
REVIEW
published: 09 January 2020

doi: 10.3389/fimmu.2019.03030

Frontiers in Immunology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 3030

Edited by:

Florence Niedergang,

Centre National de la Recherche

Scientifique (CNRS), France

Reviewed by:

Ian Dransfield,

University of Edinburgh,

United Kingdom

Barbara Bottazzi,

Humanitas Clinical and Research

Center, Milan University, Italy

*Correspondence:

Sergio Grinstein

sergio.grinstein@sickkids.ca

Specialty section:

This article was submitted to

Molecular Innate Immunity,

a section of the journal

Frontiers in Immunology

Received: 14 October 2019

Accepted: 10 December 2019

Published: 09 January 2020

Citation:

Westman J, Grinstein S and

Marques PE (2020) Phagocytosis of

Necrotic Debris at Sites of Injury and

Inflammation.

Front. Immunol. 10:3030.

doi: 10.3389/fimmu.2019.03030

Phagocytosis of Necrotic Debris at
Sites of Injury and Inflammation
Johannes Westman 1, Sergio Grinstein 1,2,3* and Pedro Elias Marques 4

1 Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada, 2Department of Biochemistry, University of

Toronto, Toronto, ON, Canada, 3 Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital,

Toronto, ON, Canada, 4 Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation,

Rega Institute for Medical Research, KU Leuven, Leuven, Belgium

Clearance of cellular debris is required to maintain the homeostasis of multicellular

organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration

and resolution of injury and inflammation. Most of the removal of effete and damaged

cells is performed by macrophages and neutrophils through phagocytosis, a complex

phenomenon involving ingestion and degradation of the disposable particles. The study

of the clearance of cellular debris has been strongly biased toward the removal of

apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells

have remained relatively unexplored. Here, we will review the incipient but growing

knowledge of the phagocytosis of necrotic debris, from their recognition and engagement

to their internalization and disposal. Critical insights into these events were gained

recently through the development of new in vitro and in vivomodels, along with advances

in live-cell and intravital microscopy. This review addresses the classes of “find-me” and

“eat-me” signals presented by necrotic cells and their cognate receptors in phagocytes,

which in most cases differ from the extensively characterized counterparts in apoptotic

cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid

mediators, and complement components in recruiting and activating phagocytes are

reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized,

highlighting the key role of impaired debris clearance in autoimmunity.
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INTRODUCTION

Cell death is inherent to living multicellular organisms. It is a key regulator of homeostasis,
being required during development, growth and maintenance of tissues; it is also a turning point
in the immune response. Healthy humans lose billions of cells per day constitutively via the
process of apoptotic cell death. Apoptosis, the prototypical form of programmed cell death, was
described morphologically in the early seventies (1) as involving cell shrinkage and chromatin
condensation, followed by fragmentation of the entire cell into smaller, sealed apoptotic bodies.
These apoptotic bodies are promptly cleared by neighboring phagocytes and parenchymal cells
through phagocytosis, in this case termed efferocytosis (meaning “carrying to the grave”), without
initiating an inflammatory response or disturbing tissue homeostasis.

While apoptosis has been studied most extensively, there are many other ways for cells to
experience death. The intrinsic activity of organisms often puts them in contact with extreme
temperatures, strong mechanical forces and harmful chemical agents. These situations frequently
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culminate in a catastrophic form of cell death with loss of
plasma membrane integrity and pro-inflammatory properties
named necrosis (2). Necrotic cell death can either be accidental
or programmed (e.g., pyroptosis and necroptosis), leading
to the release of intracellular contents into the extracellular
environment. Necrosis differs qualitatively from apoptosis, which
is clearly demonstrated by the lack of conversion of necrotic cells
into apoptotic bodies, a process that requires enzymatic activity
and energy. Importantly, these differences also predict that the
means of clearance of the cell debris generated by necrosis vs.
apoptosis may be drastically different.

Efferocytosis has received a great deal of attention in the
past decades, and is by now a well-understood process involving
dozens of described receptors and molecular effectors (Figure 1).
Because of the profusion of studies, a casual reader may be
left with the mistaken impression that efferocytosis is the only
means of clearance of cell debris in the body. This is certainly
not the case, as is most graphically shown by the existence
of apoptosis-defective organisms, such as mice deficient in the
initiator caspases 2 (3) and 9 (4), and effector caspases 3 (5),
6 (6), and 7 (7), that nevertheless develop and survive rather
normally! Clearly, other mechanisms of cell death and debris
clearance must exist. The main purpose of this chapter is to
review the clearance of cell debris of necrotic origin. Parallels
will be drawn between apoptosis and necrosis, stressing how
each mode of cell death may produce different “find-me” and
“eat-me” signals that will ultimately lead to clearance of debris
by different cell types and phagocytic receptors. In addition,
the immunological consequences of defective clearance of cell
debris will be discussed: this can take the form of delayed tissue
regeneration upon injury or even severe autoimmunity in the
long-term. In collating the available information on necrotic cell
clearance, this review aims to shed new light on diseases in which
necrotic debris are central, such as in atherosclerosis, liver injury,
arthritis, severe trauma, lupus, and many others.

APOPTOSIS AND EFFEROCYTOSIS

Approximately 200 billion cells undergo turnover (ostensibly
by apoptosis) every day in the human body (8). Yet, few
apoptotic cells are found in the steady state in healthy humans,
suggesting that these cells are rapidly cleared. In order to
orchestrate efferocytosis, three main signaling programs are
required. First, chemotactic “find-me” signals are produced to
attract professional phagocytes toward the dying cell. Second,
“eat-me” signals appear on the surface of the apoptotic cell,
which will help phagocytes recognize and engulf it. Lastly, the
internalized apoptotic body is degraded in the phagolysosomal
compartment by proteases, DNAses and lipases.

During apoptosis, cellular components are modified by the
activity of caspases and packaged into sealed vesicles—the so-
called apoptotic bodies—that expose phosphatidylserine (PS) (9).
The activation of initiator caspases (2, 8–10) leads to the cleavage-
dependent activation of the effector caspases (3, 6, 7), which,
being promiscuous proteases, cause the widespread cleavage of
proteins in the cell (10). This, in turn, promotes the degradation

of nuclear and cytoskeletal proteins and the activation of
accessory enzymes, such as the caspase-activated DNAse (CAD),
that degrades chromosomal DNA (11). The concomitant cleavage
of nuclear scaffold proteins such as lamins leads to nuclear
fragmentation (12), while proteolysis of actin, fodrin, and gelsolin
(13) causes cell shrinkage and membrane blebbing. In addition,
caspase activation is central to drive PS exposure on the outer
leaflet of the plasma membrane, a key event in apoptotic cell
recognition and clearance (14). Thus, caspase activity is largely
accountable for the morphological and biochemical hallmarks of
apoptosis, including the auto-digestion of cellular components
and the generation of “find-me” and “eat-me” signals. Caspases
can be activated when proteases that are normally secreted
are released into the cytosol. For example, neutrophil elastase
induces the unfolded protein response in vascular endothelial
cells, promoting apoptosis via caspase-3/7 activation (15). The
best-characterized apoptotic “find-me” signals are the nucleotides
ATP and UTP (16), the chemokine CX3CL1 (17), ICAM3
(18), and the lipids lysophosphatidylcholine (LPC) (19) and
sphingosine 1-phosphate (S1P) (20). Interestingly, these signals
can be released as soluble mediators or become exposed on the
surface of apoptotic microparticles, which detach from the main
apoptotic body and are capable of diffusing in the extracellular
environment (21).

Apoptotic bodies are easily engulfed by leukocytes
(professional phagocytes) and are cleared from the tissue
without any inflammatory impact. This process depends largely
on the exposure of PS on the outer leaflet of the membrane,
an evolutionary conserved “eat-me” signal for apoptotic cells.
PS is recognized by a plethora of receptors, including TIM-1,
TIM-3, TIM-4, BAI1, MerTK, and the stabilins 1 and 2, which
will cause internalization of the apoptotic bodies by phagocytes
(2, 22–25). Also, scavenger receptors such as CD36, might be
able to interact directly with exofacial PS due to its negative
charge (26). In addition to direct receptor-binding to PS,
several soluble molecules were described to bridge phagocyte
receptors to the phospholipid. They may originate from the
phagocyte, the dying cell or the interstitial fluid. Examples of
phagocyte-derived bridging molecules include milk fat globule
EGF factor 8 (MFG-E8), developmental endothelial locus 1
(Del-1), growth arrest-specific 6 (Gas6), protein S and the
complement factor C1q. Bridging proteins interact with PS via
different PS-binding domains. For example, MFG-E8 secreted
by macrophages and immature dendritic cells binds to PS
on apoptotic cells via its Ca2+-independent discoidin-like C2
domain, while interacting with ανβ3/5 integrins on the phagocyte
membrane, resulting in cell engulfment (27, 28). In contrast,
Gas6 and protein S bind PS via their γ-carboxyglutamic acid
(Gla) domain. Unlike the discoidin-like C2 domain, binding
of the Gla domain to PS requires Ca2+, in this way promoting
apoptotic cell internalization (29, 30). C1q binds to apoptotic
cells via its cationic globular head, and interacts with calreticulin-
CD91 on phagocytes to promote efferocytosis (31, 32). Another
phagocyte-derived protein, Annexin A1, can be translocated
to the plasma membrane to interact with PS exposed on the
apoptotic cell target, and this may contribute significantly to the
anti-inflammatory effects of apoptotic cell clearance (33).
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FIGURE 1 | A comparison of apoptotic and necrotic “find-me” signals. (Left) Apoptosis is characterized by cell shrinkage, membrane blebbing, DNA fragmentation

and nuclear condensation. As cells undergo apoptosis, “find-me” signals such as lysophoshatidylcholine (LPC), CX3CL1, ICAM3, and sphingosine 1-phosphate (S1P)

are secreted, exposed on the outer leaflet of the plasma membrane, and/or released via apoptotic bodies or exosomes. Pannexin 1 (PANX1) is an important

membrane channel involved in formation of membrane protrusions and ATP/UTP release during apoptosis. LPC, lysophosphatidylcholine; S1P,

sphingosine-1-phosphate. (Right) Necrosis is considered to be an uncontrolled form of cell death characterized by nuclear and organellar swelling, plasma

membrane rupture and leakage of intracellular contents, which many fall into the category of damage-associated molecular patterns (DAMPs or danger signals).

“Find-me” signals released by necrotic cells include mitochondria-derived formylated peptides, as well as molecules released from the cytosol such as H2O2,

ATP/UTP, leukotriene B4 (LTB4), and CXC/CC chemokines. LTB4 can also be released via sealed extracellular vesicles. The chemotactic complement components

C3a and C5a are generated after complement activation on the surface of necrotic cells.

Complement C1q and additional bridging molecules such
as IgM and collectins were proven to bind to “defects”
in the plasma membrane of the apoptotic cell, including
the presence of phosphatidylcholine, phosphatidylethanolamine,
lyso-phospholipids, carbohydrates, and DNA (34). Collectins,
such as mannose-binding lectin (MBL) and complement
C1q, bind late apoptotic cells and also drive engulfment via
interaction with CD91 and calreticulin on the macrophage
in vitro. Calreticulin is an endoplasmic reticulum (ER)-
localized chaperone that normally facilitates folding and quality
control of N-glycosylated proteins. As cells undergo apoptosis,
calreticulin escapes and translocates to the plasma membrane,
where it acts as an “eat-me” signal that is recognized
by CD91 on phagocytes (35). In addition, a variety of
other receptors and adaptor molecules have been reported
to contribute to efferocytosis. These include Fcγ receptors,
β2-glycoprotein I receptor, lectins, CD14, ABC transporters,
scavenger receptors, and complement components [reviewed
in (31, 36–42)]. Together this indicates that there is marked
redundancy in receptors and ligands for the engulfment of
apoptotic cells.

Interestingly, although PS exposure is a hallmark of apoptosis,
forced PS exposure on viable cells does not trigger internalization
(43). This is due to the presence of “don’t eat-me” signals on
viable cells, including CD31, CD46, CD47, and CD61, which
disable target cell engulfment. The downregulation of “don’t
eat-me” signals, such as CD47 and its binding partner SIRPα,
contributes to internalization of apoptotic bodies, indicating that
a coordinated effort between the dying cell and the phagocyte
likely exists (44).

NON-APOPTOTIC CELL DEATH

Necrosis is generally considered to be a drastic and uncontrolled
form of cell death, characterized morphologically by nuclear
and organellar swelling (oncosis) and plasma membrane rupture
(Figure 1) (10). Due to the loss of membrane integrity, the
intracellular contents are spilled out by the dying cell. The
exposure of necrotic cell content (or debris) is abrupt and
lacking in processing, causing it to be released in a disorderly
fashion into the tissue, without the specific cues of its apoptotic
counterpart. This causes necrotic debris to be potent inducers
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of inflammation, through activation of pattern-recognition
receptors such as toll-like receptors (TLRs), NOD-like receptors
(NLRs), and C-type lectins (CLECs), among others. Generally,
necrotic cell death is problematic to tissues, prompting the need
for immediate removal of debris, delaying the regeneration
required after injury and sustaining collateral inflammatory
damage. Interestingly, the recent identification of signaling
pathways that are activated before and during necrosis have
prompted reconsideration of this type of cell death as multiple,
distinct types of events, at least some of which are tightly
regulated and not always accidental. Recent subclassifications
of necrosis include pyroptosis, necroptosis, parthanatos,
ferroptosis, oxytosis, ETosis, and secondary necrosis (45).

Pyroptosis is a type of necrotic cell death caused by
extensive inflammasome activation. It occurs in cell types
that express inflammasome components, such as macrophages,
upon infection (e.g., with the intracellular pathogen Salmonella
typhimurium) or LPS treatment (46). Pyroptosis is caused by
the formation of gasdermin D pores, which assemble at the
plasma membrane after proteolytic processing of their precursor
by inflammasomes containing activated caspase-1 or -11 (47, 48).
Gasdermin pores create a path for the release of IL-1β, but
secondarily cause cell lysis by excessive permeabilization of the
plasma membrane. Necroptosis differs from other modalities
of necrosis by the involvement of receptor-interacting protein
kinase 1 (RIPK1) and RIPK3, which recruit and phosphorylate
the mixed lineage kinase domain-like protein MLKL (45).
Subsequently, MLKL oligomerizes, translocates to the inner
leaflet of the plasma membrane and promotes membrane
permeabilization and cell death (49, 50). Curiously, necroptosis
requires the inhibition of caspase-8, which otherwise causes the
cells to die by apoptosis. This may restrict the relevance of this
death pathway in vivo, since caspase-8 inhibition may only occur
in some viral infections (51). Parthanatos is a necrotic mode of
cell death that depends on poly(ADP-ribose) polymerase proteins
(PARPs). PARPs are typically activated by DNA breaks from
ultraviolet light and by alkylating agents (52). By causing poly
(ADP-ribosyl)ation of target proteins, PARPs may deplete cells
of NAD+ and consequently of ATP, causing necrotic cell death.

Ferroptosis is the necrotic cell death induced by iron-
dependent oxidative stress (53). It was postulated that iron
catalyzes the lipid peroxidation triggered by the ferroptosis-
inducing molecules erastin and RSL3, or by inhibiting the
glutamate/cystine antiporter. It was later found that these
pathways converge on the reduction of intracellular glutathione
(GSH) levels and impaired GSH peroxidase 4 (GPX4) activity,
leading to the accumulation of lipid-based reactive oxygen
species and cell death (54). As expected, iron-chelators and
lipophilic antioxidants were found to be potent inhibitors of
ferroptosis (55). A related oxidative stress-dependent necrotic
cell death, oxytosis, involves GSH depletion, 12-lipoxygenase
activation and opening of cGMP-gated channels on the plasma
membrane (56). This leads to calcium influx and activation
of the calpain-cathepsin cascade, causing lysosome membrane
permeabilization and necrosis (57).

In contrast to the “passive” nature of classical necrosis,
one of the necrotic death pathways involves purposeful

intracellular content exposure. Since its description in 2004
by Zychlinsky and collaborators (58) (neutrophil) extracellular
traps (ETs), which consist primarily of extruded DNA, have
been studied extensively. Subsequent work determined that cells
may die during ET production, a process dubbed NETosis
(59, 60). NETosis was later shown to occur in several cell
types other than neutrophils, such as monocytes (61), mast
cells (62), and eosinophils (63), making the name ETosis
more appropriate. Generally, ETosis requires NADPH oxidase-
dependent reactive oxygen species production, leading to
chromatin decondensation, nuclear disruption and release of
chromatin complexed with granular/cytoplasmic proteins (59),
although the mechanisms underlying the process may vary
between cell types.

Necrosis may also take place even after apoptosis has
occurred. If apoptotic cells are not cleared in a timely fashion, the
apoptotic bodies may decay and lose plasmamembrane integrity,
leaking their contents in a similar manner as a primary necrotic
cell would (64). This event is named secondary necrosis and
it shares common features with both apoptotic and necrotic
cell death. The intracellular debris produced by secondary
necrosis undergo apoptotic caspase processing, causing it to be
qualitatively different from primary necrotic debris (65). For
instance, secondary necrotic debris are considerably smaller,
contain digested chromatin, prostaglandin E2 and high levels
of uric acid, but very low ATP levels (65). These change
drastically the manner by which the organism deals with the
debris, as exemplified by the higher efficiency of complement C1q
and DNAse I in degrading chromatin from secondary necrotic
cells (66) and the potent anti-inflammatory polarization of
macrophages elicited by C1q-covered late apoptotic debris (67).

NECROTIC “FIND-ME” SIGNALS AND
THEIR RECEPTORS

In contrast to apoptotic “find-me” signals, necrotic cells may
not have enough time or energy to process their own signals.
A myriad of molecules has been shown to be released by dying
cells, many of which fall into the category of damage-associated
molecular patterns (DAMPs): bona fide cellular components that
are normally concealed inside the cell, but that become exposed
to the extracellular environment upon cell damage or death.
Some well-established DAMPs include mitochondria-derived
N-formylated peptides, DNA and RNA, the nuclear protein
HMGB1, histones, actin, calcium-binding S100 proteins, heat-
shock proteins (HSPs), ATP and uric acid, among many others
(68, 69). Necrotic cells may also release pre-stored inflammatory
mediators, such as IL-1α, IL-33, and chemokines, which may
directly or indirectly recruit phagocytes to the vicinity. In
addition, the occurrence of necrosis and the consequent exposure
of “unusual” molecules promptly activates the proteolytic
cascades of complement and coagulation. The activation of
complement on necrotic debris can itself generate several “find-
me” signals, including the powerful chemoattractant C5a. Below,
we discuss established necrotic “find-me” signals. After reading
this section the reader may agree that neutrophils and monocytes
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respond to a “complex pool of exogenous signals, of which no
single cue is absolutely required for migration” (70).

Formyl-Peptides
Formyl-peptides (or N-formylated peptides) are classically
generated in the course of bacterial protein synthesis, which
is initiated by N-formyl-methionine residues. Mitochondria,
sharing the bacterial ancestry, initiate protein synthesis similarly,
thus creating a formylated protein reservoir inside the eukaryotic
cell. Upon necrosis, the release and cleavage of mitochondrial
proteins produces formyl-peptides, causing massive leukocyte
activation and recruitment in a variety of necrotic states (71, 72).

Formyl-peptides are powerful chemoattractants. The most
used analog, fMLP, activates neutrophils in the picomolar
range (73, 74). It is considered an end-target chemoattractant,
which bypasses the signaling of intermediate chemotactic
molecules such as CXCL8 (IL-8) and LTB4 (75). Formyl-peptides
bind FPR1, FPR2, and FPR3 receptors, although the classical
chemotactic effects are mainly mediated by FPR1 activation.
Whereas, FPR1 and FPR2 are expressed in several cell types,
especially neutrophils and macrophages, FPR3 is much less
understood (76). Upon ligand binding, FPR1, induces multiple
intracellular signaling pathways: Gα activation signals via the
MAPK pathway and the small GTPases CDC42 and RAC to
stimulate migration and phagocytosis; Gβγ transduce signals
via PI3Kγ and PLCβ to stimulate superoxide production and
transcriptional regulation in phagocytes (77).

The role of formyl-peptides as a necrotic “find-me” signal is
firmly established in the literature. In a seminal paper where
McDonald et al. (71) used focal thermal injury of the liver, FPR1
activation of neutrophils was the key step required for migration
into the necrotic area. The neutrophils initially traveled to the
liver stimulated by an intravascular gradient of CXC chemokines.
Upon reaching the edge of the necrotic site, the neutrophils
switched to a FPR1-dependent migration mode, presumably
chasing formyl-peptides emanating from the mitochondria of
necrotic cells. Furthermore, the dependence of neutrophils
on formyl-peptide gradients for recruitment to necrotic sites
was confirmed in clinically-relevant disease models of drug-
induced liver injury (78) and liver ischemia-reperfusion (79).
Interestingly, when the necrotic injury is extensive enough, as in
severe trauma (crushes, fractures, burns) or acute liver failure, the
formyl peptides can be released in such a significant amount that
they cause systemic inflammation, affecting lung function inmice
and humans (72, 78).

Though most studies have focused on neutrophil chemotaxis
and activation by formyl-peptides, macrophages also express
FPR1 and are sensitive to formyl-peptide stimulation. Human
PBMCs produce significant amounts of CXCL8 in the presence
of mitochondrial extracts containing formyl-peptides (80).
Interestingly, the response is stronger when formyl-peptides are
applied in conjunction with other stimulatory DAMPs such
as HMGB1. This suggests that formyl-peptides may indirectly
recruit phagocytes to necrotic sites by inducing the production of
additional chemoattractants (CXCL8) by resident macrophages.
Formyl-peptides induce monocyte recruitment in vitro (81,

82), however, the relevance of FRP1 signaling in monocyte
recruitment to necrotic sites in vivo remains elusive.

Importantly, questions about formyl-peptides as necrotic
“find-me” signals remain. For example, the mechanism by
which peptides are retained in necrotic areas in order to
signal to leukocytes is unclear. Chemokines interact with
glycosaminoglycans in order to form a gradient in the vasculature
(83), but no mechanism has been proposed for the gradient
formation of formyl-peptides. One should also consider that
necrotic formyl-peptides may be very heterogeneous, varying
in peptide length from a few to several amino acids. This may
also impact the localization and agonistic activity of the formyl-
peptides in vivo.

Chemokines
Chemokines are chemotactic cytokines that dictate the
localization and mobilization of leukocyte populations in
the organism (84). Chemokines are produced in a constitutive
fashion and/or in response to stimuli such as those that activate
pattern-recognition receptor (85). In the context of necrosis,
chemokines play the roles of primary and secondary “find-me”
signals, meaning that they can originate from both the dying
cells and from healthy bystander cells. However, the multitude
and promiscuity of chemokines and chemokine receptors adds a
significant layer of complexity to the study of these mediators in
vivo (84). CC and CXC chemokines can be released essentially
by any cell type, including resident leukocytes (85). For instance,
the chemokine CXCL1 can be produced by endothelial cells,
pericytes, hepatocytes, macrophages, and fibroblasts (86–89). In
addition, leukocytes can produce chemokines in an autocrine
fashion, such as when neutrophils secrete CXCL2 during
transendothelial migration (87) and Kupffer cells that release
CCL2 during necrotic injury (90). Thus, there is an abundance of
chemokine sources that can direct the migration of phagocytes
to necrotic sites, reflecting the importance of chemokines as
necrotic “find-me” signals.

The chemokines CXCL1 and CXCL2 (in mice) or CXCL8
(in humans), among others, have been known as powerful
chemoattractants for neutrophils for decades (91). They activate
CXCR1 and CXCR2 receptors to induce neutrophil polarization
and migration, an effect strongly dependent on PI3Kγ signaling
(92). CXC chemokines were shown to be the first signal guiding
neutrophils to sites of focal necrosis in the liver (71) and suffice to
induce neutrophil accumulation in zebrafish in vivo (93, 94). In
contrast to formyl-peptides, the CXC chemokines were actually
shown to form an intravascular gradient in the vicinity of necrotic
areas, which is required for proper neutrophil recruitment to
the injury site. These chemokine gradients are built on heparan
sulfate proteoglycans expressed by the endothelium; they are
long lasting and extend hundreds of microns from the site of
injury (71, 94). This promotes the recruitment of patrolling
neutrophils from the vasculature far from the original insult
area. Moreover, CXCL1/CXCL2 signaling via CXCR1/CXCR2
receptors act in conjunction with formyl-peptides in the case
of widespread hepatic necrosis (e.g., drug-induced liver injury),
in which both pathways are required for maximal neutrophil
recruitment to the interior of necrotic areas (95). Despite being
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considered redundant, evidence shows that CXCL1 and CXCL2
act on neutrophils sequentially to promote successful diapedesis
and recruitment to inflamed muscle (87). Conversely, there is
mounting evidence that neutrophils expressing lower levels of
CXCR1 may transmigrate in reverse into the bloodstream (96).
This has been corroborated by observations of neutrophil reverse
migration (e.g., away from the site of necrosis and back into the
bloodstream) in both zebrafish (97) and mice (98). This suggests
that the role of CXC chemokines as “find-me” signals may be
much more complex than anticipated, regulating initially the
recruitment of neutrophils to necrotic areas and subsequently
directing their egress back to the vasculature.

CC chemokines such as CCL2, CCL3, and CCL5 are notably
active in cells of the monocytic lineage. Even though they
are present in a variety of parenchymal and non-parenchymal
cells, the CC chemokine receptors, especially CCR2, are highly
expressed in monocytes and macrophages (85). Using transgenic
mice, Dal-Secco et al. identified two different monocyte subsets
that are recruited to necrotic sites: a classical pro-inflammatory
CCR2hi-CX3CR1low population and an alternative patrolling
CCR2low-CX3CR1hi population (99). They showed that CCR2hi
monocytes migrate to the edge of the necrotic area after the
initial wave of neutrophil recruitment, and this was dependent
on CCR2 expression. The monocytes persisted in the necrotic
area for days, where they transitioned in situ into a CX3CR1hi
population. The reprogramming of the monocyte population was
dependent at least partially on the cytokines IL-4 and IL-10, and
was required for the timely resolution of the necrotic injury.
Interestingly, CCL2 and CCL3 were found to be significantly
increased in the necrotic liver of humans, correlating to a
CCR2-dependent recruitment of CD68-positive monocytes to
the necrotic areas (100).

Of note, chemokine receptors other than the ones mentioned
above may control different leukocyte populations, playing
roles that are still unclear in the context of necrotic debris.
CXCR3 and its ligands CXCL9 and CXCL10 seem to control
the population of NK and NKT cells, such that deficiency of
CXCR3 causes a significant reduction of both cell populations in
necrotic liver (101). Similarly, the chemokine CXCL12, known
to control neutrophil egress from the bone marrow via CXCR4
(102) may control later events in tissue necrosis, such as re-
vascularization (103).

Leukotriene B4 (LTB4)
LTB4 is a mediator derived from membrane phospholipids. The
activation of cytosolic phospholipase 2 (cPLA2) initiates the
cleavage of phospholipids to generate arachidonic acid. This
fatty acid is used as substrate by the lipoxygenase 5-LOX to
produce LTB4, among other intermediate eicosanoids. LTB4 is
a powerful chemoattractant to neutrophils. It activates the BLT1/
LTB4R1 receptor, which, coupled to Gαi, stimulates neutrophil
migration via Src-family kinases and Rho GTPases (104). Since
LTB4 synthesis demands several enzymatic steps, it is unlikely
to be released by necrotic cells as a DAMP. Instead, it can
be produced in a matter of minutes by leukocytes such as
neutrophils, macrophages, and mast cells upon demand (104).
However, it has been recently demonstrated that the enzymatic

machinery for LTB4 synthesis can be localized to multivesicular
bodies and secreted as exosomes in vitro (105). In this way, LTB4
may also be produced independently of the cell and travel in
the aqueous environment concealed in exosomes, increasing its
diffusion range and persistence in the tissue.

LTB4 is considered an “intermediate target” chemoattractant.
Nevertheless, it is required for the rapid migration and
concentration of neutrophils in focal necrotic sites, a
phenomenon dubbed “neutrophil swarming” (106). LTB4
is produced by neutrophils recruited to necrotic foci in order
to further amplify neutrophil recruitment to the area, forming
the typical densely-populated clusters that are associated to
neutrophil swarming. Neutrophil-derived LTB4 can act as
a signal relay molecule (107) that is necessary for cell-cell
communication to produce optimal aggregation of neutrophils
at the injury site (106). Moreover, LTB4 was shown to act
in conjunction with other necrotic “find-me” signals such as
formyl-peptides and chemokines (106, 107), supporting the idea
that there is no absolute necrotic “find-me” signal, but instead, a
synergistic pool of signals that vary in chemotactic potency and
range to mediate an integrated response.

The importance of LTB4 as a necrotic “find-me” signal has
been confirmed in several models other than laser-induced focal
skin injury. In spinal cord injury, LTB4-BLT1 signaling was
required for the recruitment of neutrophils to the injury site
(108). Interestingly, BLT1 knockout or pharmacological blockage
of the receptor reduced neutrophil recruitment significantly, but
did not alter monocyte recruitment to the injured spinal cord
area. In the K/BxN model of inflammatory arthritis, inhibition
of 5-LO led to a significant reduction of neutrophil migration
to arthritic joints and amelioration of the disease (109). There,
LTB4 was also produced locally by infiltrating neutrophils.
In drug-induced liver injury, deficiency of 5-LO prevented
mortality associated with acetaminophen overdose, which was
correlated with reduced recruitment of phagocytes to the necrotic
liver (110).

It is clear that LTB4 is an essential necrotic “find-me” signal to
neutrophils. Yet, many questions pertaining its production and
release still remain. For example, the transport of lipid mediators
across membranes is still poorly defined, as is its mode of release
from the nanoscopic exosomes. It would be interesting to assess
whether exosomes are able to bind to the vasculature, perhaps
stimulating leukocyte recruitment at long range. In addition,
based on the role of LTB4 in the skin, one could wonder if it is
especially relevant in tissues with abundant extracellular matrix,
where it would be better retained and less prone to degradation.

Hydrogen Peroxide (H2O2)
H2O2 is a reactive oxygen species commonly generated in
organelles such as mitochondria and phagosomes (111). The
signaling capabilities of H2O2 are not limited to mammalian
cells: it also serves as a major chemotactic signal in other species,
such as zebrafish (Danio rerio) andDrosophila. Niethammer et al.
showed formation of a H2O2 gradient minutes after wounding
zebrafish, which extended up to 200µm from the site of injury
(112). The H2O2 was created by the activity of the enzyme
Duox, a NADPH oxidase expressed in epithelial cells, and was
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necessary for rapid leukocyte recruitment to the injury site. In
Drosophila, hemocytes also respond to H2O2 emanating from the
wound (113). In this species, H2O2 was also derived from Duox
and inhibition of the enzyme by siRNA knockdown or using
diphenylene iodonium blocked the recruitment of hemocytes to
the wound. Interestingly, it was later shown that wounding of
tissues in zebrafish and flies causes a calcium wave across the
tissue, which precedes and is responsible for the activation of
Duox via its EF-handmotif, initiating the production of theH2O2

gradient (114).
Leukocytes must have a mechanism to sense this transient

H2O2 gradient emanating from the injured cells. The redox
sensor is seemingly the Src family kinase Lyn, which is
activated by wound-derived H2O2 and mediates recruitment
of neutrophils to injury sites in zebrafish (115). Oxidation of
cysteine C466 by H2O2 activates Lyn, which in turn contributes
to neutrophil migration toward the wound. Of interest, H2O2

is also chemotactic in murine (116) and human neutrophils
(115), and Lyn is expressed in all mammalian leukocytes, with
the exception of T cells (which nevertheless express related Src-
family kinases). Thus, the role of H2O2 as a necrotic “find-me”
signal spans several species and leukocyte types. Beyond the
direct effects that H2O2 has on phagocyte recruitment to injury
sites, it can also regulate the chemotactic responses to other “find-
me” signals, such as fMLP, LTB4, and CXCL8 (117). Indeed,
generation of reactive oxygen species by the NADPH oxidase at
the leading edge of neutrophils is important to oxidize and inhibit
the phosphoinositide phosphatase PTEN,maintaining high levels
of PI(3,4,5)P3 at the leading edge and supporting the directional
migration of neutrophils (118).

Purines
Nucleotides are among the earliest molecules released by
damaged and dying cells (119). Nucleotide sensing occurs via
P2Y and P2X receptor families, which are G protein-coupled
receptors and nucleotide-gated ion channels, respectively. These
receptors are numerous and vary in sensitivity to different
nucleotides (e.g., ATP, ADP, UTP), but the majority of the studies
have focused on the role of ATP and its degradation products.
ATP is very abundant in the cytoplasm, ranging from 3 to
10mM (120). When released actively or passively by cells, ATP
is rapidly hydrolyzed by ectonucleotidases into ADP, AMP, and
adenosine (119). Yet, despite its very short half-life outside the
cell, ATP nevertheless has pivotal effects in leukocyte activation
and migration.

Chen and collaborators demonstrated that neutrophils
exposed to a gradient of fMLP release ATP at the leading
edge of the cell, amplifying the chemotactic response to the
formyl-peptide. This effect was mediated by ATP signaling
via P2Y2 receptors and subsequently by activation of A3
receptors by adenosine derived from ATP hydrolysis (121). P2Y2
activation by ATP was also required for chemotaxis of human
neutrophils toward CXCL8 (122), but in this case adenosine
signaling did not play a role. Moreover, it was demonstrated
that macrophages utilize the same autocrine ATP amplification
loop to migrate toward C5a. Blockage of P2Y2 also impaired
macrophage chemotaxis in vitro and in vivo (123). Clearly,

purinergic signaling is involved in phagocyte migration to
several stimuli, but this is not sufficient to characterize it as a
chemotactic agent. Indeed, it was demonstrated that ATP itself
is not directly chemotactic to macrophages. Instead, it induces
lamellipodial extensions and chemokinesis (increased random
displacement) (124), without directing the migration. These
studies suggest an indirect effect of ATP, that though not acting
as a chemoattractant, acts in an autocrine capacity in phagocytes
to maximize the response to other chemoattractants, including
fMLP and chemokines.

ATP was initially implicated as a “find-me” signal of apoptotic
cells (16). The authors showed that ATP and UTP released
during apoptosis were required for monocyte migration toward
supernatant of apoptotic cells, in a P2Y2-dependent manner.
Also, the migration of monocytes toward apoptotic cells in vivo
was impaired in the absence of P2Y2. In necrotic injuries, the
role of purinergic signaling is even more interesting. Applying
focal necrotic injury to the liver, it was shown that ATP is
required for invasion of peritoneal macrophages into the necrotic
area (125). Curiously, the peritoneal macrophages, which can
be found floating in the peritoneal fluid, took this avascular
route to the necrotic site by recognizing ATP released from
the dead cells, which prompted the macrophages to arrest
at that site. The use of apyrase (to degrade ATP and ADP)
and P2X7 blockage reduced significantly the infiltration of
macrophages from the peritoneum to the injury site. In the
case of focal injury of the brain, the extension of microglial
processes to the area of injury was also found to be mediated
by ATP (126). The rapid convergence of microglial extensions
to the necrotic site took place without displacement of the
main cell body and was dependent on ATP and P2Y receptors.
Uderhardt and collaborators found a similar response of
peritoneal macrophages to a focal necrotic injury. Sessile resident
macrophages extended membrane processes toward dead cells
in order to cloak the debris from patrolling neutrophils,
thereby minimizing inflammation (127). The extension of the
macrophage processes could be blocked by apyrase or joint
inhibition of P2X and P2Y receptors, indicating an elevated
redundancy in purinergic signaling. In zebrafish, wounding
causes ATP release and P2Y receptor activation, which in
turn activates Duox to produce H2O2, recruiting phagocytes
to the injury site (128). In this species, the effects of the
nucleotide are not limited to phagocytes, as ATP is also
involved in rapid wound closure by stimulating epithelial cell
motility (129).

It is important to highlight the differences in the function of
P2Y and P2X receptors. As mentioned, P2Y receptors, especially
P2Y2, have been implicated in regulating the migration of
phagocytes to diverse necrotic “find-me” stimuli. P2Y receptors
are metabotropic, transducing signals via RhoA, Rac and PLCβ,
leading to cytoskeletal rearrangement and increased intracellular
calcium (130). P2X receptors, on the other hand, being ion
channels activated by nucleotides, signal in a fundamentally
different way. A classic example is the role of P2X7 in
inflammasome activation in macrophages. In this instance, P2X7
mediates K+ efflux from cells stimulated by ATP, a major step in
the activation of the inflammasome complex and caspase-1 that
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eventually culminates in the release of interleukin-1β (IL-1β). IL-
1β is able to prime the production of several other chemotactic
agents such as chemokines and lipid mediators, but like P2X7,
lacks intrinsic chemotactic activity.

Complement
The complement system comprises an evolutionary ancient set
of fluid-phase proteins and receptors, present in vertebrates and
invertebrates. It is at the core of the immune system andmediates
a cross-talk between innate and adaptive responses (131–134).
The complement cascade is activated by a myriad of self and
non-self molecules, which initiate the proteolytic cleavage of
complement proteins into fragments that deposit onto the target
or are released into the extracellular fluid to signal to neighboring
cells and leukocytes.

Necrotic debris can initiate complement activation through
all 3 pathways: classical, alternative and lectin (133). Exposure
of intracellular components such as DNA or mitochondria
activate complement directly (135, 136), and natural IgM and IgG
autoantibodies can bind necrotic debris to initiate complement
by the classical pathway (137). In addition, there are numerous
adaptors and pattern-recognition receptors that detect necrotic
debris and initiate the complement cascade by themselves,
including mannose-binding lectin (MBL), pentraxins, ficolins,
and histidine-rich glycoprotein (34). In the specific context of this
section, the production of complement C3a and C5a fragments
(anaphylatoxins) is central, since these stimulate chemotaxis of
leukocytes (138). Their respective receptors, C3aR and C5aR, that
are expressed primarily in myeloid cells, are G protein-coupled
receptors signaling via PI3K activation, MAPK activation and
intracellular calcium mobilization (139).

The activation of complement on dying or necrotic cells,
measured by the deposition of C3b/iC3b, has been demonstrated
in several tissues, including the liver (140–142), muscle (143,
144), brain (145, 146), joint (147, 148), and intestines (149,
150). The presence of complement deposited on damaged
tissues was already strong indication that C3a and C5a were
being generated, but subsequent studies focused on the exact
role of each fragment in disease. In muscle injury induced
by cardiotoxin, it was shown that complement is activated
via the alternative pathway (spontaneously), and that C3a-
C3aR signaling was required for monocyte migration to the
tissue (143). Deficiency in C3aR reduced the recruitment
of monocytes to the injured muscle significantly, although
neutrophil migration was unaffected. Moreover, C5aR was not
required for the migration of either monocytes or neutrophils
to the muscle, indicating specificity of C3a activity in this
setting. In liver injury by ischemia/reperfusion, neutrophil
migration requires complement activity. C5a is produced early
during injury and formation of the complement membrane
attack complex (MAC) plays an additional role in amplifying
neutrophil recruitment, likely via release of IL-1β and additional
DAMPs (140).

Complement inhibition in intestinal ischemia/reperfusion
injury, a severe model of intestinal damage, also minimizes
neutrophil recruitment and disease severity (149, 150).
Interestingly, whilst complement inhibition presumably

inhibited the generation of C3a and C5a in the injured intestine,
it also inhibited the production of another chemoattractant,
LTB4. This shows again a synergistic relationship between
different classes of “find-me” signals, acting simultaneously or
sequentially to guide leukocyte recruitment to necrotic debris.
In the joints, the synovium is a site of both synthesis and
deposition of complement (131). The alternative complement
pathway plays a major role in the pathogenesis of arthritis
from the initiation phase (when synoviocytes can be damaged
directly by complement) to the chronic inflammatory stage
(147, 148). Importantly, both C3aR and C5aR are required
for the recruitment of neutrophils and macrophages to the
damaged joint (148), showing yet again a degree of redundancy
in the role of anaphylatoxins in phagocyte recruitment to the
joint. Altogether, there is abundant evidence that complement
by-products are released during necrosis and that they play a role
in attracting phagocytes to injury sites.

NECROTIC “EAT-ME” SIGNALS AND THEIR
RECEPTORS

Apoptotic cells have to be cleared quickly and efficiently to
prevent secondary necrosis, which would lead to the release
of intracellular components and inflammation. Similarly, cells
dying from primary necrosis need to be removed efficiently,
as they could be a detrimental source of autoantigens and
may trigger excessive inflammation (Figure 2). In the case of
necrotic debris, the mechanism of recognition by professional
phagocytes is not fully understood. As the necrotic cell can
be disintegrated into small debris, it has been suggested that
engulfment of necrotic cells resembles macropinocytosis, in
which macrophages develop membrane ruffles which protrude
around the target material (151–153). As reviewed briefly above,
multiple receptors implicated in the clearance of apoptotic debris
have been described. By contrast, much less is known about the
receptors and ligands involved in the uptake of necrotic debris.
Remarkably, as the evidence emerges, it is becoming apparent
that some necrotic “eat-me” ligands overlap with the equivalent
apoptotic signals. For example, necrotic cells also expose PS,
although the mechanism underlying such exposure differs
drastically. In line with this, many of the molecules that bridge
PS for efferocytosis (complement, collectins and pentraxins) have
also been shown to bind necrotic cells. Nevertheless, there are
“eat-me” signals that apply uniquely to necrotic debris. For
instance, complement C1q deposition represents a hallmark
of necrotic debris, but it is absent on apoptotic debris (154).
Another distinguishing “eat-me” signal is annexin A1, which is
translocated to the plasmamembrane of necrotic cells to promote
phagocytic uptake (155). Below, we will summarize and discuss
necrotic “eat-me” signals, comparing and contrasting them to
apoptotic “eat-me” signals.

Complement
Opsonization of targets by complement components C1q, C3b,
and C4 alerts phagocytes bearing complement receptors such
as CR1, CR3, and CR4. Moreover, it is clear that a functioning
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FIGURE 2 | Apoptotic and necrotic “eat-me” signals, and their respective phagocytic receptors. (Left) As cells undergo apoptosis, they expose “eat-me” signals on

their surface. The best studied eat-me signals for apoptotic cells is phosphatidylserine (PS). PS can either be bound directly by macrophage receptors such as BAI1,

TIM 1/2/4, Stabilin-2, CD300, and TREM2. Alternatively, bridging molecules such as ProS, Gas6, MFG-E8, TSP1, and ICAM function to connect macrophage

receptors (MerTK/TAM, integrin avβ3/5, CD36, and CD14) to the apoptotic surface. (Right) Necrotic cells also expose “eat-me” signals on their surface to engage

professional phagocytes. Necrotic cells share some exposed “eat-me” signals, such as PS, with apoptotic cells, although the means of exposure likely differ. Other

“eat-me” signals are unique to necrotic cells, such as deposition of C1q, MBL (Mannose-binding lectin), C3b, and C4 as well as IgG/IgM opsonization, and the

subsequent involvement of integrin CD11b/CD18 and Fcγ receptors.

complement system is required for efficient handling of dying
and dead cells. Recent evidence points to a role of complement
deposition in the clearance of late apoptotic/necrotic cells, rather
than early apoptotic cells (154). In fact, most apoptotic cells
are cleared while at an early apoptosis stage, when complement
plays a minor role. It is only when apoptotic cells persist
into late apoptotic/secondary necrotic stages that complement
opsonization enhances recognition by phagocytes (156).

Phagocytosis of late apoptotic/necrotic Jurkat cells is impaired
in individuals with deficiencies in C1q, C2, C3, or C4. In
contrast, the MBL and alternative pathway did not participate
in phagocytosis of debris, suggesting that opsonization by C3
fragments and the involvement of the classical pathway are
mostly responsible for the clearance of necrotic cells (157).
Similarly, complement components C3 and C4 bind immediately
to necrotic peripheral blood lymphocytes. In contrast, irradiated
lymphocytes undergoing apoptosis only displayed a weak
binding of complement components for up to 2 days. At day 3,
when secondary necrosis had ensued, C1q, C3b, and C4 all bound
with higher affinity (154). Also, the clearance of necrotic cells is
increased in presence of serum, and adding C1q to C1q-depleted
serummarkedly increased uptake of primary necrotic cells (158).
Another study investigated complement deposition on viable,
early apoptotic and late apoptotic (secondary necrotic) Jurkat

cells (159). In this study, binding of C3 and C4 to early apoptotic
cells was similar to that of viable cells, while secondary necrotic
cells had a substantial binding of C3, C4, and at some extent
C1q. The necrotic cells also bound IgM, and depletion of plasma
IgM abolished most of the complement binding, supporting a
role for the classical pathway of complement activation on late
apoptotic/necrotic cell clearance (159).

Macrophages were shown to engulf apoptotic cells after C1q
and MBL opsonization. Calreticulin released from dying cells
bound macrophages via CD91/LDL receptor related protein 1,
and was shown to recognize the collagen tails of C1q and MBL
attached to the surface of the dying cell (31). Besides IgM,
C1q binding to necrotic cells can be initiated via molecules of
the acute-phase protein pentraxin family. The classical (short)
pentraxins—including serum amyloid protein (SAP) and C-
reactive protein (CRP)—are produced in the liver in response to
IL-6 and play a role as opsonins by binding to cellular debris
and late apoptotic cells (160, 161). The long pentraxin PTX3
is produced by hematopoietic and stromal cells as a response
to a primary pro-inflammatory signal such as LPS, IL-1β, and
TNF-α. PTX3 has multiple functions including complement
activation on necrotic cells that results in cell clearance and
reduced tissue damage (162). However, PTX3 can also limit
excessive complement activation by promoting deposition of
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complement Factor H, a major inhibitor of the alternative
pathway of the complement system. Under normal conditions,
Factor H binds to self-surfaces, where it inactivates accidental
C3b deposition on healthy cells. By directing Factor H to the
surface of dying cells, PTX3 limits tissue damage while still
increasing phagocytic clearance (163). Moreover, both human
and mouse pentraxins recognize FcγRI and FcγRII, and binding
of pentraxins to cellular surfaces results in phagocyte activation
(164). In line with data suggesting complement deposition on
late apoptotic/necrotic cells, the collectin MBL was found to bind
to both late apoptotic and necrotic cells, but not early apoptotic
cells. MBL binding initiated C4 deposition onto the necrotic
cells and addition of C1q inhibited MBL opsonization of cells
(165). Taken together, these observations imply that complement
deposition and recognition function as a mechanism for the
clearance of necrotic cells and as a backup for clearance of late
apoptotic material undergoing secondary necrosis.

Phosphatidylserine
Although PS was long thought to be an exclusive marker of
apoptosis, evidence is gathering that exposure of PS is also
a hallmark of necrosis. In a study comparing internalization
of apoptotic and necrotic cells, macrophages were shown to
selectively engulf apoptotic and necrotic cells, while leaving
living cells untouched. The engulfment of both apoptotic and
necrotic cells was PS-dependent, suggesting that externalization
of PS is a common trigger for the clearance of both types of
cell debris (152). Annexin A5 (or Annexin V), commonly used
as a marker of apoptosis due to its PS binding capacity, also
binds to necrotic cells, supporting the occurrence of PS exposure
during necrosis. Moreover, treatment with recombinant Annexin
V inhibited phagocytosis of both apoptotic and necrotic cells by
mouse macrophages, suggesting that PS exposure is required in
both instances (152).

The difference in morphology between apoptotic and
necrotic cells suggests that the mechanisms of PS exposure
differ. PS exposure was observed in necrotic neurons of the
nematode Caenorhabditis elegans, where it was facilitated by
the homolog of the calcium-dependent scramblase TMEM16F
and by CED-7, a member of the ATP-binding cassette (ABC)
transporter family. However, rupture of the necrotic cells into
particles can also readily account for exposure of PS without
invoking specific externalization mechanisms. Zargarian et al.
demonstrated that necroptotic cells also expose PS as an “eat-
me” signal as phosphorylated MLKL translocates to the plasma
membrane. The externalization of PS by necroptotic cells
induced recognition and phagocytosis; they stained positive for
Annexin A5 and exposed PS prior to overt permeabilization.
The dying cells also released PS-exposing extracellular vesicles,
thereby alerting neighboring cells of the impending cell
death (166).

Although both apoptotic and necrotic cells expose PS, the
efficiency of their clearance differs drastically: the engulfment of
necrotic cells is considerably less effective, both quantitatively
and kinetically. The mechanisms underlying this difference
remain obscure, but down-regulation of “don’t eat-me” signals
in apoptotic, but not necrotic cells is a distinct possibility.

Importantly, clearance of necrotic cells is carried out not only
by phagocytes like macrophages, but also by non-professional
phagocytes. In comparison to macrophages, engulfment by non-
professional cells is slow and engulfment events were only
detectable after 2.5 h. But, by taking up neighboring necrotic cells,
non-professional cells remove a portion of the billions of cells
that die daily during normal turnover (167).

Annexin A1
Annexin A1 was first believed to translocate to the surface
of apoptotic cells, where it was proposed to function as a
bridging protein that facilitates their phagocytic uptake (168,
169). However, this interpretation was recently revised, as
it was demonstrated that annexin A1 rarely translocates in
apoptotic cells; instead, its translocation to the cell surface is
rather a hallmark of secondary necrosis (155). As proposed
earlier for apoptosis, in necrotic cells annexin A1 is believed to
function by bridging PS to the phagocyte surface to promote
uptake. This interaction also dampens the secretion of pro-
inflammatory cytokines by the macrophages that ingested the
necrotic cell. This implies that clearance of necrotic debris
can have anti-inflammatory effects. After translocation, annexin
A1 is proteolytically cleaved at the cell surface by ADAM10,
which generates a small peptide with chemotactic activity toward
monocytes, thus generating a monocytic “find-me” signal for the
necrotic debris (170).

Histidine-Rich Glycoprotein (HRG)
HRG is an abundant 75 kDa plasma glycoprotein that has a
multi-domain structure known to interact with many ligands
including Zn2+, heparin, heparan sulfate and plasminogen. HRG
has been shown to function as an adaptor molecule that tethers
plasminogen to glycosaminoglycan-bearing surfaces to regulate
plasminogen activation (171). HRG was also demonstrated to
distinguish between apoptotic cells and necrotic cells by binding
to cytoplasmic ligands exposed by necrotic cells. This interaction,
mediated by the amino-terminal domain of HRG, results in an
opsonic function, encouraging the phagocytosis of the necrotic
cell. In contrast, HRG does not opsonize apoptotic cells and
thus, may play an important physiological role in the selective
clearance of necrotic debris (34).

CD14
Initially, it was thought that the macrophage plasmalemmal
glycoprotein CD14 was specific for recognition and clearance of
apoptotic cells, as treatment with an anti-CD14 antibody reduced
the phagocyte interaction with apoptotic but not necrotic cells
(172). CD14 also recognizes LPS and it was initially thought its
interaction with apoptotic cells occurs also via its LPS-binding
domain, but this view was subsequently revised (173). Indeed,
unlike LPS, binding of macrophages to apoptotic cells does
not generate pro-inflammatory signaling. Later studies found a
significant role for CD14 also in the clearance of necrotic cells.
(158). ICAM-3 on the surface of dying cells may serve as the
ligand recognized by CD14 (174).
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Scavenger Receptors
Scavenger receptors were originally discovered by their capacity
to recognize and remove modified lipoproteins. They are
structurally diverse and recognize a variety of ligands, including
DAMPs, oxidized PS and phosphatidylcholine (175). As PS
is exposed on necrotic cells, this raises the possibility that
PS-binding scavenger receptors may function as receptors for
necrotic cells. SR-B1 and CD36 are class B scavenger receptors,
and were the first cell surface receptors appreciated to recognize
anionic phospholipids such as PS (26). CD36 for instance,
which is highly expressed in macrophages, is involved in the
phagocytosis of necrotic lymphocytes in vitro (158). Antibody
blockage of CD36 caused a significant, yet partial, reduction
in the macrophages ability to bind and internalize necrotic
cells. Macrophages, dendritic cells and endothelial cells also
express the scavenger receptor class F (SCARF1), that can
recognize and engulf apoptotic cells via C1q (176). Given the
earlier findings that C1q binds to late apoptotic/secondary
necrotic cells, SCARF1 can potentially operate as a receptor
for necrotic cells. In fact, loss of SCARF1 impaired uptake of
dying cells, and SCARF1-deficient mice had accumulation of
dying cells in tissues, leading to generation of autoantibodies
to DNA-containing antigens and development of lupus-like
disease (176).

PHAGOCYTE-INDEPENDENT CLEARANCE
OF NECROTIC DEBRIS

During pregnancy, a large number of multinucleated fragments
of dying syncytiothrophoblasts are shed daily into the maternal
circulation. These trophoblasts, shed by the placenta, are
rapidly cleared from the circulation by endothelial cells during
normal pregnancy in order to prevent clogging of the maternal
pulmonary circulation. Indeed, failure to clear such fragments
often results in pre-eclampsia. Endothelial cells can internalize
dying trophoblasts regardless of whether they are apoptotic or
necrotic. However, while engulfment of apoptotic trophoblasts
does not induce endothelial cell activation, phagocytosis of
necrotic trophoblasts causes endothelial activation and ICAM-I
expression (177).

The organism also counts with acellular routes for degradation
of necrotic debris. It has been shown that serum components
such as the nuclease DNAse I, the complement protein
C1q and the protease plasmin act in synergy to degrade
chromatin even in the absence of leukocytes. For instance,
the binding of C1q to necrotic chromatin strongly enhances
the activity of DNAse I, even though C1q lacks nuclease
activity (178). It was postulated that C1q was able to enhance
the access of DNAse I to necrotic DNA, improving the
degradation of debris. Moreover, plasminogen was shown
to penetrate necrotic cells, where it was activated into
plasmin (179). The proteolytic activity of plasmin caused
the cleavage of histone H1, which in turn facilitated the
cleavage of DNA by DNAse I. The synergy between these
enzymes is required for the fast and effective breakdown of
necrotic chromatin.

“DON’T EAT-ME” SIGNALS

Effective engulfment of dead cells entails not only the exposure of
“eat-me” determinants, but requires a reduction of surface “don’t
eat-me” signals. Eukaryotic cells display CD47, a surface protein
that is recognized by SIRPα, expressed by myeloid cells (44).
CD47 functions by directly binding SIRPα on macrophages and
monocytes, signaling inhibition of phagocytosis that is partly due
to impaired myosin assembly at the phagocytic synapse (180).

Aging and the subsequent elimination of erythrocytes
by efferocytosis correlates with a decrease in their surface
CD47 (181). The importance of CD47 as a “don’t eat-me”
signal was demonstrated by Kojima and colleagues, who
showed that dysregulation of CD47 signaling contributes to
the development or atherosclerotic plaques. In this setting,
instead of downregulating CD47, dying cells upregulated it,
making apoptotic cells resistant to phagocytic clearance and
thereby driving plaque formation. Interestingly, administration
of a blocking CD47 antibody reversed this effect, stimulating
efferocytosis and reducing atherosclerosis, making CD47 a
potential drug target for the clinic (182).

CD47 can alter also the phagocytosis of necrotic debris. One
explanation why necrotic debris are engulfed at a slower rate
than apoptotic cells is that they have, comparatively, an increased
surface expression of CD47. Moreover, CD47 was found to be
clustered on necrotic cells, and these clusters stimulated RhoA-
pMLC signaling in macrophages that promoted “nibbling” of
the necrotic cells, rather than whole-cell internalization (183).
This process—commonly known as trogocytosis—is shared
by amoeba, lymphocytes, neutrophils and macrophages, and
polarization of CD47might explain the preferential nibbling over
whole-cell engulfment.

CD46 is a widely expressed complement regulatory protein.
It inhibits complement by binding C3b and C4b and acting as
a cofactor for their proteolytic cleavage (184). CD46 is a “don’t
eat-me” signal that is lost during apoptosis and necrosis. In both
types of dying cells, CD46 is clustered and shed in microparticles
alongside nucleic acids and PS (185). The loss of CD46 correlates
with an increase in deposition of C1q and C3b on the dying cells.
However, only necrotic cells proceed to form membrane attack
complexes, because they also undergo significant reduction in
the expression of the complement regulators CD55 and CD59.
This study indicated that the dying cells specifically lose “don’t
eat-me” signals that block complement activation in healthy
cells, allowing them to be opsonized by complement and
engulfed (185).

Several “don’t eat-me” signals that have been implicated
in apoptosis have not yet been investigated in the context
of necrosis yet. CD31 (also known as platelet-endothelial cell
adhesion molecule 1, PECAM-1) is an important “don’t eat-me”
signal, acting as a repulsive signal through homotypic CD31-
CD31 interactions between cells. The ligation of CD31 on viable
leukocytes promotes cell detachment. Apoptotic cells that lack
CD31 bind tightly to leukocytes and are subsequently engulfed
(186). Plasminogen activator inhibitor (PAI)-1, is a member of
the serpin family of serine protease inhibitors. It appears to
co-localize with calreticulin on viable neutrophils, where it is
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thought to impair signaling to macrophages. This impairment is
lost during neutrophil apoptosis, suggesting that PAI-1 is a “don’t
eat-me” signal (187). Also, the urokinase receptor (uPAR), which
normally plays a role in fibrinolysis, cell migration and adhesion,
was shown to modulate efferocytosis (188). Macrophages from
uPAR-deficient mice demonstrated enhanced ability to engulf
viable neutrophils in vitro and in vivo. In line with this, expression
of uPAR was reduced in apoptotic neutrophils compared to
viable neutrophils, suggesting that uPAR is also a bona fide
“don’t eat-me” signal that is downregulated in apoptotic cells
(189). Proteinase 3 (PR3) is a neutrophil granular protein
that is co-externalized with PS during neutrophil apoptosis
(190). PR3 impairs phagocytosis of apoptotic neutrophils by
macrophages via inhibition of calreticulin function, a powerful
“eat-me” signal. Another regulator is CD24, a heavily glycosylated
GPI-anchored surface protein. It interacts with Siglec-10 in
leukocytes to dampen inflammation in a variety of diseases (191).
Recently, CD24 was described as a major “don’t eat-me” signal
exploited by tumor cells to evade the immune response (192).
CD24 is overexpressed by a variety of tumor cells, inhibiting
phagocytosis by neighboring tumor-associated macrophages,
which express high levels of Siglec-10. Blockage of CD24 by a
monoclonal antibody reduced tumor growth in vivo, suggesting
that inhibition of this “don’t eat-me” signal suffices to enable
phagocytosis of live cancer cells.

IMMUNE CONSEQUENCES OF DEFECTIVE
DEBRIS CLEARANCE

The generation of necrotic debris is a severe occurrence; yet, it is
immediately met by a barrage of fluid-phase proteins, mediators
and cells, which cause it to be essentially uneventful. Tissue
inflammation resolves in a timely manner and immune responses
against self-develop very rarely. However, if the organism
fails to contain or clear the necrotic debris appropriately,
tissue inflammation is prolonged and autoimmunity can
ensue. Mutations that impair the ability of leukocytes to
recognize or eliminate debris have been connected to defects
in tissue regeneration and to diseases such as systemic lupus
erythematosus (SLE). Below, we highlight a series of studies
describing the catastrophic consequences of tampering with the
response to necrotic cell death.

Inhibition of phagocyte recruitment or function at necrotic
sites results in a clear defect in recovery from injury. Depletion of
neutrophils prevents the clearance of debris from necrotic sites,
leading to an impairment of regeneration and revascularization
of the focal injury (98). Moreover, inhibition of monocyte
recruitment to necrotic foci, whether due to CCR2 deficiency or
to interference with their transition into CX3CR1+ cells delays
the regeneration of the necrotic injury (99). Similar observations
were made in complement-deficient models, reinforcing the
notion that the removal of necrotic debris by phagocytes is
paramount to tissue repair.

As described above, complement contributes “find-me” and
“eat-me” signals to necrotic cells, and several studies have shown
its major role in tissue regeneration (132, 140, 193–195). In

the long term, defects in the complement cascade have been
strongly associated to the development of SLE. Although a
multi-factorial disease, SLE and related lupus-like syndromes are
clearly connected to mutations or deficiency in C1q, C2, C3,
and C4 complement factors (196). In addition, the disease has
been associated to decreased expression of complement receptors
CR1 and CR2 (133). Defects in complement activation, such
as in the classical pathway, also yield organisms susceptible
to autoimmunity, as is the case of IgM-deficient mice (197).
Interestingly, a mutation of CD11b (ITGAM) has been correlated
to the development of SLE as well (198). Phagocytes express
high levels of CD11b, which is used as both complement
receptor (CR3) and as adhesion molecule (Mac-1). Whether
the polymorphism affects the phagocytic or adhesive functions
of CD11b is still unclear, but the findings nevertheless provide
further indication that impairment of the ability of phagocytes
to clear debris causes immediate and long-term disadvantages to
the host.

The exposure of extracellular DNA is a key factor in
SLE development. The accumulation of DNA in tissues and
bloodstream has to be rapidly counteracted by the activity
of DNAses to minimize inflammation and autoimmunity.
An abundant source of DNAse activity in the organism
is serum, which contains two major nucleases, DNAse I
and DNAse IL3 (199, 200). The two enzymes have non-
redundant roles in DNA/chromatin degradation; DNAse I
acts preferentially against internucleosomal “naked” DNA,
whereas DNAse IL3 cleaves chromatin (protein-bound DNA)
with high activity (201). DNAse I deficiency causes mice
to develop anti-nuclear antibodies and SLE (200). DNAse
IL3 deficiency is also sufficient to cause autoimmunity and
SLE in mice (202, 203). In humans, mutations of DNAse I
(204), DNAse IL3 (205) and DNAse III (TREX1) (206) have
already been implicated in the incidence of SLE or lupus-like
disease. Global deficiency in DNAse II, an isoform found in
lysosomes, is embryonically lethal due to the accumulation of
undigested DNA from red cell nuclei inside macrophages, which
mount a type I interferon response that leads to embryonic
demise (207). Interestingly, the lethality can be abrogated by
simultaneously knocking out STING, a central adaptor of
cytoplasmic DNA immunity (208), suggesting that leakage of
undegraded debris from the phagosome to the cytosol fuels the
deleterious response. The deficiency in DNAse II also correlates
with worsening of heart failure (209) and development of
polyarthritis in mice (210). It is clear that removal of necrotic
debris is a multi-layered response: the phagocytes must be
able not only to reach and ingest the debris, but also to
effectively degrade it in order to avoid overt inflammation
and autoimmunity.

Like DNA, actin is a very abundant component of cells and
a DAMP conserved across species (211, 212). Necrotic cells
expose actin after the plasma membrane integrity is breached,
and the released actin is recognized by Clec9A (DNGR-1), a
C-type lectin receptor expressed primarily in dendritic cells
(211, 213). Clec9A specifically recognizes filamentous (F)-actin,
which—remarkably—persists in necrotic cells even after their
death. F-actin is able to bind Clec9A even when forming
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complexes with actin-binding proteins such as spectrin, α-
actinin, and myosin II (213, 214). Importantly, the recognition
of actin-rich necrotic debris by dendritic cell Clec9A prompted
the cross presentation of self-antigens to CD8T cells, a
mechanism that explains how autoimmunity is initiated by
the exposure of necrotic debris. Exposure of F-actin can be
further regulated, as it is depolymerized by circulating DNase
I. Full F-actin depolymerization requires ATP, which could
be present as necrotic cells release ATP (described in section
Purines) (215).

CONCLUDING REMARKS

Consideration of necrotic cells as an important, ongoing
contributor to overall cell death provides a different vantage point
of how debris are sensed and cleared and their contribution
to inflammation and autoimmunity. Clearly, inhibiting the
host’s ability to eliminate and process necrotic debris has
harmful effects. Strikingly, therapies for acute inflammation are
largely confined to the use of anti-inflammatory drugs. In the
short term, this approach reduces tissue inflammation and the
associated symptoms (swelling, pain), but it comes at the cost
of delayed resolution of injury. Prevention of inflammation

retards debris clearance, re-growth of parenchymal cells and
tissue regeneration. Thus, an alternative approach would be
to stimulate debris clearance in addition to minimizing the
uncomfortable symptoms. This can be accomplished by the
application of pro-resolvingmediators such as resolvins, lipoxins,
hydrogen sulfide, IL-10, and annexin A1, which can stimulate
clearance mechanisms without the damaging effects of excessive
inflammation (216, 217).
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