to the deregulation of cAMP levels within
target cells (72, 73); type 3 secretion system (T3SS), a needle-
like structure that injects toxins within mammalian cells (74–76);
a type 6 secretion system that uses a phage-like mechanism to
inject molecules (77); pertussis toxin (PTX), which prevents G
proteins from interacting with G protein-coupled receptors on
the cell membrane and therefore interfering with intracellular
communication (78–80); and filamentous hemagglutinin (FHA),
which binds signaling receptors, enables adhesion to epithelial
cells and interferes with cytokine production (81, 82). Based
on these studies of various immunomodulators we can now
begin to adjust the way we design preventative and responsive
medications to fight bacterial infections in more effective ways.

A good understanding of the sequential reactions of the
immune response (and bacterial manipulation of them) is key to
improving the induction and maintenance of robust long-lasting
protective immunity. Some of the Bordetella spp. virulence

factors are already being investigated for treatments, such as
PTX for human immunodeficiency virus (HIV) treatment (83–
89). Understanding how we can alter bacterial ability to sense
and respond to the host to modulate its response can lead to
treatments and therapies that focus on the enhancement of more
appropriate and effective host immune responses.

IMMUNOTHERAPY IN PREVENTION

Adjuvants
The Bordetella pertussis acellular vaccine has not completely
blocked the spread of pertussis because it allows for colonization
of the nasal cavity (48) and provides only temporary protection
(13). Adjuvants are well-documented for their potential to
increase vaccine performance, and some adjuvants such as
CpG oligodeoxynuceotides or alum are commonly found in
vaccine formulations (90, 91). There are a plethora of adjuvants
that can potentiate the performance of a vaccine and can be
classified into two main groups: Toll-like receptors agonists
(92–94) and mucosal adjuvants (58, 95–97). These two distinct
classes have been closely considered for their contributions to
pertussis vaccines as well as therapeutics (98–103), yielding
highly promising enhancing properties.

Toll-Like Receptors Agonists
Toll-Like Receptors (TLRs) are highly sophisticated sentinels
that recognize specific pathogen-associated molecular patterns
(PAMPs). The differential activation of TLRs is one of the
main determinants for an efficient immune response against
pathogens. Under this premise, researchers have been working
on the addition of TLR agonists to vaccines with the expectation
that activating different TLRs will command the type of T
cell response produced (104) and will ultimately enhance host
protective immunity (105).

One of the best studied Toll-Like Receptors is TLR2, which
recognizes a broad spectrum of bacterial cell wall components,
including lipopolypeptides, peptidoglycan, and lipochoic acids,
that trigger different signals that shape the immune response
against the bacterial threat (106). It has been demonstrated that
the use of TLR2 agonists as adjuvants to already developed
vaccines increases immunity, especially in neonates (93). This
feature is highly relevant to the design of vaccines against diseases
that primarily affect newborns and young infants (93). Moreover,
TLR2 agonists in combination with the BCG vaccine can enhance
protection against Mycobacterium tuberculosis (107), skewing
the cellular response toward Th1 (100), and resulting in a
more robust protective memory response, further promoting
its use in vaccinology. TLR2 has been also correlated with an
efficient response to B. pertussis infections (108), and some
preliminary data has revealed that the use of these agonists
enhances protection against infection by pertussis (58, 100).
Altogether, these data suggest that TLR2 agonists may be
promising candidates to combine with current or new vaccines
to enhance the protective response.

Similarly, TLR4 appears a good candidate for vaccine
enhancement because it recognizes lipopolysaccharide (LPS)
molecules, which are commonly present on the surface of
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most bacteria. Agonists of TLR4 enhance the performance of
several vaccines including viral, bacterial, and evenmycobacterial
(109–113). One important aspect is its promotion of mucosal
immunity (114–116), which is critical for the generation
of protection against certain infections including gut and
respiratory diseases like pertussis (117–119), although this
increase is achieved via mucosal delivery of the vaccine rather
than systemic (120). Molecular evidence has revealed that the
addition of a TLR4 ligand to the acellular pertussis vaccine
resulted in a shift from a Th2-dominant response to additional
induction of Th17 (121, 122). The abundant immunological
evidence that highlights the role of TLR4 in the immune response
to B. pertussis (102, 123–130) indicates that TLR4 agonists
are promising candidate for the generation of more robust
protective immunity.

TLR5 (131) is also a highly plausible candidate to augment
vaccine performance since it recognizes flagella, which are
present in a multitude of bacterial species. Previous literature
has indicated that ectopic expression of flagella in Bordetella spp.
leads to faster clearance of the infection (132), and it was later
revealed that TLR5 activates antigen-presenting cells, increasing
T cell response (133) (manuscript in preparation), and may
ultimately contribute to the more rapid clearance previously
reported. In several other microorganisms, the addition of TLR5
agonists have resulted in an increased performance of the vaccine
(134–141). Altogether these data suggest that TLR5 agonists
could significantly increase the performance of the current
acellular pertussis vaccine.

TLR7 recognizes single-stranded RNA (142–153) and has
been demonstrated to be a promising vaccine adjuvant for
protection against several microorganisms (154, 155). Similar
to TLR2, the TLR7 agonist augments immunity in newborns,
the most susceptible population (93, 102, 143, 156, 157). The
addition of a TLR7 agonist to an alum-adjuvant of pertussis
vaccine skewed the immune response toward Th1/Th17 and
significantly decreased colonization (98), providing preliminary
data to further pursue this agonist in other animal models.

Lastly, TLR9 recognizes unmethylated CpG
oligodeoxynucleotides and promotes IL-6 secretion and
consequent B cell activation (158–168). It has been demonstrated
that enhancement of TLR9 receptors augment activity of
antigen-presenting cells in neonates (93, 102, 169). Addition
of a TLR9 agonist to the acellular pertussis vaccine resulted
in greater stimulation of B and T cells and a shift to Th1, as
well as higher antibody titers (81, 170–174), suggesting that an
agonist of TLR9 is also a candidate to add to the current pertussis
vaccines. These have the potential to be widely used agonists, as
most of the current vaccine’s efficacy is measured as an increase
in antibody titers.

Altogether, these results demonstrate that TLR agonists are
great candidates to be used as vaccine adjuvants to increase
protective immunity. Interestingly, some of the TLR agonists
substantially augment vaccine performance in newborns and
infants, which represent the most susceptible population (93,
169) although there are substantial hurdles to applying this
knowledge. Moreover, preliminary data obtained with TLR2, and
TLR7 agonists demonstrate the improved performance of the

current B. pertussis vaccine and indicates that the use of adjuvants
can feasibly potentiate and augment the generation of protective
immunity (58, 98, 100).

Mucosal Adjuvants
Adjuvants have been used to potentiate, enhance, or accelerate
vaccine effects since the 1920s (105) and the field has greatly
evolved since. Mucosal adjuvants include cholera toxin, heat-
labile enterotoxin, and other compounds have been studied for
their particular ability to increase protection on mucosal surfaces
(175). These are of extreme importance, not only because of
the aforementioned increase in vaccine performance, but also
because the delivery method involving intranasal vaccination
has a lot of potential for improving the delivery of the vaccine
and increasing acceptance among needle-phobic population.
In the following paragraphs we will detail the mechanisms of
action and the data compiled for some of the most promising
mucosal adjuvants.

Cholera toxin (CT) and heat-labile enterotoxin of Escherichia
coli (LT) are highly antigenic; however, due to their toxicity,
they are not ideal candidates for human therapies. Recently, safe
forms of these toxins created via genetic manipulation have been
utilized as adjuvants to enhance the function of mucosal vaccines
(103, 176–181). The mechanism behind this augmented immune
response induced by CT is an increase in the permeability
of the mucosal epithelium, enhanced antigen presentation, the
consequent promotion of dendritic cell maturation, increased
IgA response, and finally, the generation of complex stimulatory
and inhibitory effects on T cell proliferation and cytokine
production such as IL-4, IL-5, IL-6, and IL-10 that skew the
response toward a Th2-type (177, 182). CTA1 is the subunit
responsible for the immunomodulatory activity in conjunction
with ERdj5 in the endoplasmic reticulum, which is the target
for CT. In the absence of ERdj5, mice failed to produce
inflammatory cytokines, indicating that CT action requires ERdj5
(183). Similarly, the calcium-binding protein S100A4 is required
for efficient antigen presentation and enhanced activity of CT, as
it is necessary for the humoral and cellular response (184). CT has
been tested as an adjuvant for pertussis vaccine and preliminary
data suggests that it substantially improvesmucosal protection by
augmenting IgA levels (183, 185), and it has even been suggested
that this adjuvant may be safe for use in humans (186, 187). Some
studies have revealed that conjugation of CTwith pertussis toxoid
added to the current acellular vaccine (188) or Fimbriae (Fim2)
(189) are highly promising candidates to improve the generation
of protective immunity from these vaccines.

Similar to CT, the heat-labile enterotoxin from E. coli (LT)
promotes an antigen-specific response inducing IgA antibodies,
Th17 response, and the enhancement of long-lasting protective
immunity (190) while also being safe for use in humans (191).
LT promotes maturation of dendritic cells, antigen-specific IL-
17 positive cells, and production of IL-1α, IL-1β, and IL-23
by dendritic cells. Trials in animals have revealed the efficacy
of this adjuvant at enhancing mucosal response (192). LT
promotes dendritic cell maturation enhancing IL-1β production
through activation of caspase-1 and the NLRP3 inflammasome
complex. Simultaneously, LT enhances LPS-induced IL-1α
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and IL-23 expression through activation of ERK MAPK in
dendritic cells inducing the development of Th17T cells (193).
Interestingly, LT derivatives LTK63 (non-toxic mutant of LT)
and LTR72 (which retains partial enzymatic activity) revealed
two distinct phenotypes characterized by stimulation of IL-12
and TNF-α production by macrophages, resulting in enhanced
Th1 responses with the LTK63 adjuvants. In contrast, LTR72
suppresses LPS-induced IL-12 production, increases type 2
responses, inhibits Th1 response, and facilitates clearance of
bacterial burden (194), demonstrating that both subunits of the
toxin have particular activities that can be beneficial for the
improvement of the current acellular pertussis vaccine.

Another mucosal adjuvant that is widely investigated is
retinoic acid, a powerful immunomodulator that interferes with
growth, differentiation, and other aspects of the cell life cycle.
Importantly, retinoic acid is also essential in the generation of
mucosal immunity, the promotion of tolerogenic effects, the
generation of a robust innate and adaptive immune response, and
moreover, it also acts as a negative regulator of IgE production
(195–197). It has been hypothesized that retinoic acid plays a
fundamental role in sustaining mucosal homeostasis by down-
regulating IgE levels (197). Its performance as an adjuvant
has been studied in several organisms and the plethora of
results obtained have revealed that retinoic acid is a promising
candidate to use as an adjuvant of mucosal vaccines by itself
or encapsulated in nanoparticles (198–203). Unfortunately, its
activity in conjunction with the pertussis vaccine has not yet
been assessed.

The use of biopolymers in mucosally-administered vaccines
has substantially improved the current vaccine formulations and
has great potential for the future (204). Some of the presently
investigated biopolymers include alginate (205–212) and gellan
(213, 214). Although these are still in early stages of study, other
biopolymers, such as chitosan (95–97, 215–232), starch (233),
and β-glucan (234–241), have already been tested in animal trials
with encouraging success. While the use of biopolymers is still
rising, this area of investigation is highly promising, especially for
enhancement of mucosal protection. Mucosal delivery has been
explored for pertussis immunization from different approaches
that have resulted in hopeful results in which Th17 response was
enhanced and the animals were more robustly protected against
challenge (58, 170, 242, 243).

To summarize, several mucosal adjuvants are being
investigated, some of which are derived from toxins while
still others are derived from biopolymers. Both act to enhance
the performance of vaccines, particularly those that can be orally
or intranasally delivered, usually in cases in which mucosal
protection is a key component of immunity. However, these
further demonstrate that different strategies and approaches can
be used to improve the performance of the current vaccines to
produce and enhance individual and herd immunity.

Novel Vaccination Strategies
The combination of BCG and acellular pertussis vaccination has
been shown to reduce the mortality rate of pertussis (244–247).
Immunological studies unraveling the underlying mechanism by
which protection against pertussis is enhanced are necessary.

Some groups have focused on the addition of antigens to
the current vaccine in order to improve performance. After
demonstrating via in vitro experiments that the autotransporter
BrkA would be a good candidate to generate antibodies that
kill Bordetella spp., BrkA has been tested as an adjuvant of
the current acellular pertussis vaccine, the results of which
revealed robust lung protection against infection with B. pertussis
(248, 249). Two other autotransporters, Vag8 (250, 251) and
SphB1, when added to the current pertussis vaccine resulted
in improved protection against B. pertussis infection (252).
Adenylate cyclase toxin (ACT), when added to a current
vaccine formulation significantly decreased inflammation and
increased the generation of protective immunity (253, 254). BcfA
(colonization factor A) has been used as adjuvant in the current
vaccine, and the preliminary data obtained with the murine
model reveals that the addition of this adjuvant shifts the T cell
response toward Th1/Th17 (255).

Live vaccines have the potential to induce strong mucosal
protection, but suffer from concern about their risk. An exciting
new vaccine candidate against B. pertussis is the live attenuated
vaccine, BPZE1, which has been shown to induce a robust local
B and T cell response (256–282) despite genetically engineered
mutations that render it relatively safe (283, 284). Excitingly,
phase I trials demonstrate that the intranasal formulation of
the vaccine transiently colonizes the nasal cavity, leading to the
generation of stronger immunity (264, 268).

Several groups are currently working on the development
of outer membrane vesicles and outer membrane proteins in
protection against B. pertussis as well as cross-protection against
several Bordetella spp. and characterizing the immune response
as well as protective immunity (285–295). In animal studies,
immunization with outer membrane vesicles led to not only
better humoral and cellular (Th17) memory, but also to a
significant increase in IgA titers, which is one of the major
hurdles of current vaccination strategies against this pathogen
(296–298). It is important to highlight that the increase in IgA
responses upon immunization with outer membrane vesicles is
only obtained when these are administrated mucosally (299).
The classic delivery for OMV’s, which is subcutaneous or
intraperitoneal immunization, does not induce IgA responses
and this novel delivery method provides a great advance, as it
can be administered with more ease and induces an even better
immunological response. The increase in mucosal protection has
led to efforts toward improved nasal delivery approaches and
a thermostable spray containing outer membrane vesicles has
been developed. This spray significantly improves delivery and
decreases the discomfort other intranasal formulations might
cause. Importantly, this delivery method still maintains all the
outstanding qualities of the classical delivery of these purified
outer membrane vesicles (300).

Finally, another highly promising strategy is focused on the
disruption of bacterial ability to manipulate the host immune
response. Under the premise that bacteria harbor mechanisms
that allow them to sense and respond to host immunity,
disrupting these pathways would allow for the generation ofmore
robust protective immunity. A live attenuated vaccine in which
immunomodulatory mechanisms are disrupted might confer
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cross-protection against classical Bordetellae, which are known
to share many antigens. Although this is only the first study for
this method of vaccine design (manuscript in revision), this novel
approach has great potential for the generation of new vaccine
candidates and possibly therapeutics.

IMMUNOTHERAPY IN TREATMENT

LOS-Derived Oligosaccharide
Glycoconjugates
Pertussis toxin (PTX) in an inactivated form (PTd) functions
as a major protective antigen, stimulating production of toxin-
neutralizing antibodies which can protect against damage caused
by the toxin, but do not target the bacteria itself (301, 302);
however, it also demonstrates possible partial reversion back
to its toxic active form (303, 304), which may be responsible
for the reactogenicity seen in a small percentage of vaccine
recipients. It is also a secretory protein, which is only loosely
associated with the cell and is therefore not an ideal target for
bactericidal antibodies. A more effective target is an abundant
surface component such as the endotoxin lipooligosaccharide
(LOS), an LPS analog with a complete absence of the O-specific
polysaccharide chain that is produced by several varieties of
Gram-negative bacteria (305). LOS provides significant adjuvant
properties via induction of IL-12 and 1L-1β that promote Th1
and Th17 responses, respectively (306, 307). It also displays
pyrogenic, mitogenic, and endotoxic activity that necessitate its
conjugation or conversion to a less destructive form prior to its
use in a vaccine.

LOS conjugated to protein carriers filamentous
hemagglutinin, bovine serum albumin, and tetanus toxoid
(TTd) successfully induce a strong bactericidal response specific
to LOS presented on the surface of B. pertussis, leading to
complement-mediated destruction of the cell (90, 308, 309).
These protein carriers are also surface components, like LOS,
and the resulting surface-associated conjugate acts as a strong
target for antibody action directed against B. pertussis.

Somewhat surprisingly, another conjugate iteration in
which an LOS-derived oligosaccharide is covalently linked
with the secretory protein PTX yields a uniquely non-toxic
and immunogenic glycoconjugate that retains the antigenic
properties of PTX while also inducing the production of
bactericidal antibodies. The presumed linkage at the fetuin- and
glycoprotein-binding sites of PTX inactivates the enzymatic
activity of the protomer A and binding properties of oligomer
B, demonstrated using in vitro assays (310). Although the use
of LOS appears to be highly promising, in vivo studies still
need to be done to assess pharmacological parameters of safety
and biodistribution.

Cyclophilin Inhibitors
PTX is internalized in cells via endocytosis and then follows a
retrograde transport system to the endoplasmic reticulum. The
enzymatically active (A) subunit of PTX, PTS1, detaches from
the rest of the toxin in the ER and unfolds due to its thermal
instability. It is then transported into the cytosol with the help of
cyclophilin (Cyps), an important protein folding helper enzyme

that also is required to facilitate membrane translocation from
early endosomes into the cytosol of various ADP-ribosylating
toxins (311–313). Inhibiting Cyps activity has been shown to
in turn inhibit membrane translocation and protect cells from
intoxication with PTX and others (311).

Inhibition can be achieved via the approved
immunosuppressive drug cyclosporine A (CsA), which
specifically inhibits Cyps activity in mammalian cells by
binding directly to Cyps and forming a ternary complex. It has
been used as the primary agent in immunosuppressive regimens
such as grafts and transplants since the 1980s. It is now suggested
that CsA might interfere with the translocation of PTS1 from the
ER into the cytosol; it may also play a role in reassembling the
unfolded PTS1 subunit (311).

In vitro intoxication assays performed on CHO-K1 cells
demonstrated that CsA-treated cells were protected from PTX
intoxication. Interestingly, up to 50% of CsA is retained
intracellularly, even in the absence of extracellular inhibitor, after
18 h (314). Thus, presumably, intracellular Cyps stay inhibited
over a longer period of time, explaining the toxin-resistant
phenotype. This is also concomitant with the long retention of
CsA in different tissues observed after CsA administration in
human patients (315, 316). This inhibitor was delivered orally
during trials, but its use in a mucosal spray or as a directly
injectable vaccine component has yet to be investigated.

FUTURE DIRECTIONS AND CONCLUSION

Since the years of our notoriously premature celebration
of victory over infectious disease, there has been seemingly
inexorable retaliation. There is now justifiable concern,
shifting toward fear, about the combined threats of increasing
antibiotic resistance and the failures of current vaccines due
to factors including incomplete vaccine uptake, vaccine-
driven evolution and other threats. However, recent
advances in our understanding of immunology and the
tools to manipulate it present hope for more rational
targeted interventions that are focused on enhancing the
natural host response. Similarly, improved understanding of
strategies and mechanisms by which bacteria modulate the
immune response provides new targets for treatment and
prevention. In the coming years, we will likely witness an
expansion in the field of immunotherapy promoted by a better
understanding of the finely tuned interactions of bacteria
and host.
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