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Over the past two decades, the field of multiple sclerosis (MS) has been transformed

by the rapidly expanding arsenal of new disease modifying therapies (DMTs). Current

DMTs for MS aim to modulate innate and adaptive immune responses toward a less

inflammatory phenotype. Since the immune system is also critical for identifying and

eliminating malignant cells, immunosuppression from DMTs may predictably increase

the risk of cancer development in MS patients. Compared with healthy controls, patients

with autoimmune conditions, such as MS, may already have a higher risk of developing

certain malignancies and this risk may further be magnified by DMT treatments. For

those patients who develop both MS and cancer, these comorbid presentations create a

challenge for clinicians on how to therapeutically address management of cancer in the

context of MS autoimmunity. As there are currently no accepted guidelines for managing

MS patients with prior history of or newly developedmalignancy, we undertook this review

to evaluate the molecular mechanisms of current DMTs and their potential for instigating

and treating cancer in patients living with MS.

Keywords: multiple sclerosis, disease modifying therapy, cancer, treatment of autoimmune disease, multiple

sclerosis drug mechanism, cancer treatment, multiple sclerosis treatment

INTRODUCTION

Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous
system (CNS) and the leading non-traumatic cause of neurological disability in young adults. At
diagnosis, most patients are started on a DMT, an immunomodulating or immunosuppressive
therapy, that will likely be continued for life. While the DMT therapies have offered substantial
benefit for MS patients, they have also introduced the potential for causing cancer as an adverse
effect. With 17 DMTs available for the treatment of MS (Figure 1), clinicians are faced with the
critical decision of how to screen MS patients for potential risk of malignancy with currently
available DMTs and how to manage DMTs in MS patients who either had prior history of cancer or
newly develop cancer while on a DMT.

The immune system plays an important role in both MS and cancer. It is possible that
activation of the immune system in MS results in protective effects against cancer by increasing
immunosurveillance, while chronic inflammation and use of certain immunosuppressive therapies
could result in loss of immune protection against cancer or activation of the immune system
to become pro-tumoragenic (1). At the same time, many of the available MS DMTs had been
used for years as cancer treatments prior to being re-purposed for MS, such as rituximab,
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FIGURE 1 | Multiple sclerosis drug approval timeline.

cladribine, and methotrexate, while other DMTs are
actively being evaluated for their anti-tumor potential,
such as dimethyl fumerate, fingolimod, and teroflunomide.
This interesting dichotomy between the potential for
cancer induction and cancer inhibition suggests that
immunomodulatory and immunosuppressive MS medications
may be acting in a context dependent manner in
susceptible individuals.

The data on cancer prevalence and incidence in MS patients
has been conflicting. Prior to the advent of oral and intravenous
(IV) DMTs, studies suggested that the risk of cancer was equal
(2, 3) or lower (4–6) in untreated MS patients or in MS patients
treated with interferons and Copaxone, while other studies
suggested a higher risk of certain cancers. Incidence of breast
cancers has been found to be increased (2, 3, 7, 8), decreased
(5), or the same (9, 10) in MS patients. Gastrointestinal cancers
have been noted to be higher or lower in MS populations
(1, 3). Urogenital (3, 11), central nervous system (8, 12),
and skin cancers (1, 13) appear to be higher in the MS
population. Several studies have found that while cancer risk
in MS patients may not differ from the general population,
the risk appears to be lower in male patients compared to
female patients, and increases with age (7, 14, 15). Overall,
there is general agreement that immunosuppressant therapies,
such as azathioprine, methotrexate, cyclophosphamide, and
mitoxantrone have led to increased cancer risks in MS patients
and this risk is related to patient’s family history of cancer,
duration of treatment and cumulative dose (16, 17). More
recent large cohort studies, have incorporated oral and IV
therapies along with other cancer risk factors, such as alcohol
and smoking, demonstrating no increase in cancer risk in

MS population (7, 18, 19). Varying study outcomes have been
attributed to differences in study design, methodology, sex
of participants, accountability for environmental cancer risk
factors, and participant geographical location. In addition, lack
of long-term safety registries overseen by a central body,
have led to bias in reporting and assessment of how cancer
risk compares to the risk for the general population across
different countries.

Our goal in this review is to concisely summarize the
molecular mechanism of available DMTs and their mechanistic
relationship with potential for causing and treating cancer. We
hope that this review will be of interest to clinicians caring for
patients with MS, basic science immunologists, oncologists, and
cancer biologists.

FIRST APPROVED DISEASE MODIFYING
THERAPIES IN MS

Interferon-β Therapies: Betaseron, Avonex,
Rebif, Plegridy
Interferon-β (IFN-β) therapies revolutionized management of
MS as the first MS specific DMTs, following their initial approval
in 1990’s. Interferons differ in the frequency and mode of
administration, for example betaseron, rebif, and plegridy are
subcutaneous, while avonex is intramuscular. The pegylated IFN-
β-1a, plegridy, has a long half-life and is administered once
every 2 weeks. IFN-β-1b is made and purified from Escherichia
coli, and has amino acid differences from the body’s own IFN-
β, while IFN-β-1a is manufactured in the Chinese hamster
ovary cell line and has the same protein sequence as the
native IFN-β.

Interferons are cytokines that are naturally produced in the
body in response to immune stimulation, viral infections, and
other chemical stimulation (20). Isaacs, Lindenmann, Paucker,
and others, defined interferons as antiviral agents with potential
for antigrowth and anti-inflammatory activity. IFNs are now
classified as Type I (IFN-α, β, and ω), Type II (IFN-γ)
or Type III (IFN-λ). Although both IFN-α and IFN-β have
been studied in MS, IFN-β therapies have been shown to be
superior in the management of MS, likely due to their higher
immunoregulatory actions and less severe adverse effects profile
(21–23). It is noteworthy though that a preserved in vivo response
to IFN-α has been observed in MS patients with neutralizing
antibodies against interferon-beta and that IFN-α2a reduces
MRI disease activity in relapsing-remitting multiple sclerosis
(RRMS) (22). IFNα has been shown to be an important anti-
viral therapy in the treatment of hepatitis B and C, HIV, herpes
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zoster, as well as in the management of different malignancies,
including melanoma, chronic myelogenous leukemia (CML),
B cell leukemia (BLL), follicular lymphoma, non-Hodgkin’s
lymphoma, mycosis fungoides, multiple myeloma, AIDS-related
Kaposi’s sarcoma, carcinoid, and also bladder, renal, epithelial
ovarian, and skin cancer (24). IFN-β-1a has also been used in the
treatment of adrenocortical and carcinoid cancers (25, 26).

Mechanistically, type I interferons signal through interferon
alpha/beta receptor-1 (IFNAR1) and interferon alpha/beta
receptor-2 (IFNAR2), leading to activation of tyrosine kinase
2 (Tyk2) and janus kinase-1 (JAK1), signal transducer and
activated transcription-1 (STAT1) and signal transducer and
activated transcription-1 (STAT2) phosphorylation cascades,
and ultimately activation of hundreds of genes important
in IFN mediated immune and antiproliferative functions
(27). In MS, IFN-β is thought to down-regulate major
histocompatibility complex II (MHC II) expression and decrease
lymphocyte activation (28). IFN-β mediated increases in
apoptotic markers, Annexin-V and caspase-3, leads to specific
B memory cell depletion. Additional mechanisms for IFN-β
include downregulation of adhesion molecules such as very late
adhesion-4 (VLA-4), it’s ligand vascular cell adhesion moleculae-
1 (VCAM-1), and matrix metalloproteinase (MMP), resulting
in lower transmigration of lymphocytes across the blood–
brain barrier (23). Activation of STAT1/STAT2 also contributes
to secretion of anti- inflammatory cytokines, e.g. Interleukin
10 (IL-10), which can shift the immune profile toward anti-
inflammatory T helper 2 (Th2) cells (29).

Both immune cells and tumor cells can produce interferons in
a complex interplay. Type I interferons, such as IFN-α and IFN-
β, produced by plasmacytoid dendritic cells can lead to multiple,
diverse, downstream actions (24). These include upregulation of
MHC I on APCs and expression of tumor cell antigens (30, 31),
differentiation of CD8+ T cells into cytolytic effector cells (32),
downregulation of T regulatory cells (33), reduction in IL-12p40
(34), and upregulation of IL15 together with further lymphocyte
expansion (30). Type 1 IFN-orchestrated actions contribute
toward inhibition of tumor cell differentiation, proliferation,
migration and an increase in tumor cell death. IFN-α and
-β can inhibit tumor cell growth in different malignancies
in specific ways. For example, in neuroblastoma, IFN-β can
induce apoptosis via downregulation of phosphatidylinositol 3-
kinase/protein kinase B signaling (35). In melanoma and breast
cancer, IFN-β induces cell death via the extrinsic TNF-related-
apoptosis-inducing-ligand (TRAIL)-dependent pathway (36). In
cervical cancer, Type I interferons signal via the extrinsic cellular
FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein
(cFLIP) and caspase-8 ligands (37). Interestingly, tumor cells, by
means of somatic copy number alterations (SCNA), can “turn
off” IFN-α and IFN-β production by homozygously deleting
their respective genes (38). These mechanisms could potentially
allow cancer cells to evade the immune system and metastasize.

There were no cancers associated with IFN-β in MS clinical
trials. However, since the initial Federal Drug Administration
(FDA) approval of IFN-β, there has been a trend for breast
cancer noted in a study of the British Columbia MS database,
evaluating a cohort of 5146 relapsing-onset MS patients and

48,705 person-years of follow-up, that did not reach statistical
significance (39).

Glatiramer Acetate (Copaxone)
Glatiramer acetate (GA), was approved in 1996 in the US and in
2001 in Europe for RRMS and became the second non-interferon
DMT to be approved for MS. It is an amino acid polymer,
originally developed as an agent to mimic myelin basic protein
in an effort to induce autoimmune encephalomyelitis (EAE) in
an MS mouse model (40). The result of administrating GA to
mice was a paradoxical improvement in EAE, and these studies
paved the way toward open-label MS trials in patients (41). GA is
administered subcutaneously.

The mechanism of action of GA is not fully understood, and
likely involves activation of both the innate and adaptive immune
systems, upregulation of anti-inflammatory M2 monocytes,
Th2 cells and T regulatory cells (Tregs) (42). Studies using
radiolabeled GA demonstrate that the gastrointestinal tract and
thyroid gland contain the highest GA levels, with lowest levels in
the CNS. GA and its metabolites are hydrophilic, which might
prevent its crossing the blood–brain barrier, pointing toward
largely peripheral actions of GA in MS (43).

Despite relatively lower efficacy in disease modulation, GA is
considered to have a strong safety profile and no cancers were
reported in clinical trials. In the post-marketing era surveillance,
one study found an increased relative risk for breast cancer
for females, though this was not statistically significant (9).
Other studies have not found a significant association between
GA and breast cancer (16, 39). Several skin cancers have been
reported in patients on GA, including one case study of primary
cutaneous anaplastic large- cell lymphoma and one case study of
melanoma (44, 45).

LYMPHOCYTE TRAFFICKING
INTERRUPTION: NATALIZUMAB AND
SPHINGOSINE-1-PHOSPHATE RECEPTOR
AGONISTS

Natalizumab (Tysabri)
Natalizumab is the first monoclonal antibody for management
of MS, approved in 2004, and remains one of the most potent
DMTs in MS. By selectively blocking lymphocyte α4β1 integrin,
natalizumab effectively prevents lymphocyte transmigration
across the blood brain barrier to the CNS (46).

Natalizumab would appear to be a promising anti-cancer
drug due to its ability to block cell adhesion. For example,
α4β1 integrin is necessary for melanoma metastasis into lymph
nodes and integrins are important for tumor angiogenesis (47).
Although natalizumab has been considered as a treatment for
multiple myeloma (48) and certain stages of melanoma (49),
it has not overall proven to be a successful candidate in
cancer therapeutics. Part of the reason is thought to relate to
differences in leukocyte and cancer cell extravasation into tissues.
Whereas, leukocytes heavily rely on integrins for migration
into inflamed tissues, cancer cells have evolved complex and
varied approaches to interact with their microenvironment for
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metastasis. Cancer cells either do not use integrins due to
transition from mesenchymal to ameboid forms, can express
multiple adhesive receptors, or can switch from the use of one
integrin to another for adhesion and metastasis (50).

Several types of cancers have been reported with natalizumab
use, including melanoma, breast cancer and diffuse large B
cell lymphoma (Table 1) (52). The mechanism to explain
susceptibility to natalizumab-associated cancers likely has to do
with decreased T cell migration to tumor sites due to blocking
of α4 integrin which interferes with antigen-specific T cells
activation (78). Interestingly, α4β1 integrin may also play a role
in reducing the invasive potential of melanoma cell lines (79).

The role of natalizumab in cancer is currently being
evaluated in clinical trials in pulmonary metastatic osteosarcoma
(NCT03811886), and has previously been evaluated in multiple
myeloma (NCT00675428) and acute-graft-vs-host disease
(NCT02133924, NCT02176031).

Sphingosine 1-P Receptor (S1PR) Receptor

Modulators: Fingolimod (Gilenya) and Siponimod

(Mayzent)
S1PR modulators play an important role in both MS and
cancer. Fingolimod (FTY720, Gilenya) was the first oral therapy
approved for MS in 2010. Siponimod is the most recent FDA
approved DMT for RRMS and secondary progressiveMS (SPMS)
as of April 2019. S1P modulator’s mechanism of action has been
extensively evaluated in preclinical studies in mouse models of
MS as well as in vitro and in vivo models of tumorigenesis
and transplant.

Fingolimod was originally synthesized from a natural
compound myriocin, from a family of parasitic fungi, Cordyceps
sinclarii (80), and shown to have potent immunosuppressant
activity exceeding that of cyclosporine A (81, 82). Prior to
this discovery, in traditional Chinese medicine, powder from
another fungal subfamily, Cordyceps sinensis, had been widely
used for its energy and “eternal youth” qualities (83). Fingolimod
was subsequently demonstrated to be a prodrug analog of
sphingosine, becoming phosphorylated into fingolimod-P by
sphingosine kinase 2(S1K2), and interacting with S1P receptors
on various cell types, outcompeting the native S1P. Although
Fingolimod-P can bind with all S1PRs except S1P2, it has highest
affinity for S1P4 (84). Following binding to S1PRs, fingolimod
leads to internalization of the S1PR on T and B cells, preventing
their egress from secondary lymphoid organs, such as mesenteric
lymph nodes and Peyer’s patches, and leading to peripheral
lymphopenia (81). Similarly to fingolimod, siponimod binds to
S1P1 receptors, leading to a decrease in peripheral immune
cell egress from lymph nodes. Via its action on the S1P5
receptors in the CNS, siponimod is also thought to potentially
contribute toward a decrease in extent and progression of
neurodegeneration (85).

In competing with S1P, S1P modulators participate in an
intricate cellular machinery of sphingolipids, major components
of eukaryotic cell plasma membranes, which play an important
role in cellular fate and cell signaling. Sphingolipids such as
ceramide and sphingosine are important in apoptotic machinery
of programmed cell death, while S1P is involved in cell

proliferation, migration, angiogenesis, inflammatory responses,
and lymphocyte trafficking. Dysregulation in sphingolipid
metabolism allows cancer cells to escape cell death via increasing
S1P signaling, altering expression of ceramide degrading
enzymes, and upregulation of sphingosine kinases, such as
sphingosine kinase 1 (SK1) (86). Hence, as a sphingosine
analog, fingolimod has been studied in in vitro and in vivo
for its potential anticancer effects. Indeed, fingolimod has
been shown in preclinical studies to have anticancer activity
in various cancer cell types, including bladder cancer (87),
breast cancers (88–91), glioblastoma (92, 93), hepatocellular
carcinoma (94–96), malignant mesothelioma (97), leukemia and
lymphoma (98–104), lung cancer (105–107), liver cancer (108),
pancreatic cancer (109), bladder cancer (87), renal cancer (110);
glioma (111), gastrointestinal cancer (112), and ovarian cancer
(113). Fingolimod has also been shown to be an important
therapy sensitizer in several studies. For example, fingolimod
demonstrates an additive effect with 5-fluorouracil, SN-38, and
oxaliplatin (114), in colorectal cancer studies. It also leads to
inhibition of tumor growth and induction of cancer cell apoptosis
and mouse survival when used with cetuximab (115). Other
anticancer effects of fingolimod include inhibition of metastasis
in a mouse model of melanoma (116) and glioblastoma
cell lines (93), and inhibition of microvessel formation in
prostate tumor xenografts in mice (117). Fingolimod has strong
immunosuppressive properties against Treg cells (118) that
contribute to tolerance of malignant tumor cells (119) indicating
fingolimod may have potential in post-transplant malignancies
(120). Yet another potential anticancer mechanism of fingolimod
is inhibition or degradation of SK1, which is upregulated in
multiple cancers, including CNS (brain), gastrointestinal (colon,
stomach, rectum, small intestine), genitourinary (ovary and
uterus), pulmonary and breast (121). Overall, it is becoming clear
that fingolimod has a multitude of anticancer effects in addition
to its role in immunosuppression as an S1P modulator, that in
part may be mediated via its unphosphorylated form (122).

However, despite fingolimod’s significant potential as an
anticancer drug, there are several caveats that preclude its sole
use as a cancer treatment. First, given fingolimod’s effect on
lymphocyte sequestration, decreased T cell surveillance may
enhance potential cancer development (Figure 2). Additionally,
upregulation of B regulatory cells (Bregs) and IL-10 could serve
as another mechanism of fueling potential tumorigenesis (123).
To this degree, there are a low number of fingolimod associated
malignancies that have emerged in clinical trials (Table 1) and
in the post-clinical trial era, including melanoma, basal cell
carcinoma, breast cancer, squamous cell carcinoma, large B cell
lymphoma, ocular lymphoma, Merkel cell carcinoma, cutaneous
CD30+ T-cell lymphoma and multiple myeloma. Additionally,
doses required for fingolimod’s antitumor effects far exceed
the dosing currently approved for fingolimod in MS and may
lead to unwarranted side effects (124). Still, given its important
role in tumor sensitization, Fingolimod could potentially be
used as a sensitizer for cancer treatment alongside other cancer
treatment strategies.

Perhaps in the future, other analogs of S1PR that are currently
in different phases of preclinical and clinical trials, such as
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TABLE 1 | Summary of disease modifying therapies, their mechanisms of action, incidence of cancer in clinical trials, and studies of DMTs in different cancer types.

Agent Mechanism of action Cancer incidence in MS patients in

clinical trials

References Assessed in cancer types References

Type(s) Type(s)

Interferons Activates IFN receptor linked

JAK/STAT pathways leading to

alteration of transcription of

immune and antiproliferative

genes; reduces migration of

lymphocytes across the blood

brain barrier

None Breast, glioma, nasopharyngeal

carcinoma, neuroblastoma,

adrenocortical, pancreatic, and

carcinoid cancers

(24, 51)

Glatiramer

acetate

Amino acid polymer; activation of

innate; and adaptive immune

system; shift toward more

protective Th2 immunity

None

Natalizumab Monoclonal antibody against

a4-integrin; binds and blocks

interaction of a4-integrin with

ligands, preventing lymphocyte

transmigration across the blood

brain barrier

AFFIRM: RMS (N = 627): breast cancer

(N = 1), cervical cancer (N = 1),

metastatic melanoma (N = 1)

(52) Multiple myeloma and melanoma (48, 49)

Fingolimod sphingosine 1 phosphate

receptor (S1PR) modulator

FREEDOMS II: RRMS (N = 728):basal

cell carcinoma (N = 16), squamous cell

carcinoma (N = 4), uterine leiomyoma (N

= 1), thyroid cancer (N = 1)

TRANSFORMS: RRMS (N = 857): basal

cell carcinoma (N = 5), melanoma in situ

(N = 3), breast cancer (N = 4) RMS (N =

188): basal cell carcinoma (N = 1),

squamous cell carcinoma (N = 1),

malignant melanoma (N = 1)

INFORMS: PPMS (N = 336): basal cell

carcinoma (N = 14), squamous cell

carcinoma (N = 6), malignant melanoma

(N = 1), breast cancer (N = 1),

non-Hodgkin’s lymphoma (N = 1),

malignant lung cancer (N = 1), ovarian

cancer (N = 1), prostate cancer (N = 1)

(53)

(54, 55)

(56)

Breast cancer, lung, gastric tumors,

and metastatic melanoma

(57, 58)

Siponimod sphingosine 1 phosphate

receptor (S1PR) modulator

EXPAND: SPMS (N = 1,099): unspecified

skin cancer (N = 14 cases)

(59)

Teriflunomide Inhibitor of mitochondrial de

novo pyrimidine synthesis

enzyme dihydroorooate

dehydrogenase; reduces

lymphocytes in circulation

RRMS (N = 725): cervical carcinoma in

situ (N = 1)

RRMS (N = 111): uterine leiomyosarcoma

(N = 1)

(60, 61) Breast cancer (62)

Cladribine Nucleoside analog, inhibits DNA

synthesis and DNA chain

termination; cytotoxic particularly

for lymphocytes and monocytes

CLARITY: RMS (N = 889): benign uterine

leiomyosarcoma benign uterine

leiomyosarcoma (N = 5), cervical

carcinoma in situ (N = 1), melanoma (N =

1), ovarian carcinoma (N = 1), pancreatic

carcinoma (N = 1), myelodysplastic

syndrome (N = 1)

(63) hairy cell leukemia, chronic

myelogenous leukemias and

non-hodgkins lymphomas

(64)

Alemtuzumab Monoclonal antibody against

CD52 on T and B cells;

Depletion of peripheral

lymphocytes via CDC and ADCC

CARE MS I 5 year follow up: RRMS (N

= 376 year 1 and 2; N = 340–360 year

3–5): thyroid papillary carcinoma (N = 2),

breast cancer (N = 1), keratoacanthoma

(N = 1), non–small-cell lung cancer (N =

1), micropapillary thyroid carcinoma (N =

1)

CARE MS II 5 year follow up: RRMS (N

= 434 year 2 and N = 412 year 3): thyroid

papillary carcinoma (N = 2), basal cell

carcinoma (N = 1), melanoma (N = 1)

(65, 66) T cell lymphomas, peripheral T cell

lymphoma-not otherwise specified, T

cell prolymphocytic leukemia,

cutaneous T cell lymphoma and adult

T cell lymphoma/leukemia; B cell

malignancies: B cell Non-Hodgkin

lymphoma and B cell chronic

lymphotytic leukemia

(67)

(Continued)
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TABLE 1 | Continued

Agent Mechanism of action Cancer incidence in MS patients in

clinical trials

References Assessed in cancer types References

Type(s) Type(s)

Rituximab Monoclonal antibody against

CD20 on immature and mature B

cells; depletion of CD20 positive

B cells via CDC and ADCC

RRMS (N = 557), SPMS (N = 198), PPMS

(N = 67): Basalioma (N = 2), Pyoderma

gangrenosum (N = 1)

(68) B cell lymphomas, Non-Hodgkin

lymphoma, Burkitt lympoma, and B

cell lymphoblastic leukemias

(69)

Ocrelizumab Monoclonal antibody against

CD20 on immature and mature B

cells; depletion of CD20 positive

B cells via CDC and ADCC

OPERA 1 and Opera 2: RRMS (N =

825): renal cancer (N = 1), melanoma (N

= 1), and breast cancer (N = 2) in RRMS

patients;

ORATORIO: PPMS (N = 486) breast

cancer (N = 4), basal cell cardinoma (N =

3), large cell lymphoma (N = 1),

endometrial carcinoma (N = 1), metastatic

pancreatic carcinoma (N = 1) malignant

fibrous histyocytoma (N = 1)

(70, 71) Relapsed/refractory follicular

lymphoma

(72)

Dimethyl

Fumerate

Modulates Nrf2 and glutathione

levels in T cells; activates

antioxidant genes

DEFINE: RMS (N = 826) basal cell

carcinoma (N = 1), breast cancer (N = 1),

cervical cancer (N = 1), transitional cell

carcinoma (N = 1)

CONFIRM: No neoplasms reported in

BG-12 (DMF) treated group

(73, 74) Lung adenocarcinoma, colon

adenocarcinoma, melanoma

(75–77)

FIGURE 2 | S1P modulators. S1P modulators, Fingolimod and Siponimod, decrease egress of naïve memory, Th17, CD4/CD8T cells, and plasma B cells from lymph

nodes leading to a decreased inflammatory response and decrease in neurodegeneration via actions on the S1P receptors in lymph nodes, astrocytes and

oligodendrocytes. S1P modulators also have actions on other cell types including cardiac myocytes contributing to first dose bradycardia. In cancer cells, S1P

modulators activate pathways involved in cell cycle arrest and cell death via actions on histone deacetylases (HDACs) and cyclin/CDK cell cycle proteins. However,

due to their effects on Bregs (increased) and T regs (decreased) there is a risk of increasing cancer incidence due to decreased immune surveillance.

SKI-178 (125), vs. liposomal formulations for targeted delivery
of fingolimod will maximize anti-cancer effects and minimize
immunosuppressive and other side effects of fingolimod. In
addition, fingolimod could be used as a sensitizer at a relevant

dose in patients with MS who may be diagnosed with other
cancers. These considerations may guide clinician decision not
to discontinue therapy but to use it as an adjuvant to other
cancer treatments.
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A recent clinical trial has completed enrolling patients to
evaluate fingolimod’s role as a tumor sensitizer in patients with
glioblastoma (NCT02490930).

DNA SYNTHESIS INHIBITORS:
TERIFLUNOMIDE (AUBAGIO) AND
CLADRIBINE (MAVENCLAD)

Teriflunomide (Aubagio)
Teriflunomide was the second oral drug to be approved for MS
in 2012. Teriflunomide is an active metabolite of lefluonomide
and acts via reversible inhibition of the mitochondrial enzyme
dihydroorotate dehydrogenase (DHODH) necessary for de novo
synthesis of pyrimidines. By halting DNA and RNA synthesis,
teriflunomide affects actively dividing cells, such as T and B
cells. Teriflunomide was associated with rare cases of cervical
carcinoma in situ and uterine leiomyosarcoma in clinical trials
(60, 61) (Table 1). To date, there is one case report of possible
association between lymphoma and terifluonomide (126). There
are reports of possible other associations with breast and skin
cancer in pharmacovigilance databases (127).

Both teriflunomide and leflunomide have been studied for
their potent antitumor effects in different cancer types (62,
128) (Table 1). Interestingly, although DHODH is ubiquitously
expressed, it is not overexpressed or mutated in malignant cells.
However, its important role in cancer biology is thought to
relate to malignant cells having a lower threshold for pyrimidine
deprivation compared to non-malignant cells (129). Examples
of anti-tumor mechanisms of teriflunomide and leflunomide
include: down-regulation of anti-apoptotic proteins and growth
factor receptors in cancer cells (62, 128), interruption of cancer
cell survival signaling (130, 131), induction of cancer cell death
(128, 132), abolishment of cancer stem cells (133), and cancer
cell mitochondrial disruption (132). Teriflunomide may be an
attractive anti-tumor medicine due to its efficacy at lower doses
compared to other medications that inhibit DNA synthesis,
such as methotrexate, and may thus avoid cumulative cytotoxic
damage to the body (129). In particular, teriflunomide has been
shown to improve basal cell carcinoma outcomes (134).

Leflunomide has been investigated in several clinical trials
as an anti-cancer therapy, including metastatic triple negative
cancers (NCT03709446), add-on therapy to mitoxantrone in
stage IV prostate cancer (NCT00004071), add on to vemurafenib
in metastatic melanoma (NCT01611675), as treatment for
multiple melanoma (NCT02509052), anaplastic astrocytoma
(NCT00003775), and glioblastoma multiforme (NCT00003293).

Cladribine (Mavenclad)
Cladribine is one of the newest DMTs approved for MS. As of
2019, cladribine has been approved in Europe and most recently
approved in by the FDA in the US April 2019 for treatment of
RRMS and SPMS.

Cladribine was synthesized in the 1980’s as an adenosine
analog, with resistance to adenosine deaminase due to a

substitution of a chloride at the 2
′
-hydrogen position. In

its phosphorylated form inside cells, cladribine is unable to

diffuse out of the cell membrane and thus becomes trapped
intracellularly (135). Cladribine’s incorporation into the DNA
chain, results in chain termination and ultimate cell death.
Interestingly, cladribine is cytotoxic not only to dividing cells,
but also to resting cells, suggesting alternative mechanism of
action in non-dividing cells such as caspase- dependent (136) and
caspase-independent (137)mechanisms, via direct mitochondrial
toxicity (137, 138), inhibition of DNA repair (139) and epigenetic
alterations (140).

Cladribine initially was thought to be specific to lymphocytes,
given the observation of isolated lymphopenia in patients
with severe combined immunodeficiency syndrome (SCID).
Later discoveries of cladribine’s toxicity to monocytes and
macrophages raised the question of potential of cladribine to
treat myeloid malignancies. Initial studies on cladribine have
been done in pediatric acute myeloid leukemia (AML) (141–
143). Further studies in different cancers, including acute and
chronic leukemias, mantle cell lymphoma, hairy cell leukemia,
mucosa associated lymphoid tissue (MALT)-type lymphoma, and
Langerhans cell histiocytosis have been done with combination
therapies in both pediatric and adult populations (144–148).
Cladribine’s main adverse effects documented from the cancer
studies, included significant immunosuppression associated with
opportunistic infections such as herpes simplex, paresthesias, and
possible secondary malignancy (149).

Cladribine was developed as a drug for MS given its
lymphosuppressive actions, and in phase III trials in RRMS was
shown to decrease disease activity in 45% of patients after 2
courses of treatment (63, 150). Due to a concern for inducing
malignancy [a total of 10 cases in the active treatment arm
of melanoma, ovarian carcinoma, pancreatic carcinoma, and
myelodysplastic syndrome (63)] cladribine was rejected by FDA
in 2010. However, a 2015meta-analysis, comparing cancer risk in
11 phase III trials between different available DMTs at the time,
including GA, natalizumab, dimethyl fumerate, tefiluonomide,
and fingolimod, demonstrated that there was not a higher cancer
risk in MS patients who were treated with cladribine, but rather
that due to a placebo comparator, there was an exaggerated
relative increased risk in the treatment groups (151). Other long-
term studies in leukemia patients have also shown lack of an
increase in secondary malignancies (147). Long-termmonitoring
for potential cancer side effects in MS patients on cladribine is
warranted and has been recommended by EMA and FDA to
determine the true cancer risk in this patient population.

MONOCLONAL ANTIBODIES:
ALEMTUZUMAB (LEMTRADA) AND B
CELL THERAPIES: RITUXIMAB (RITUXAN,
MAB THERA, RITEMVIA) AND
OCRELIZUMAB (OCREVUS)

Alemtuzumab (Lemtrada)
Alemtuzumab is a humanized monoclonal antibody directed
against CD52, approved for MS in 2013. Treatment of
alemtuzumab leads to significant depletion of T and B
lymphocytes, natural killer (NK) cells, dendritic cells,
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granulocytes, and monocytes via several mechanisms (152).
First, by activating C1q and generation of the membrane
attack complex, alemtuzumab leads to complement-dependent
cytotoxicity. Second, by activation of NK cells and macrophages
through their IgG fragment C receptor, alemtuzumab contributes
to antibody-dependent cellular cytotoxicity. Lastly, alemtuzumab
can also result in induction of apoptosis. The final result of
alemtuzumab is profound depletion of peripheral lymphocytes
that occurs within hours-days post infusion and is sustained for
up to 1 year (153). B cells tend to repopulate faster than T cells,
contributing to an immune imbalance, which may explain some
of the autoimmune side effects associated with Lemtrada (154).

As CD52 is expressed on the cell surface of both normal and
malignant lymphocytes, alemtuzumab has been an important
therapy for several cancer types for over 20 years prior to its
approval as anMS therapy. In fact, alemtuzumab, under the name
camcath, was used in the 1980’s for the treatment of Hodgkin’s
lymphoma, and was FDA approved in 2001 for the treatment
of chronic lymphocytic leukemia (CLL) (67). Over the years,
alemtuzumab has been used to treat lymphomas and leukemias,
including T cell lymphomas, peripheral T cell lymphoma-
not otherwise specified (PTCL-NOS), T cell prolymphocytic
leukemia (T-PLL), cutaneous T cell lymphoma (CTCL) and adult
T cell lymphoma/leukemia (ATLL) as well as B cell malignancies,
such as B-cell non-Hodgkin’s lymphoma (B-NHL) and B-cell
chronic lymphocytic lymphoma (B-CLL).

Several malignancies have been associated with alemtuzumab
use in RRMS, including stage 1 thyroid papillary carcinoma
with onset 10–41 months from the last infusion, basal
cell carcinoma, breast cancer, melanoma, non-EBV-associated
Burkitt’ s lymphoma, and Castleman disease. Overall, out
of 1,486 alemtuzumab treated-patients in 3 clinical trials, 29
patients developed malignancies, at variable times post treatment
(Table 1).

B Cell Therapies: Rituximab (Rituxan),
Ocrelizumab (Ocrevus)
Rituximab and ocrelizumab, anti-CD20 B cell depleting
monoclonal antibodies, have become critical agents in the
management of MS, underlying the importance of B cells in the
pathophysiology of MS. Rituximab is a chimeric monoclonal
antibody targeted against CD20, while ocrelizumab is a
humanized anti-CD20 agent. Although not FDA approved
in demyelinating diseases, rituximab is widely used in the
treatment of MS and Neuromyelitis Optica. Ocrelizumab was
FDA approved in 2017 for RRMS and primary progressive
multiple sclerosis (PPMS) based on two large phase III trials
(OPERA I and II) (71). Further anti-CD20 agents, currently in
late stages of the development pipeline, include ofatumumab
and ublituximab. The anti-CD20 therapies lead to elimination
of CD20 expressing pre-B cells and mature lymphocytes via a
variety of mechanisms, including antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis,
complement-dependent cytotoxicity (CDC), cell death via
apoptosis and decreased antibody production (155) (Figure 3).

B cells are well recognized for their role in modulating the
immune response in cancer. Tumor metabolites, like leukotriene
B4, can attract B cells to tumor sites and promote differentiation

of B regs and T regs, and shifting the immune milieu from CD8
and T-helper 1 (Th1) to Th2-driven response (156).While a more
regulatory immune environment is beneficial in autoimmune
conditions such as MS, the shift to Breg/Tregs/Th2 prevents the
host immune system from detecting and lysing tumor cells and
could fuel cancer growth via IL35 and IL10 producing Bregs
(Figure 3). In addition, another subset of B cells, CD5þ B cells,
can promote several cancer cell types (157). Also, the presence
of CD19+ B cells may be associated with worse outcomes in
metastatic ovarian carcinoma (158).

Importantly, the CD20 cell surface marker is found on most
malignant B cells. Thus, anti-CD20 therapies, such as rituximab
have earned a prominent role in treatment of cancers, including
B cell lymphomas, Hodgkin lymphoma, Burkitt lymphoma,
and B cell lymphoblastic leukemias (69). Second and third
generation anti-CD20 monoclonal antibodies, ocrelizumab and
ofatumumab, have shown promise as alternative cancer therapies
in patients with intolerance to rituximab (159). However, in
contrast to rituximab, there is no long-term safety data on these
newer second and third generation agents.

Despite the success of anti-CD20 monoclonal antibodies in
cancer treatment, there are also several cancers associated with
the use of anti-B cell therapies. For example, ocrelizumab was
associated with several cases of malignancy in clinical trials,
including cases of renal cancer, melanoma, and breast cancers.
Overall, 4 malignancies were reported in OPERA 1 trial in RRMS
patients and 11 malignancies were reported in PPMS patients in
the ORATORIO trial (70).

Reasons for cancer predisposition on B cell therapiesmay have
to do with the potentially protective role of B cells in tumor
microenivronments as APCs and activators of NK and cytolytic
T cells targeted toward lysis of tumors. A recent cancer profiling
study has linked a B cell gene signature to fast proliferating
tumors, such as breast cancers, suggesting that suppression of a
B cell response in breast cancer could contribute to less favorable
outcomes (160). Other studies have also demonstrated that B cell
presence, and specifically CD20 B cells, are linked to a better
prognosis in breast cancer (161, 162). Similarly, it has been
demonstrated that co-presence of both CD20 B cells and CD8T
cells in the tumor environment improves survival in ovarian
cancer (163). Interestingly, the timing of anti-B cell therapy may
also dictate type of tumor response. For example, one study
found that treatment of mice with anti-CD20 therapy prior to
tumor challenge resulted in elimination of cancer metastasis.
In comparison, treatment with anti-CD20 therapy post tumor
challenge, enhanced tumor cell survival and metastasis (164).
Thus, timing of anti-B cell therapy in context of cancer co-
morbidities in MS may be an important factor in clinical
decision making.

ANTIOXIDANT PATHWAY

Dimethyl Fumerate (Tecfidera)
Initially used in the treatment of psoriasis, dimethyl fumerate
(DMF) was approved for use in MS in 2013. Although the
mechanism of action of DMF is not completely understood
in MS, DMF is thought to be an immunomodulatory therapy
that decreases inflammatory T cells via increasing nuclear factor
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FIGURE 3 | (A,B) B cell therapies. B cell therapies play a role in the treatment of both multiple sclerosis and cancer, but yet can also promote cancer development.

Rituximab targets CD20 found on the surface of immature (naïve) B cells (CD19/CD20+) leading to their destruction by several mechanisms including apoptosis,

antibody-dependent cell cytotoxicity, and complement directed cytotoxicity. Rituximab also promotes the proliferation of T regulatory cells (Treg) and B regulator cells

(Breg) which results in reduced inflammation. Rituximab has similar actions in the context of cancer, where elimination of CD19/CD20+ B cells leads to a reduction of

tumor burden in patients with B cell malignancies, while elevations in Breg and Treg populations can promote possible tumor formation.

erythroid 2–related factor 2 (Nrf2) and glutathione (GSH), the
cell’s regulators of anti-oxidant response (Figure 4) (165). DMF is
derived from fumaric acid and is metabolized into monomethyl
fumerate (MMF), the active component responsible for DMF’s
anti-inflammatory and antioxidant effects. DMF was associated
with a low level of malignancies in the DEFINE and CONFIRM
clinical trials, accounting for <1% of all adverse events (Table 1).

A number of preclinical studies have explored the benefits
of DMF and MMF in anti-cancer activity via impact on
the cell’s apoptotic machinery. DMF has been shown to be
cytotoxic in patient and mouse derived cancer cell lines from
lung and colon adenocarcinoma with KRAS mutations, likely
via effect on decreasing activity of the Nrf2/DJ-1 antioxidant
pathway and contributing to cancer cell death (75, 76). Several
studies have illustrated positive role of DMF in melanoma
tumor suppression via mechanisms interfering with cancer
cell proliferation or contributing to apoptosis and cell cycle
inhibition. For example, DMF was shown to decrease melanoma
metastasis as well as lymph node metastasis in a SCID mouse
model (166, 167). In another study, DMF inhibited growth and
metastasis of melanoma tumors by suppressing metalloproteases
and inhibiting entry of nuclear factor B and its transcription
factor p65 into the nucleus (168). Study of DMF’s role in cell
cycle arrest, demonstrated that DMF inhibited melanoma cell
line proliferation via interference with cell cycle proteins and
upregulation of tumor suppressor, p53 (169). In a separate study,
DMF induced cell death in colon carcinoma cells, via depletion of
GSH and activation of mitogen-activated protein kinase (MAPK)
(170). In a breast cancer cell line, it was found that via blockade

of transcription factor p65 in the nuclear factor B (NFK B)
pathway, DMF is able to retard tumor proliferation and xenograft
tumor growth (171). Both DMF and MMF were found to retard
tumor growth in primary human glioblastoma cell lines alone
or in combination with other anti-tumor medications in the
proteasome inhibitor family (e.g., velcade and carfilzomib) (77).

As a result of these pre-clinical studies, several clinical
trials are currently underway to evaluate the role of DMF
in cancer, including a trial in refractory leukemia/lymphoma,
NCT02784834; glioblastoma, NCT02337426; and Cutaneous T
Cell Lymphoma, NCT02546440.

CONCLUSIONS AND FUTURE
DIRECTIONS

The salient role of the immune system is to defend the body
from invasive pathogens and cancers, while preserving tolerance
to self-antigens. Both cancer and autoimmune disorders, such
as MS, result from immune dysregulation. In MS, the immune
system reacts too strongly in self-protection, resulting in
demyelination of the central nervous system. Cancer cells adapt
to either evade standard immune checks and balances or directly
influence an immune phenotype conducive toward malignant
proliferation, such as via recruitment and differentiation of
Tregs, B regs, CD5þ B, and CD19+ B cells within the
tumor microenvironment.

An important goal in successful management of MS patients
is to resolve how to (i) best therapeutically manipulate the
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FIGURE 4 | Dimethyl fumerate. Dimethyl Fumerate (DMF) ultimately enhances the activity of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2)

leading to transcription of anti-inflammatory genes, serving as the basis for DMF’s beneficial effects in MS patients. In cancer cells, these same actions together with

alterations in cell cycle protein and p53 expression, serve to attenuate cancer growth and proliferation. However, paradoxically DMF can also promote epithelial to

mesenchymal transition (EMT) which enhances migration and metastasis. DMF may also alter the metabolic environment in cancer cells which aids their survival,

growth, and proliferation.

immune system without promoting cancer and how to (ii)
treat MS patients who develop cancer while on a DMT. It
is noteworthy that many of the current DMTs have potential
anti-tumor mechanisms. Examples, such as basal cell carcinoma
improvement with terifluonomide treatment (134) suggest that a
DMT should not be stopped at cancer diagnosis, but rather each
individual’s case should be considered in context of their specific
risk factors for cancer. Thus, in making treatment decisions
for MS patients with cancer, it is imperative that clinicians
consider the potential mechanism of action of available DMTs to
determine how best to manage both the cancer risk and the risk
of rebound MS.

In addition, it is also critical that clinicians think about
patient-specific risks. Both pre-clinical and clinical studies
demonstrate that not all individuals with MS develop cancer
and cancer side effect of MS DMTs are tissue specific (Table 1).
What may account for this patient heterogeneity is not well-
understood, but likely has to do with context dependent cues,
such as an individual’s cultural background and genetics, being
male vs. female, diet, composition of the gut microbiome,
length of treatment on DMTs, and likely other not yet
recognized factors.

Toward the idea of personalized risk assessment, it is likely
important that sex differences should be considered in treatment
of MS and cancer. An important example is recent data on
immune checkpoint inhibitors, demonstrating that there is a
significant difference in immune responses in men and women,
with the higher possibility for males to benefit from cancer
immunotherapies (172). Some MS studies have also hinted

at sex-specific responses to DMTs, potentially due to sexually
dimorphic immune responses (173, 174). While more studies
are necessary to determine exact cancer risks that male and
female MS patients may experience on specific DMTs, it is
prudent that sex differences in response to DMTs should be
considered at initiation or discontinuation of DMTs when a
patient develops cancer.

Another potential factor that may differentially determine
a person’s predisposition for and treatment of MS (175–177)
and cancer (178–180) is the gut microbiome. The human
gut microbiome consists of bacteria, fungi, archaea, protozoa,
and viruses that have evolved symbiotic relationship with
the human host (181). Trillions of gut microbiota mediate
multiple functions for the host, and in particular help shape
the immune system (182–184). In MS, studies have shown that
transfer of fecal microbiota transplant (FMT) from patients with
MS to recipient mice can induce experimental autoimmune
encephalomyelitis (EAE), MS-like disease in mice (185–187),
suggesting that gut microbes are a vital aspect of autoimmune
induction. Likewise, cancer phenotypes can be transferred via
FMT (188). Gut bacteria can also help to fight autoimmunity
and cancer by modulating host immunity (189) and improving
outcomes of immunotherapy treatments (190). Interestingly,
butyrate producing bacteria have been shown to be beneficial in
both MS (191, 192) and cancer (193, 194), via effects on cellular
proliferation and apoptosis as well as immune effects on the
blood brain barrier and remyelination. Given the importance
of the gut microbiome in both autoimmunity and cancer,
it is exciting to view the manipulation of the gut microbial
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populations as an avenue for future management of MS and
cancer. There are still many questions about how gut bacteria
can influence the course of immunity at organs distant from
the gut, and whether same bacteria may influence immunity
differentially in autoimmune conditions vs. cancer. For example,
Bifidobacteria, Akkermansia, and Bacteroides are increased in
patients with MS, but may lead to anti-tumor outcomes in
cancer patients (195, 196). Research to better delineate which
bacterial species are most conducive to promoting favorable
vs. unfavorable immune outcomes in MS and cancer, will
help to pave the road toward more precise risk assessment
and manipulation of the gut microbiome in patients with MS
and cancer.

In summary, given the wide array of currently available DMTs
with potential to promote and treat cancer, it is important for
clinicians to be aware of the risks and benefits of prescribing
these agents to MS patients, particularly to patients with a history
of cancer. Future efforts should be directed toward developing
a clearer understanding of the relative risk and incidence of
cancer in patients taking specific DMTs. One possible solution
would be creation of a curated data base and establishment of
uniform standards and guidelines on reporting and management
of patients with MS and a history of cancer who are candidates
for DMTs. In addition, there is a need for development of clinical
recommendations for frequency and type of monitoring for
malignancy screening on individual DMTs as well as research and

recommendations for how to transition MS patients to alternate
DMTs if cancer arises. Further research on sex differences and
the role of the environmental factors, such as the gut microbiome
in MS and cancer, will allow for an integrated pathway toward
treating both conditions in a personalized way.
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