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Macrophage activation is intimately linked to metabolic reprogramming. Inflammatory

(M1) macrophages are able to sustain inflammatory responses and to kill pathogens,

mostly by relying on aerobic glycolysis and fatty acid biosynthesis. Glycolysis is a fast way

of producing ATP, and fatty acids serve as precursors for the synthesis of inflammatory

mediators. On the opposite side, anti-inflammatory (M2) macrophages mediate the

resolution of inflammation and tissue repair, switching their metabolism to fatty acid

oxidation and oxidative phosphorylation. Over the years, this classical view has been

challenged by recent discoveries pointing to a more complex metabolic network during

macrophage activation. Lipid metabolism plays a critical role in the activation of both

M1 and M2 macrophages. Recent evidence shows that fatty acid oxidation is also

essential for inflammasome activation in M1 macrophages, and glycolysis is now known

to fuel fatty acid oxidation in M2 macrophages. Ultimately, targeting lipid metabolism in

macrophages can improve the outcome of metabolic diseases. Here, we review the main

aspects of macrophage immunometabolism from the perspective of the metabolism of

lipids. Building a reliable metabolic network during macrophage activation will bring us

closer to targeting macrophages for improving human health.

Keywords: macrophages, lipid metabolism, metabolic reprogramming, oxidative phosphorylation, fatty acid

oxidation

INTRODUCTION

Macrophages are a heterogeneous population of immune cells found in all tissues of the organism
(1, 2). They were first discovered and described as phagocytic cells by the Russian zoologist Élie
Metchnikoff. Since then, macrophages have emerged not only as mediators of the first line of
immune defense but also as key players in tissue homeostasis, development, and pathology (3). One
of the main characteristics of macrophages is their plasticity, as they respond to different stimuli
by rapidly changing their functional profile in a process called polarization. Classically activated
macrophages (M1) are induced by lipopolysaccharide (LPS), toll-like receptors (TLR) ligands, or
interferon-gamma (4). Their function is to kill pathogens and to present antigens to T cells to
initiate the immune response, and they do so by secreting proinflammatory cytokines such as tumor
necrosis factor-alpha, interleukin (IL) 1β (IL1β), IL6, IL12, and IL23 (4). M1 macrophages also
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express high levels of inducible nitric oxide synthase (4, 5). This
enzyme plays an essential role in pathogen killing using arginine
to synthesize nitric oxide (NO), which can form reactive oxygen
species (ROS) with microbicidal properties (6). Alternatively
activated macrophages (M2), on the other hand, are induced
by products secreted by innate and adaptive immune cells as
a result of parasitic infections, such as IL4 and IL13 (7, 8).
These anti-inflammatory macrophages act mainly to resolve
inflammation and in tissue remodeling through the secretion
of insulin-like growth factor 1 (9), transforming growth factor-
beta, and vascular endothelial growth factor (10). In contrast
to M1, in M2 macrophages, arginase 1 is induced, and thus,
arginine is used to produce polyamines precursors for collagen
synthesis, used for tissue repair (11). In addition, different stimuli
can induce different subsets of M2 macrophages, such as M2b
(activated by TLR ligands or by IL1R agonists), M2c (induced by
glucocorticoids or IL10), and M2d (induced by TLR ligands and
A2 adenosine receptor agonists) (12).

The notion that M1 and M2 macrophages also differ in their
metabolism has been around for more than a decade now, and
metabolic adaptations of each type of macrophage intimately
respond to their primary function. M1 macrophages are known
to rely on aerobic glycolysis and to have impaired oxidative
phosphorylation (OXPHOS). This metabolic adaptation favors
rapid ATP production to sustain their phagocytic function and
provides metabolic precursors to feed the pentose phosphate
pathway. In these macrophages, the tricarboxylic acid (TCA)
cycle is broken into two parts to provide precursors needed
for the synthesis of several lipids (3) and the stabilization of
transcription factors such as hypoxia inducible factor 1α, a key
player in the activation of glycolysis (13). On the contrary,
M2 macrophages have an intact TCA cycle and enhanced
fatty acid oxidation (FAO) and OXPHOS (3). Although it
was initially thought that proinflammatory macrophages were
solely glycolytic and that FAO and OXPHOS were characteristic
of anti-inflammatory macrophages, through the years, it has
become clear that this equation is not that simple, and recent
findings support the need of glycolysis for M2 macrophages,
and FAO has been found to occur also in M1 macrophages
(14, 15). Here, we present a summary of how lipid metabolism is
differentially regulated in M1 and M2 macrophages to promote
unique activation and cell functions. Controversial findings are
discussed, as well as the potential of using lipid metabolism in
macrophages as a target for the treatment of metabolic diseases.
Finally, the M1/M2 classification serves us to simplify the rather
complex phenomena of macrophage polarization.

LIPID BIOSYNTHESIS AND THE
INFLAMMATORY RESPONSE OF
MACROPHAGES

Lipogenesis comprehends a series of enzymatic reactions where
fatty acids and triglycerides are synthesized. Acetyl-Coenzyme
A (acetyl-CoA) serves as a building block for the synthesis
of cholesterol, isoprenoids, and fatty acids (16). At the same
time, fatty acids are used for the synthesis of triglycerides and

complex lipids (16). Lipid biosynthesis is essential for membrane
remodeling and the synthesis of inflammatory mediators in
M1 macrophages. In these cells, glycolysis is upregulated
not only to provide ATP in a faster way, but to fuel the
TCA cycle to obtain acetyl-CoA from citrate (Figure 1). In
agreement with this, the levels of ATP-citrate lyase (ACLY), the
enzyme that converts citrate in acetyl-CoA quickly increases
in activated macrophages, and ACLY silencing or inhibition is
sufficient to reduce the expression of inflammatory mediators
such as NO and ROS (17). Lipogenesis is regulated at the
transcriptional level by the sterol regulatory element-binding
proteins (SREBPs), which are key elements in the synthesis
of fatty acids and cholesterol (18). Srebp1-a, one of the three
SREBP isoforms, is abundantly expressed in macrophages and
positively regulates their inflammatory response. Im et al. showed
that LPS induces Srebp1-a expression in macrophages and that
mice with Srebp1-a deficiency have a defective innate immune
response (19). Interestingly, macrophages isolated from these
mice not only were unable to induce lipid biosynthesis in
response to LPS but also secreted lower cytokine levels due
to a defective inflammasome. Lipidomic studies have shed
light on the importance of lipid metabolism for macrophage
polarization toward an inflammatory phenotype. For instance, it
is now known that, upon selective TLR4 stimulation, remodeling
of glycerolipids, glycerophospholipids, and prenols happens
in macrophages (20), which is accompanied by an increase
in the synthesis of eicosanoid, sphingolipids, and sterols.
Mechanistically, this happens through the activation of the
signal transducer and activator of transcription 3 (STAT3)
through nuclear factor kappa light-chain enhancer of activated
B cells (21).

Another critical player regulating lipid biosynthesis in M1
macrophages is fatty acid synthase (FAS), a key enzyme for
fatty acid biosynthesis (22). FAS has proven to be essential
for M1 induction. Wei et al. showed that FAS deletion in
macrophages prevented adipose macrophage recruitment and
inflammation in mice (23). In addition, these mice were resistant
to diet-induced insulin insensitivity. The authors showed that
FAS is necessary for membrane remodeling in macrophages
and that deficiency in FAS led to changes in the composition
of the plasma membrane and Rho GTPase trafficking, which
blunted the inflammatory signaling in macrophages. The
activation of FAS by the mitochondrial uncoupling protein
2 in macrophages also mediates the induction of the NLR
family pyrin domain containing 3 (NLRP3) inflammasome
and the consequent secretion of IL1β and IL18 in response
to an LPS challenge (24). Consistent with this, uncoupling
protein 2 deficiency improved survival in a mouse model of
polymicrobial sepsis, which was associated with a decrease in
FAS-mediated free fatty acid synthesis. In addition to the de
novo synthesis of fatty acids, the NLRP3 inflammasome can
also be activated in macrophages by exogenous lipids, such as
palmitate (25), a saturated fatty acid. An increase in the levels
of circulating saturated fatty acids occurs during obesity, which
is thought to trigger inflammation in adipose tissue in part
by activating macrophages inflammasome (15). However, the
mechanisms by which endogenous and exogenous fatty acids
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FIGURE 1 | Overview of the metabolic pathways differentially activated in macrophages. (Left) Classically activated macrophages are glycolytic and synthesize fatty

acids from acetyl-CoA to obtain inflammatory mediators (Right) Alternatively activated macrophages rely on fatty acid oxidation and have a functional electron

transport chain and oxidative phosphorylation. TCA cycle, tricarboxylic acid cycle; FAS, fatty acid synthase; acetyl-CoA, acetyl-coenzyme A; ATP, adenosine

triphosphate; FAO, fatty acid oxidation; NADH, nicotinamide adenine dinucleotide (reduced form); FADH2, flavin adenine dinucleotide (reduced form); UCP2,

uncoupling protein 2; LXR, liver X receptor; CPT1/2, carnitine palmitoyltransferase 1/2.

induce inflammasome activation in macrophages are not fully
understood. Recently, Gianfrancesco et al. showed that saturated
but not unsaturated fatty acids induced inflammasome activation
by increasing the level of saturated phosphatidylcholine. This led
to a loss in membrane fluidity and the consequent disruption
of the Na+/K+ ATPase, which caused a K+ efflux (25). In
addition, Wen et al. showed that palmitic acid induction of
inflammasome activation in macrophages requires LPS (26). In
summary, in M1 macrophages, lipids serve as precursors for the
synthesis of inflammatory molecules, as well as to potentiate
inflammasome activation.

FATTY ACID OXIDATION FUELS THE
ANTI-INFLAMMATORY FUNCTION OF M2
MACROPHAGES

In sharp contrast to M1 macrophages, M2 macrophages
are characterized by an intact TCA cycle and an enhanced
mitochondrial OXPHOS that sustain constant energy
production. OXPHOS in M2 macrophages is fueled by fatty acid
uptake (27), which are oxidized via FAO (Figure 1). Fatty acid
uptake happens through lipolysis of circulating lipoproteins (28)
and fatty acids, which are internalized through CD36 (29). In a
few cases, lipoproteins are internalized by endocytosis (30, 31).
In this sense, IL4 treatment induces triglyceride lipolysis in

macrophages (29). The importance of FAO for M2 polarization
is highlighted in several studies. Using etomoxir, an inhibitor of
the mitochondrial carnitine palmitoyl-transferase 1, Malandrino
et al. showed that blocking FAO inhibits the activation of M2
macrophages induced by IL4. In the same note, the expression
of a constitutively active carnitine palmitoyl-transferase 1 in
cultured macrophages prevented the palmitic acid induction of a
proinflammatory phenotype (32). Mechanistically, the activation
of the oxidative program in M2 macrophages happens through
the activation of the peroxisome proliferator activated receptor-γ
(PPARγ) (33) and the proliferator-activated receptor-coactivator
1β (34). PPARγ can sense fatty acids, and it has been shown
to mediate the transcription of M2 signature genes upon oleic
acid and IL4 stimulation (35). Interestingly, PPARγ was recently
found to mediate M2 polarization by promoting the oxidation of
glutamine (36), an amino acid that fuels OXPHOS (37). In spite
of these advances, it is still not fully understood how FAO and
OXPHOS are mechanistically linked to the anti-inflammatory
phenotype of M2 macrophages.

DUAL ROLE OF LIPID METABOLISM IN
MACROPHAGE POLARIZATION

Although the consensus is that aerobic glycolysis defines M1
macrophages, and FAO is characteristic of M2 macrophages,
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several pieces of evidence challenge this paradigm and open
questions about the metabolic programming during macrophage
activation. For instance, it has been shown that FAO is
necessary for inflammasome activation in bone-marrow-derived
macrophages (BMDM). Pharmacological and genetic inhibition
of NADPH oxidase 4, an enzyme that induces inflammasome
activation through CPT1-mediated FAO, inhibits NLRP3
activation, and the consequent secretion of IL1b and IL18 (38).
Other studies show that FAO is required for palmitate-induced
NLRP3 inflammasome activation, which happens through the
mitochondrial oxidation of palmitate and the generation of
ROS (26, 39). The notion that M2 macrophages are completely
independent of glycolysis has also been questioned. Huang
et al. showed that a source of external fatty acids is dispensable
for M2 activation as long as glucose is present in the media
(29). In agreement with this, the same authors showed that
inhibiting glycolysis in IL4-stimulated BMDM blunted the
expression of M2 activation markers (14). The authors suggested
that glycolysis in M2 macrophages fuels the TCA cycle for
fatty acid biosynthesis through FAS, which are used later for
FAO. This was further supported by Wang et al. by showing
that 2-deoxyglucose, an inhibitor of glycolysis that also impairs
OXPHOS indirectly, blunted M2 macrophage activation.
However, galactose, a glucose analog that inhibits glycolysis
but not OXPHOS, did not affect M2 polarization (40). These
data reinforce the idea that in M2 macrophages the function of
glycolysis could be to fuel OXPHOS, and inhibiting glycolysis
will not affect M2 polarization unless OXPHOS is affected.

Liver X receptors (LXRs) are a family of nuclear receptors
that act as cholesterol sensors to control cholesterol efflux
and lipogenesis (41, 42). The role of LXRs in macrophage
polarization seems to be complex. For instance, it has been
shown that LXR-deficient mice are more susceptible to infections
with the intracellular bacteria Listeria monocytogenes (43) and
Mycobacterium tuberculosis (44). However, the LXR agonist
GW3965, which targets both LRXα and LXRβ, is able to
inhibit the LPS-induced expression of inflammatory genes such
as inducible nitric oxide synthase, cyclooxygenase 2, and IL6
in macrophages (45). In addition, Bruhn et al. showed that
LXR deficiency in mice confers protection against Leishmania
infection (46). Furthermore, expressing a constitutively active
LXR in macrophages in vivo not only drives the synthesis of
genes involved in cholesterol efflux but also inhibits LPS-induced
expression of inflammatory genes (47).

Much controversy also exists on whether FAO is obligatory
for macrophage polarization into the M2 phenotype. Although
it was initially demonstrated that FAO is essential for M2
polarization in murine macrophages (14, 29, 32), later, several
authors used the CPT1 inhibitor etomoxir to demonstrate that
FAO is dispensable for IL4-induced M2 polarization in mouse
and human macrophages (48, 49). However, proteomic data
revealed that human macrophages seem not to depend on FAO
for M2 polarization, but they instead use gluconeogenesis as
an energy source (50). This piece of data could explain why
in human macrophages M2 polarization is unaffected when
FAO is inhibited. More recently, Nomura et al. used a genetic
approach to directly assess the role of FAO in macrophage

polarization. By deleting Cpt2 specifically in the myeloid lineage
of mice, the authors demonstrated that BMDM lackingCpt2were
unable to oxidase fatty acids, as expected. However, they did
not find differences in IL4-induced expression of M2 markers
between control and Cpt2-deficient BMDM (51). Interestingly,
the authors also found that etomoxir was able to inhibit M2
polarization in both control and Cpt2-deficient BMDM, which
suggests that the data based on the use of etomoxir must be
taken with caution, since it is possible that CPT1 has other
functions outside FAO or that etomoxir is not specific for CPT1
(51). Divakaruni et al. further supported this by showing that
etomoxir has off-target effects indeed and that the inhibition
of M2 polarization by this compound happens through the
alteration of CoA levels rather than the inhibition of fatty acid
oxidation (52). Overall, the available data suggest that the role
of FAO in macrophage polarization is more complicated than
initially thought. Future experiments using genetic approaches
rather than pharmacological inhibitors, which have the drawback
of potentially being unspecific, will help elucidate not only
the role of FAO in macrophage polarization but the molecular
mechanism behind this process.

TARGETING LIPID METABOLISM TO
REDIRECT MACROPHAGE ACTIVATION IN
METABOLIC DISEASES

Macrophages infiltrate healthy tissue, where they play a critical
role in maintaining tissue homeostasis during aseptic conditions
(53). Under normal circumstances, M2 polarized macrophages
are thought to constitute the majority of macrophages in adipose
tissue and are necessary for maintaining insulin sensitivity
through the secretion of IL10 (54). However, infiltration of
inflammatory macrophages in adipose tissue happens during
obesity (55). In addition, an increase in circulating saturated
fatty acids is known to activate TLR4 in adipocytes (56). Fatty
acid-binding protein 1, an intracellular protein that mediates
the uptake of fatty acids, is important in mediating macrophage
switch between inflammatory and anti-inflammatory and has
been proposed as an interesting target to limit adipose tissue
inflammation during obesity (57). Boutens et al. studied the
metabolic programming of adipose tissue-resident macrophages
in lean and obese mice using transcriptomic analysis and
found that adipose tissue macrophages in obese mice have an
increase in glycolysis and OXPHOS (58). Interestingly, cytokine
release in these macrophages not only depends on glycolysis
but also fatty acid oxidation. Future approaches to control
adipose tissue inflammation in obese individuals might include
the reprogramming of adipose tissue-resident macrophages into
an anti-inflammatory phenotype.

Atherosclerosis is an inflammatory disease where cholesterol-
rich lipoproteins accumulate in arterial walls leading to their
oxidation and the consequent recruitment of several subtypes
of immune cells (59). Macrophages are known to internalize
oxidized low-density lipoproteins (oxLDL) and lipids within
atherosclerotic plaques, which leads to the formation of foam
cells with an inflammatory phenotype, all of which contributes to
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artery occlusion. In addition, lipid uptake causes an increase in
ROS in macrophages, which leads to mitochondrial dysfunction
and an impaired OXPHOS. This is thought to prevent
polarization into the M2 phenotype and to contribute to chronic
inflammation and atherosclerosis progress (60). Several authors
have shown that targeting lipid metabolism in macrophages
can improve atherosclerosis outcomes in mice models. The
overexpression of LXRα in macrophages in a mouse model
of atherosclerosis had an antiatherogenic effect by increasing
cholesterol efflux in macrophages (61). The same effect is seeing
using LXR agonists in mice (62). Recently, it was shown that
individuals with a specific variant of Perilipin-2, a lipid droplet-
associated protein, are less susceptible to the development
of atherosclerosis (63). Interestingly, the mechanism behind
this protection involves the upregulation of LXR in primary
monocyte-derivedmacrophages from these individuals. In recent
years, trained innate immunity has also emerged as a potential
mechanism of atherogenesis (64). It is known that macrophages
exposed to oxLDL have an enhanced response to restimulation
with TLR ligands and have an increased propensity to form
foam cells (65, 66). In addition, during the induction of trained
immunity, there is an activation of the cholesterol synthesis
pathway in macrophages (67).

CCAAT enhancer-binding proteins (C/EBP) are a family of
transcription factors involved in adipocyte differentiation with
key roles during macrophage polarization (68). In general, it
has been proposed that C/EBPα promotes M1 polarization,
whereas C/EBPβ participates in M2 activation (69, 70), although
several studies suggest that this distinction is more complicated
(71, 72). Interestingly, a recent study showed that C/EBPβ

was enriched in open chromatin regions in primary human
macrophages exposed to oxLDL (73), establishing a link between
this transcription factor and the development of atherosclerosis.
Overall, redirecting macrophage polarization toward an anti-
inflammatory phenotype could have a significant impact on
the treatment of metabolic diseases where inflammation plays
critical roles.

CONCLUDING REMARKS

Lipids are critical metabolites during macrophage polarization.
M1 macrophages synthesize fatty acids to use them as precursors

for the synthesis of inflammatory mediators while at the same
time obtaining most of the ATP from aerobic glycolysis. This
adaptation is most likely a result of the rapid activation of M1
macrophages during inflammatory responses. M2 macrophages,
on the other hand, are involved in the resolution of inflammation
and thus do not need to produce energy in a fast way. As a
consequence, M2 macrophages have a functional mitochondrial
respiratory chain fueled by the oxidation of fatty acids. Despite
these advances, many questions remain on the role of lipid
metabolism for macrophage polarization. During the past
decade, several pieces of data have questioned the classical
view that M1 macrophages rely only on aerobic glycolysis and
M2 depend solely on FAO. The evidence suggests that the
metabolism of macrophages during activation is more complex,
and more studies are needed to unravel the metabolic signature
of macrophages. Furthermore, this task gets complicated by the
fact that most of the data on macrophage polarization come
from murine studies. However, several differences exist between
human andmurinemacrophages in terms of gene expression (74)
and the metabolic pathways activated during polarization (48,
50, 75, 76). This makes difficult the extrapolation from mouse to
humans, especially whether the reprogramming of macrophage
polarization by metabolic interventions will be helpful in
the treatment of human diseases. More importantly, the
question of whether metabolic adaptations are the cause or the
consequence of macrophage polarization needs to be addressed.
Answering these questions will take us one step further
to understand the relation between macrophage activation
and metabolism.
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