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Phagocytic cells [dendritic cells (DCs), macrophages, monocytes, neutrophils, and

mast cells] utilize C-type (Ca2+-dependent) lectin-like (CLEC) receptors to identify and

internalize pathogens or danger signals. As monitors of environmental imbalances, CLEC

receptors are particularly important in the function of DCs. Activation of the immune

system requires, in sequence, presentation of antigen to the T cell receptor (TCR) by

DCs, interaction of co-stimulatory factors such as CD40/80/86 on DCs with CD40L and

CD28 on T cells, and production of IL-12 and/or IFN-α/β to amplify T cell differentiation

and expansion. Without this sequence of events within an inflammatory environment, or

in a different order, antigen-specific T cells become unresponsive, are deleted or become

regulatory T cells. Thus, the mode by which CLEC receptors on DCs are engaged can

either elicit activation of T cells to achieve an immune response or induce tolerance. This

minireview illustrates these aspects with Dectin-1, DEC205, the mannose receptor and

CLEC10A as examples.
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INTRODUCTION

Carbohydrate-recognition domains (CRDs), or more specifically C-type lectin-like domains
(CTLDs), have evolved to generate a myriad of surface proteins that allow cells to monitor
their environment and sense danger. The repertoire of glycan and non-glycan ligands that these
receptors recognize is vast and internalization of the ligand begins the process of presentation of
antigen to T cells and generation of an immune response. A striking feature of DCs is their 3-
to 4-fold greater surface area to volume ratio than that of macrophages or lymphocytes, which
provides a greater “sweep volume” for DCs to scan their environment (1). The larger surface area
allows contact with ∼5,000 T cells per hour, with an average contact duration of about 3min.
The minimum dwell time for TCR triggering is 2 s, and the half-life of contact between antigen-
presenting cells (APCs) and T cells is 120 s, which is well within the 3-min window (2). The
number of different CLEC receptors expressed by myeloid cells mark them as truly sentinels of the
immune system (3–5). But these receptors can also cause DCs to become “tolerogenic” or induce
unresponsiveness (anergy) in T cells (6, 7).

DISCRIMINATION OF LIGANDS

CLEC receptors, by forming clusters, distinguish between ligands of different sizes. Whereas,
a single sugar generally binds with relatively low affinity (millimolar to micromolar range),
multivalent ligands on the surface of pathogens bind with several orders of magnitude greater
avidity (nanomolar to picomolar). Thus, the combination of CLEC receptors, which are
often multimeric (8), and multivalent ligands provide a highly sensitive detection system. A
revealing example of the role of these factors is recognition and discrimination of ß-glucans
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by Dectin-1 (CLEC7A, CD369) (9). Large ß-glucan polymers
such as yeast cell walls induce formation of extensive clusters
of Dectin-1 along the particle surface that exclude the cell
membrane phosphatases, CD45 and CD148. Consequently,
the hemi-immunoreceptor tyrosine-based activation motif
(hemITAM, i.e., a single YxxL/F motif with an upstream triacidic
sequence) in the cytoplasmic domain of Dectin-1 initiates signals
through the kinases Src and Syk (9). This motif is also present
in the cytoplasmic domain of other C-type lectin receptors
(3, 4, 10) and is in contrast to the two immunoreceptor tyrosine-
based activation motifs in tandem that describe an ITAM
(YxxI/Lx6−12YxxI/L) (3, 4). The phagocytic process involves
massive reorganization of cellular membranes, coordinated
by the actin cytoskeleton (11), which also generates reactive
oxygen species by activation of NADPH oxidase in the plasma
membrane (12) to kill the pathogen. Digestive enzymes are
inserted into an acidified endolysosomal system to degrade
the invader, and degradation products are then presented in
MHC class I or class II complexes on the cell surface. The
extensive structural changes of the cytoskeleton and plasma
membrane required for phagocytosis are dependent on an
elevated cytosolic concentration of Ca2+ (13). In contrast, small,
soluble oligosaccharides of ß-glucans such as laminarin bind
only a few Dectin-1 molecules and result in a receptor cluster
too small to exclude the phosphatases. Thus, phosphorylation
of tyrosine in the hemITAMs is not sustained and signal
transduction is minimized (9).

Phagocytic cells also recognize polymers such as mannan,
a polysaccharide of mannose and glucose, that is present in
the yeast cell wall and recognized by the mannose receptor C-
type 1 (MRC1, MR, CLEC13D, CD206) (14, 15). MRC1 is a
type I membrane protein that contains 8 CRDs in its external
domain (15) and is expressed on macrophages and immature
DCs (16–18). DCs that emerge under inflammatory conditions
from monocytes (mo-DCs or infDCs) highly express MRC1
(19, 20). Glycoproteins that contain mannose, fucose, glucose,
or N-acetyl glucosamine bind MRC1 (15) and are found in
early endosomes after endocytosis (21). Whereas, MRC1 binds
preferentially to single mannose residues, the type II protein
receptor DC-SIGN [dendritic cell-specific intercellular adhesion
molecule (ICAM)-3 grabbing non-integrin, CLEC4L, CD209]
has a single CRD but the multimeric receptor preferentially binds
high-mannose oligosaccharides (22). DC-SIGN is expressed by
murine and human monocyte-derived immature and mature
DCs (23–26) but not by DCs that differentiate from monocytes
under the highly inflammatory conditions of ovarian ascites in
humans (20). Other C-type, mannose-binding receptors are the
type II receptors Dectin-2 (CLEC6A) and langerin (CLEC4K,
CD207) (27), and C-type lectin DC immunoreceptor (DCIR,
CLEC4A, CD367), which belongs to the Dectin-2 family and
contains an immunoreceptor tyrosine-based inhibitory motif
(ITIM) and sustains type I IFN (IFN-α/β) signaling through the
transcriptional factor STAT3 (28).

Carcinoma cells richly express the Tn antigen (N-
acetylgalactosamine [GalNAc]-OSer/Thr) (29, 30), which

binds to the type II GalNAc-specific, C-type lectin domain family
10 member A (CLEC10A, CD301, also designated the human
macrophage galactose-type lectin, hMGL, or simply MGL)
on DCs and macrophages (31–33). Two forms of MGL were
identified in the mouse, mMGL1 (CD301a), which preferentially
binds ligands containing terminal galactose, and mMGL2
(CD301b), which is specific for GalNAc (34). Subcutaneous
injection of the Tn antigen into patients bearing a carcinoma
tumor causes a delayed hypersensitive response, indicative of
the presence of Tn-specific T cells (30). However, the single
sugar ligand, as the Tn antigen, binds with relatively low affinity
(KD = 8–12µM) to CLEC10A (33, 35). Linear glycopeptides
(33, 35) or dendrimers built on a tri-lysine core (36–38), which
contain 4–12 GalNAc residues, have KD values of 50–100 nM, an
indication of the effect of multivalency. These larger structures
induced a strong Tn-specific TH2 and B-cell anti-tumoral
antibody response with secretion of IL-4, IL-5, IL-13, and
IL-10 (38). Kurze et al. (39) showed that expression of the Tn
antigen is induced by tamoxifen, oxidative stress, and DNA
damage in breast cancer tissues, which enhanced binding of
CLEC10A (40), and was associated with improved outcome
and survival.

Ligand constructs that include the Tn antigen take advantage
of the sugar as the specific natural ligand for CLEC10A (38).
However, a short peptide sequence has been found that mimics
GalNAc and binds to CLEC10A with much higher avidity (41).
This peptide is effective in suppressing ovarian ascites, which
is an inflammatory environment that recruits monocytes that
differentiate into DCs that express CLEC10A (41–43). The
response to treatment of ovarian ascites in mice with this peptide
demonstrated that not only the properties of the ligand but
also the tumor environment and frequency of dosing determine
whether co-stimulatory factors continue to maintain activity of T
cells or DCs initiate tolerance (41).

CLECs often function in combination with toll-like receptor-
2 (TLR-2) for detection of pathogens (36, 44, 45), which forms
heterodimers with TLR1 or TLR6 to bind lipoteichoic acids and
lipoproteins in the pathogen cell wall. The cytoplasmic domain
of TLR2 binds the adapter proteins TIRAP and MyD88 and
activates a signal transduction pathway that leads to NF-κB
and AP-1 and eventual phagocytosis (46–48). van Vliet et al.
(36) and Heger et al. (49) found that antibodies against MGL
(CLEC10A) on human DCs did not induce release of IL-10 or
IL-12 but stimulated release of IL-10 and TNF-α upon addition
of TLR ligands (Pam3CysK4 for TLR2, LPS for TLR4, or R848
for TLR7/8).

Subsets of human DCs express distinct patterns of CLEC
receptors. Dectin-1, DEC205 (CLEC13B, LY75, CD205), and
DCIR are highly expressed on CD141+, CD1c+, and CD16+

subtypes (50). As analyzed by single-cell RNA sequencing,
CD141+ DCs (DC1) express, among other distinctive genes,
the unique marker CLEC9A, whereas CD1c+ DCs (DC2A and
DC2B) express the unique marker CLEC10A (49, 51, 52). Mo-
DCs in the inflammatory ascites environment are DC2-type in
which CLEC10A but not CLEC9A is expressed (42).
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ENDOCYTIC RECEPTORS

Immature DCs actively internalize surrounding material
by “non-specific” macropinocytosis and “specific” receptor-
mediated endocytosis and phagocytosis (53, 54). A specific
“endocytosis” motif, the tyrosine-containing sequence YENFY in
MGL (CLEC10A), YKSL in DC-SIGN, FENTLY in MRC1, and
FSSVRY in DEC205 were identified in the cytoplasmic domain
of several CLEC receptors that are similar to the hemITAM
(15, 24, 55). As with other regulatory motifs, phosphorylation
of the tyrosine residue in the motif is required for activity.
Valladeau et al. (56) described an asialoglycoprotein receptor,
homologous to the hepatic ASGPR-1 (57), that is expressed
by DCs and designated DC-ASGPR. Similarly to CLEC10A,
DC-ASGPR undergoes ligand-induced endocytosis with a t½
of 5–8min at 37◦C and delivers bound antibodies to early
endosomes (55, 56, 58). The short isoform of DC-ASGPR
is identical to the sequence of human CLEC10A, with the
exception of a three-amino acid deletion near the base of the
CRD (56). The long isoform has an insertion of 27 amino
acids in the membrane proximal region of the extracellular
CRD. Higashi et al. (25) described a total of seven isoforms
of this receptor in humans, which are splicing variants from
a single gene, and all contain the YENF endocytosis motif in
the cytoplasmic domain. Overall endocytic activity decreases
as DCs mature in response to inflammatory conditions
(53, 54), including expression of MRC1 (54) and CLEC10A
(49). However, expression of DEC205 was upregulated
in the mouse and continued to capture antigens as DCs
matured (54).

Within the cell, a second level of discrimination occurs.
Internalization, degradation of the pathogen within the
endosomal/lysosomal vacuolar pathway, and antigen
presentation on the cell surface may require an extended period
of time, depending on the ligand (21, 58–60). Large glycoproteins
can be trapped in early endosomes and progress slowly through
the vacuolar system for digestion and presentation on MHC
class II complexes. In contrast, small glycopeptides enter the
vacuolar system rapidly but also enter the cytosol and are cross-
presented via MHC class I complexes to CD8+ T cells. Mo-DCs
in inflamed tissues efficiently cross-present small antigens (10-
and 26-mer peptides) to CD8+ T cells and stimulate CD8+ T
cell proliferation and secretion of IFN-γ with the help of CD4+

T cells (42). A modified MUC1-derived glycopeptide bearing
multiple Tn antigens was internalized by CLEC10A expressed by
DCs and processed throughMHC class I and II pathways but was
still detectable in these compartments 24 h later (58). Similar to
endocytosis by MRC1, a larger MUC1 glycoprotein was confined
to the endosomal compartments and was not processed through
the MHC pathways.

Although Dectin-1 is an exception (61), CLEC receptors
generally require 2–4 Ca2+ ions in the CRD to bind a
ligand (22, 33, 57). Endocytosis of these receptors therefore
transfers bound Ca2+ into the endosome along with Ca2+

in extracellular fluid. The large concentration gradient of
Ca2+ from ∼1 to 2mM outside the cell to 100 nM in the
cytosol drives a flux across the endosomal membrane (32).

As a “second messenger,” Ca2+ activates metabolic pathways
through regulatory proteins (62–64). Activation of protein
kinase C and calmodulin-regulated networks of kinases and
phosphatases such as calmodulin-dependent kinase II and
calcineurin occurs within minutes. The initial increase in Ca2+

may be augmented by activation of phospholipase C, which
generates inositol trisphosphate, the signal for release of Ca2+

from the endoplasmic reticulum (65, 66).

INDUCTION OF TOLERANCE BY CLEC

RECEPTORS

In 1987 Jenkins and Schwartz presented evidence that antigen-
specific T cells cultured in vitro with splenocytes, which were
coupled to antigen through a carbodiimide derivative, became
unresponsive within several hours (67). The effect appeared
within 2 h, was essentially complete by 16 h and lasted more than
a week. These results were confirmed with in vivo studies and
indicated that the carbodiimide derivative inactivated a factor on
the antigen-presenting cells that was required to sustain T cell
activity. Some years later, Steinman and colleagues observed that
when the C-type lectin receptor DEC205 on DCs in mice was
engaged by subcutaneous injection of an anti-DEC205 antibody-
antigen conjugate and T cells were isolated 2 days later and
challenged with the antigen, activation of antigen-specific T
cells was demonstrated by the release of IFN-γ and IL-2 and a
proliferative response. However, when challenged 1 week later,
T cells were unresponsive (17). Injection of an antibody agonist
of CD40, a co-stimulatory protein expressed by DCs, sustained
activation of T cells. Thus, in the absence of co-stimulation,
presentation of antigen by “steady-state” or immature DCs led to
transient activation of antigen-specific T cells followed by T cell
deletion and anergy in surviving cells (17, 68).

The discovery of tolerance by delivery of antigens through
DEC205 to immature DCs led to an extensive line of research
into treatments for autoimmune diseases (69–71). In particular,
when the myelin oligodendrocyte glycoprotein (MOG) was
coupled to an antibody specific for DEC205 and injected
intravenously into mice, the symptoms of experimental allergic
encephalomyelitis (EAE), a model system for muscular
dystrophy, were drastically suppressed (69). However,
intravenous injection of MOG35−55, a major autoimmune
epitope of the glycoprotein, alone also suppressed the symptoms
of EAE (72). Definitive evidence for the role of DEC205 in
EAE tolerance were experiments in which anti-DEC205/MOG
was injected subcutaneously (17, 70) or intraperitoneally (71).
This treatment also elevated the number of IL-10-secreting
Treg cells, which was dependent on the transcription factor
Hopx (71). Moreover, antigen-loaded DCs that migrate to
draining lymph nodes have a superior ability to generate
Treg cells to support the tolerogenic state (70, 73). Similar
results were obtained in a mouse model of rheumatoid
arthritis with a proteoglycan conjugated to an antibody against
DEC205 (74).

DEC205 is a type 1 protein receptor that contains 10 CRDs
(15) and has a short cytoplasmic tail with an endocytic motif
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similar to MRC1 (15, 24, 75). DEC205 does not bind a sugar
but is a receptor for CpG-rich oligonucleotides (76, 77) The
filamentous bacteriophage fd, whose single-stranded DNA is
rich in CpG, binds to DEC205 and effectively delivers antigens
to late endosomes or lysosomes (77). As with MRC1 (21),
DEC205 recycles back to the cell surface within 1 h (75).
In humans, mature DCs down-regulate MRC1 and DEC205-
mediated endocytosis (54, 78). DEC205 is over-expressed in high-
grade serous ovarian tumors as compared with low malignant
potential tumors or normal tissues (79). A fully humanized
monoclonal antibody against DEC205, when cross-linked to
a cleavable maytansinoid derivative that disrupts microtubule
function, targeted the receptor on tumor cells andwas an effective
anticancer agent (80).

An antibody against MRC1 on immature mo-DCs induced
maturation of the cells as indicated by upregulation of
CD80/83/86 but also increased secretion of IL-10 and decreased
secretion of IL-12 (18). As with DEC205, T cells cultured with
these DCs initially had a proliferative response but then became
unresponsive to challenge. An aggregate of lipoarabinomannans
from Mycobacterium bovis or M. tuberculosis, capped with
mannose, bound to MRC1 and inhibited release of IL-12,
a key factor in development of the TH1 response by T
cells (81). MRC1 brings the cancer-related, highly glycosylated
protein MUC1 into early endosomes when taken up by
DCs but is recycled to the cell surface with some of the
ligand still attached (21). MUC1 that dissociated from the
receptor remained undegraded for more than 24 h within early
endosomes (58). The inertness or slow processing of MUCI
results when the sites of cleavage by lysosomal cathepsin L
are blocked by glycosylation, and thus presentation to CD4+

T cells lags far behind the endocytic event (82). In apparent
contrast, MUC1 coupled to mannan and then oxidized with
sodium periodate to introduce aldehyde groups rapidly entered
macrophages through MRC1, was processed in the cytosol and
activated CD8+ T cells through the MHC class I pathway (83,
84).

Targeting DC-ASGPR (CLEC10A) on mo-DCs with
antigen-conjugated antibodies induced antigen-specific CD4+

T cells to produce the cytokine, IL-10 (85). Intradermal
injection of these conjugates into non-human primates also
elevated IL-10 and reduced IFN-γ levels in blood. Further
studies showed that binding of an antibody to DC-ASGPR
induced maturation of DCs, indicated by expression of CD86,
and activated a Src/Syk signal transduction pathway that
includes PLCγ2, ERK1/2, p90RSK, and CREB, which led to
expression of IL-10 (86). The increased secretion of IL-10 but
decreased secretion of IFN-γ and IL-12 are indicative of a
tolerogenic profile.

Within the reciprocal relationship between the anti-
inflammatory IL-10 and pro-inflammatory IL-12 (87), IL-10
is produced by APCs that are activated by an increase in
intracellular Ca2+ (88–92). Endocytosis of pathogens by CLECs
expressed by these cells increased intracellular Ca2+, which can
lead to expression of the IL10 gene via the signal transduction
pathway described above by Gu et al. (86). Phosphorylation

of the transcriptional factor CREB by calmodulin-dependent
protein kinases mediates the response to Ca2+ and production
of IL-10 (93). In contrast, IL12 expression is promoted by low
intracellular Ca2+ concentrations and regulated by NF-κB
(89, 94, 95).

REGULATION OF T CELL ANERGY AND

EXHAUSTION

Extensive evidence has been obtained that presentation by DCs
of extrinsic antigen alone to T cells is insufficient to maintain T
cell activity and leads to tolerance. Activation of T cells is induced
by mature DCs, but either absence of a co-stimulatory signal or
inability to process an antigen allows an inhibitory system in
T cells to become dominant, which leads to a state of anergy
(6, 7, 96). Heissmeyer et al. (97) showed that a sustained elevated
Ca2+ signaling induces a state of unresponsiveness in T cells by
calcineurin-mediated degradation of PLC γ1 and PKCθ. PLC γ1
activity leads to activation of NFAT, whereas PKCθ activity is
required for activation of AP-1, which in combination with NFAT
induces expression of activation genes (98). Without AP-1, NFAT
locks in an inhibitory pattern of gene transcription (96–98). A
more lengthy process, described as “exhaustion,” is associated
with loss of effector T cell function and altered transcriptional
patterns (99). Whereas, anergy is achieved within a few days,
development of exhaustion requires weeks. The exhausted state
can be overcome by checkpoint blockade (100).

Functional presentation of digestion products to T cells
requires three signals. Sckisel et al. (101) stated that “primary T
cell activation is tightly regulated and requires three signals in
sequence: signal 1, where TCR recognition of cognate antigen
in the context of major histocompatibility complex (MHC)
restriction occurs; signal 2, involving binding of costimulatory
molecules; and signal 3, where cytokine ‘instructions’ direct and
amplify T cell differentiation and expansion.” Low density (i.e.,
low concentrations or poor affinity) of an antigen can lead to
anergy; higher concentrations of the antigen can maintain T cell
activation (102). The inflammatory stimulus (signal 3) occurs
via secretion by DCs of cytokines such as IL-12, the principal
cytokine for a TH1 response, or type I interferon (IFN-α/β)
(43, 103). Secretion of the type I interferons is an expression
of danger signals emitted by stressed cells that provide the
essential context for an immune response, without which T cells
receive a tolerogenic signal from DCs (104–106). Tolerance that
results from clonal deletion of T cells to which antigens are
presented by “steady state” DCs is a major factor in prevention
of autoimmunity (104).

A major characteristic of immature DCs is their capacity as
sentinels to scan their environment, perform receptor-mediated
endocytosis and phagocytosis, with subsequent maturation and
interaction with T cells. CLEC receptors are intimately involved
with instructions, described above, given to T cells that determine
their course of action, whether destruction of tumor cells
or, by different mechanisms, anergy or tolerance. Along with
understanding conformational changes within the CRD induced
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by ligand binding (107), the signals that lead to these functional
consequences are becoming clear.

ADDENDUM

Taylor and Drickamer (108) provided an up-to-date review
of mammalian sugar-binding receptors. A complete catalog
of CLEC receptors is at the web site for the Imperial
College London1.

1http://www.imperial.ac.uk/research/animallectins/ctld/default.html
http://www.imperial.ac.uk/research/animallectins/ctld/mammals/domain.html
http://www.imperial.ac.uk/research/animallectins/ctld/mammals/mammals.html
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