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Interaction between B and CD4T cells is crucial for their optimal responses in

adaptive immunity. Immune responses augmented by their partnership promote chronic

inflammation. Here we report that interaction between B and CD4T cells augments

their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the

gene encoding immunoglobulin mu (µ) heavy chain (µMT) in ApoE−/− mice resulted

in global loss of B cells including those in atherosclerotic plaques, undetectable

immunoglobulins and impaired germinal center formation. Despite unaffected numbers

in the circulation and peripheral lymph nodes, CD4T cells were also reduced in

spleens as were activated and memory CD4T cells. In hyperlipidemic µMT−/− ApoE−/−

mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of

immunoglobulins and reduced CD4T cell accumulation in lesions. Adoptive transfer of

B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required

for B and CD4T cell interaction, into B cell-deficient µMT−/− ApoE−/− mice failed

to increase atherosclerosis. In contrast, wildtype B cells transferred into µMT−/−

ApoE−/− mice increased atherosclerosis and increased CD4T cells in lesions including

activated and memory CD4T cells. Transferred B cells also increased their expression of

atherogenic cytokines IL-1β, TGF-β, MCP-1, M-CSF, and MIF, with partial restoration of

germinal centers and plasma immunoglobulins. Our study demonstrates that interaction

between B and CD4T cells utilizing MHCII and CD40 is essential to augment their

function to increase atherosclerosis in hyperlipidemic mice. These findings suggest

that targeting B cell and CD4T cell interaction may be a therapeutic strategy to limit

atherosclerosis progression.
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INTRODUCTION

Crosstalk between B cells and CD4T cells is required for optimum immune responses in
autoimmune diseases, chronic inflammation, transplantation, immunization, and tumors (1–5). It
is indispensable for adaptive immune responses where B cells and CD4T cells confer their effector
functions via antibodies and Th1 cytokines respectively (6, 7). In atherosclerosis, immune response
following lipid entry into arterial wall is now considered essential for acceleration of established
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plaques and their subsequent rupture (8). Several lines of
evidence show that immune cells are implicated in chronic
arterial inflammation. Although macrophages, the first to appear,
constitute the majority of cellular infiltrates in all stages of
atherosclerotic lesions (9), lymphocytes that accumulate in
lesions also contribute to atherosclerosis development and
progression depending on their subsets (10).

B cells were once considered atheroprotective due their
ability to combat pathogens (11). However, antibody-mediated
B cell depletion ameliorated atherosclerosis in both ApoE−/−

and LDLR−/− mice suggesting that B cells can be atherogenic
(12, 13). These findings are consistent with reports that B
cell depletion by anti-CD20 antibody ameliorates autoimmune
diseases in humans (14) and in animal models of human
diseases (15). Further research identified follicular B2 cells as
an atherogenic B cell subset by their capacity to augment
atherosclerosis following their adoptive transfer to lymphocyte-
deficient and to B cell deficient ApoE−/− mice (13) while B1a
cells protect against atherosclerosis by secreting natural IgM
antibodies (16). Their derivatives, for example proinflammatory
cytokines such as Tumor Necrosis Factor-α (TNF-α) and
antibodies such as atherogenic immunoglobulin G (IgG) were
shown to be atherogenic (17, 18).

Many CD4T cell subsets have been implicated in chronic
inflammatory diseases (19). CD4T cells were first reported as
atherogenic cells because CD4T cell transfer into ApoE−/−

scid/scid mice increased atherosclerosis (20). Later CD28+
CD4+ CD25+ regulatory T cells were found to be a protective
CD4 subset in atherosclerosis (21) suggesting that CD28-null
CD4T cells are atherogenic. In chronic inflammation, CD4T cell
can secrete large amounts of Th1 cytokines, TNF-α and IFN-
γ (22), that are potent atherogenic cytokines (23). A possible
crosstalk between CD4T cells and B cells in non-lesion areas has
been suggested in atherosclerosis (24).

In addition to complete absence of humoral responses in B
cell-deficient mice, T cell-responses were also partially impaired
and these mice failed to promote inflammatory responses against
infection (25, 26). Follicular B cells communicate with follicular
helper CD4T cells utilizing major histocompatibility complex
class II (MHCII)-T cell receptor (TCR) and CD40-CD154
interactions and their cognate interactions provides downstream
signaling for final development of antigen-specific plasma cells
and antigen-specific CD4T cells (27).

Using B cell-deficient atherogenic ApoE−/− mouse model, we
examined atherosclerosis development in the absence of B cells
and examined atherosclerosis development again after transfer
of different B cells. We found compelling evidence that B cells
interact with CD4T cells using MHCII and CD40 molecules to
increase atherosclerosis development.

MATERIALS AND METHODS

Mice and Diet
ApoE-deficient (ApoE−/−) and CD40-deficient (CD40−/−)
mice purchased from the Jackson laboratories, B cell-deficient
(µMT−/−) mice, a gift from Rajewsky and µMT−/− ApoE−/−

mice were maintained at the Precinct animal Centre (PAC),

Alfred Research Alliance (ARC), Melbourne Australia. MHCII-
deficient (MhcII−/−; A

−/−

β ) mice (28) were from the Melbourne

University. All animal experiments approved by the animal ethic
committee of ARC were carried out at PAC. Experimental mice
(male 6–8 week old) were given ad libitum access to a high fat
diet consisting of 21% fat and 0.15% cholesterol (Specialty Feeds,
Glen Forrest, Western Australia) and sterile water.

Genotyping Assessment of µMT and ApoE
Deficiencies in µMT−/− ApoE−/− Mice
Tail DNAs, extracted using DNeasy blood and tissue kit (Qiagen,
Germany) were subjected to PCR application to examine the
genetic deficiency of µMT and ApoE genes. PCR reaction
contained 20mM Tris-HCl pH 8.4, 50mM KCl, 1.5mM MgCl2,
0.2mM dNTP, 0.2µM of each pairs of primer and 0.2 unit of
Taq DNA polymerase (Invitrogen). PCR condition was as follow:
initial denaturation step of 5min at 95◦C, 35 cycles of 10 s at
95◦C, 30 s at 60◦C and 30 s at 72◦C, and final amplification
step of 5min of 72◦C. Primers used (Genework, Australia) were
as below:

ApoE-Com - 5′-GCC TAG CCG AGG GAG AGC CG-3′,
ApoE-WT - 5′-TGT GAC TTG GGA GCT CTG CAG C-3′,
ApoE-KO - 5′-GCC GCC CCG ACT GCA TCT-3′,
µMT-Com - 5′-CCG TCT AGC TTG AGC TAT TAG G-3′,
µMT-WT - 5′-GAA GAG GAC GAT GAA GGT GG−3′ and,
µMT-KO - 5′-TTG TGC CCA GTC ATA GCC GAA T-3′.

PCR products were separated on 1.5% TAE agarose gel
stained with ethidium bromide, visualized using UV light, and
digitally recorded.

Experimental Designs
To determine the interaction between B and CD4T cells and
their effect on atherosclerosis, atherogenic mice with life-long
B cell deficiency (µMT−/− ApoE−/−) were fed a HFD for
8 weeks and B cell-competent atherogenic mice (ApoE−/−)
were used as control mice. Next, B2 cells from different donor
mice were isolated using magnetic B cell isolation kit (Miltenyi
Biotec). Briefly splenocytes were incubated with biotinylated
monoclonal anti-CD43, anti-CD4, and anti-Ter119 antibodies,
followed by anti-biotin microbeads. Using magnetic columns,
B2 cells were negatively purified. As B1cells express CD43, the
unlabelled fraction contains only CD19+ CD5− B2 cells and
it was confirmed by FACS. B2 cell purity was about 98% and
viability as assessed by Trypan Blue exclusion was more than
99%. Purified B2 cells were adoptively transferred to µMT−/−

ApoE−/− mice (5 × 106 cells via tail vein) at the beginning of 8
week HFD feeding. No cell transfer and wildtype B cell transfer
were used as negative and positive controls in comparison to
MHCII−/− and CD40−/− transfers. At the end of experiment,
mice were killed, collected different tissues to compare B and
CD4T cell effector function and atherosclerosis.

Tissue Collection at Completion of
Experiment
Plasma collected from citrated blood were kept at −80◦C for
plasma lipid and immunoglobulin determination. Aortic sinus
and spleens embedded in OCT media were kept at −80◦C
for histological, immunohistochemical and immunofluorescent
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staining. Aortic arches snap-frozen in lipid nitrogen were kept
at −80◦C to determine plaque cytokine mRNA expression.
Immune cells from whole blood, peripheral lymph nodes,
spleens, and peritoneal cavities were collected to determine
immune cell profile.

FACS-Assisted Immune Cell Assessment
Single cell suspensions from different tissues were stained with
fluorochrome-labeled antibodies (BD-Pharmingen) to identify
CD19+ B cells and CD4T cells as previously described (13,
16, 29–31). BD FACSCanto II (BD Biosciences) was used to
acquire data and FACSDiva software (BD Biosciences) was used
to analyse the data.

T Cell Proliferation Assay
Splenocytes were labeled using CellTrace Violet (CTV)
fluorescent dye (Molecular Probes, Invitrogen) according to
manufacturer’s instruction. Briefly, 1 × 106 splenocytes were
labeled in 1ml of PBS with 1 µl of CTV (5mM) at 37◦C for
20min, washed twice with 10% fetal calf serum-containing RPMI
1640 (Invitrogen), and finally resuspended in RPMI 1640/10%
FCS. CTV-labeled splenocytes were cultured at a concentration
of 0.5 × 106/ml in RPMI 1640/10% FCS in a total volume of
200 µl in 96 well U-bottomed plates (BD Bioscience). Cells
stimulated with 2µg/ml concanavalin A (Sigma) or 2µg/ml
MDA-LDL were cultured at 37◦C in 5% CO2 for 72 h before
staining with PI, anti-CD4 and anti-TCR-b antibodies and
analyzed by FACS.

Determination of Plasma Lipids
Plasma lipid profiles were determined as described before (13).

Determination of Plasma Total and ox-LDL
Immunoglobulins
ELISA was carried to determine plasma total and ox-LDL
immunoglobulins as described before (16, 30).

Determination of Plasma BAFF
Plasma BAFF levels were measured according to manufacturer’s
instructions using Mouse BAFF/BLyS/ TNFSF13B Immunoassay
(R&D systems) as described before (29).

Histological Staining
Frozen section of aortic sinus embedded in OCT were stained
with oil red-O (ORO) to identify the lipid-rich atherosclerosis
lesion in vascular intimal areas. Using Optimas 6.2 Video Pro-
32 (Bedford Park, South Australia, Australia), total intimal lesion
areas and ORO-stained lipid areas were quantified and lipid
accumulation areas were corrected using total intimal lesions
areas as described before (31).

Immunohistochemical Staining
Anti-CD68 (Serotec), anti-IgG (BD Pharmingen), and
anti-IgM (BD Pharmingen) antibodies were used to assess
macrophage accumulation and deposits of immunoglobulins
in atherosclerotic lesions as described (30). Anti-CD4 and
anti-CD8 antibodies (BD Pharmingen) were used to determine
the numbers of CD4 and CD8T cells in atherosclerotic lesions

(31). After staining cell nuclei with Hematoxylin, all sections
were visualized under light microscope. All immune cell
accumulations were presented per mm2.

Immunofluorescent Staining
Fluorescence-labeled antibodies (BD Pharmingen) were used in
immunofluorescent staining of different frozen tissue sections.
Anti-CD19 antibody was used to stain B cells in aortic sinus
and anti-B220, anti-CD3 or anti-CD4 antibodies were used to
stain B and CD4T cells in spleens. After counterstaining with
either DAPI or Hoechst 33342, the sections were visualized under
fluorescence microscope. In some experiments, PD-1 and Bcl-6
antibodies together CD4 antibody were used to identify CD4T
follicular helper cells.

Determination of mRNA Expression
Total RNA from aortic arches were extracted using RNeasy
Fibrous Tissue Mini Kit (Qiagen) as per manufacturer’s
instruction. After determining RNA concertation, 10 ng of total
RNA was used in OneStep QuantiFast SYBR Green RT-PCR
(Qiagen) with appropriate housekeeping genes and controls as
described before (16, 29, 31). Primer used are as follow:

IL1-β sense (S) - 5′-CCA CCT CAA TGG ACA GAA
TCT CAA-3′,
IL1-β antisense (AS) - 5′-GTC GTT GCT TGG TTC TCC
TTG T-3′;
TGF-β (S) - 5′-AGC CCT GGA TAC CAA CTA TTG C-30;
TGF-β (AS) - 5′-TCC AAC CCA GGT CCT TCC TAA-30,
MCP-1 (S) - 5′-CTC AGC CAG ATG CAG TTA ACG-3′,
MCP-1 (AS) - 5′-GGG TCA ACT TCA CAT TCA AAG G-3′;
M-CSF (S) - 5′-GGA GTA TTG CCA AGG AGG T-3′,
M-CSF (AS) - 5′-GAC TGT CGA TCA ACT GCT-3′;
MIF (S) - 5′-GGC AAG CCC GCA CAG TAC-3′,
MIF (AS) - 5′-ATC GTT CGT GCC GCT AAA AGT-3′;
TNF-α (S) - 5′-TCT TCT GTC TAC TGA ACT TCG-3′,
TNF-α (AS) - 5′-GAA GAT GAT CTG AGT GTG AGG-3′;
IFN-γ (S) - 5′-CTG GAC CTG TGG GTT GTT GAC-3′,
IFN-γ (AS) - 5′-CAA CAG CAA GGC GAA AAA GG-3′;
IL-12 (S) - 5′-GGT GTA ACC AGA AAG GTG CG-3′,
IL-12 (AS) - 5′-GAG GAA TTG TAA TAG CGA TCC
TGA G-3′;
IL-17 (S) - 5′-TTC ATC TGT GTC TCT AGT GCT-3′,
IL-17 (AS) - 5′-AAC GGT TGA GGT AGT CTG AG-3′.

Statistical Analysis
Kolmogorov-Smirnov test was used to assess normal distribution
of the data. Unpaired two sided student-t test or Mann-Whitney
U-test, depending on normal distribution was used to calculate p
value. Statistically significance was considered if p < 0.05. Data
were expressed as mean± SEM.

RESULTS

Life-Long Deficiency of B Cells Reduces
Atherosclerosis
C57Bl/6 mouse deficient in ApoE protein (ApoE−/−) and
C57Bl/6 mouse deficient in B cells by targeted disruption of the
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immunoglobulin µ-heavy chain gene (µMT−/−) were crossed to
generate a permanent global B cell deficiency in ApoE−/− mice
(µMT−/−ApoE−/−). Genotypes of µMT−/− ApoE−/− mice
were confirmed by polymerase chain reaction-gel electrophoresis
(Figures S1A,B). B cells in µMT−/−ApoE−/− mice assessed
by FACS analysis confirmed complete absence of B cells in
peripheral blood, lymph nodes, spleens and peritoneal cavities
(Figure S1C).

To investigate the effect of a congenital B cell deficiency
on atherosclerosis development, atherosclerosis was generated
by feeding ApoE−/− mice a high fat diet (HFD) for 8 weeks.
Genetically targeted-deletion of the immunoglobulin µ-heavy
chain gene in µMT−/−ApoE−/− mice did not affect body weight
(Figure 1A), but reduced spleen weight by ∼65% (Figure 1B).
In agreement with phenotype results of µMT−/−ApoE−/− mice
(Figures S1A–C), FACS analysis at the end of experiment showed
that no B cells were detected in the peripheral blood, lymph
nodes, spleens and peritoneal cavities in µMT−/−ApoE−/−

mice (Figure 1C). CD4T cells in peripheral blood, lymph
nodes and peritoneal cavities were unaffected albeit with
smaller lymph nodes, but their numbers in spleen were
reduced by ∼85% when B cells were genetically depleted
(Figure 1D). Complete loss of B cells in µMT−/−ApoE−/−

mice resulted in increased plasma BAFF levels that by
multiple folds compared to B cell-sufficient ApoE−/− mice,
suggesting attempted homeostatic compensation (Figure 1E).
Despite having comparable body weights (Figure 1A) and
plasma lipids (Figure S2), lifelong deficiency of B cells reduced
atherosclerosis. Compared to ApoE−/− mice, atherosclerosis at
the aortic sinus in µMT−/−ApoE−/− mice was reduced by
∼50% as assessed by intimal atherosclerotic lesion areas, without
affecting lipid composition in the lesions (Figure 1F).

Next, we investigated the lesion content of macrophages
and lymphocytes accumulated in atherosclerotic lesions as they
contribute to atherosclerosis development and progression (9,
10). Immunohistochemical analysis of atherosclerotic lesions at
the aortic sinus revealed that composition of CD68+ macrophage
was not affected by B cell deficiency (Figure 1G). As expected,
immunofluorescent staining showed that B cells were undetected
in atherosclerotic lesions of µMT−/− ApoE−/− mice whilst B
cell-competent ApoE−/− mice showed presence of CD19+ B
cells in atherosclerotic lesions (Figure 1H). We also assessed T
cells in atherosclerotic lesions and found that less CD4+ T cells
(ApoE−/− vs. µMT−/−ApoE−/− mice: 292 ± 59 vs. 24 ± 6
cells/mm2) and CD8T cells (ApoE−/− vs. µMT−/−ApoE−/−

mice: 158 ± 20 vs. 21 ± 5 cells/mm2) were recruited into lesions
when B cells were deficient (Figure 1I).

Reduced Atherosclerosis in B-cell
Deficient Mice Is Associated With Reduced
Immunoglobulin Levels
B cells interact with follicular CD4T cells to initiate their
activation and proliferation leading to terminal differentiation
of immunoglobulin-producing plasma cells (27, 32). B and T
cell interaction in turn initiates activation of follicular CD4T
cells and their effector function (27). Therefore, we first asked
whether lifelong B cell deficiency affects B and T cell interaction

in spleens. As expected, spleen B cells were completely absent
in B cell-deficient mice in contrast to the finding that B cell-
competent ApoE−/− mice showed B cells in close proximity to
T cells (Figures S3A,B) indicating possible cognate interaction
between T and B cells. As B and T cell interaction is required
for plasma cell differentiation and production of high affinity
immunoglobulins that play a critical role in humoral response,
we next assessed the effect of genetic deletion of immunoglobulin
µ-heavy chain gene on B cell-derived immunoglobulins. ELISA
analysis showed complete absence of total immunoglobulins
(Igs), immunoglobulin G (IgG), and immunoglobulin M (IgM)
in µMT−/−ApoE−/− mice (Figure S3C). Determination of
plasma levels of total and ox-LDL-specific immunoglobulins
showed that ox-LDL specific immunoglobulins (total, IgG, and
IgM) in plasma were detected in B cell-competent ApoE−/−

mice, but B cell-deficient µMT−/−ApoE−/− mice failed to
show presence of these immunoglobulins (Figure S3D). In
agreement with the literature (33), B cells and their Ig
products were absent in µMT−/− ApoE−/− mice. Further
analysis by immunohistochemical staining also showed that no
detectable IgG and IgM deposits were observed in atherosclerotic
lesions of µMT−/−ApoE−/− mice in contrast to abundant
immunoglobulin lesion deposits in ApoE−/− mice (Figure S3E).

B Cell Deficiency Reduces Lesion CD4T
Cells and Proinflammatory Cytokines,
IL-1β, TGF-β, MCP-1, M-CSF, and MIF
B and T cell interaction results in bi-directional effects. Antigen-
experienced activated B cells and memory B cells are responsible
for proliferation and differentiation of CD4T cells (34). Thus,
we determined the profile of differential CD4T cell subsets in
spleens. FACS analysis indicated that CD44- CD62L+ naïve,
CD44+ CD62L+ central memory, and CD44+ CD62L- effector
memory CD4T cells were reduced in mice (Figure 2A) when B
cells were deficient (Figure 1C); however, the reduced numbers
of CD4T cell subset might be due to a smaller spleen size
(Figure 1B) and reduced numbers of CD4T cells in spleen
(Figure 1D). CD4T cells do not require B cells to initiate
systemic T cell responses in a B cell-deficient environment
(35). We asked if CD4T cells in µMT−/− ApoE−/− mice can
respond and proliferate upon stimulation with concanavalin
A and MDA-LDL. CellTrace Violet dye-stained spleen cells
stimulated with Concanavalin A for 72 h and then subjected
to FACS analysis showed that CD4T cells from µMT−/−

ApoE−/− mice proliferated upon Concanavalin A stimulation
(Figure 2B), however CD4T cell responses to MDA-LDL were
reduced inµMT−/− ApoE−/− mice compared to ApoE−/− mice
(Figure 2C). This indicates that T cells in µMT−/− ApoE−/−

mice are still efficient in their responses to systemic stimuli, yet
they fail to respond to antigen-specific stimulation. Indeed, T
cells from B cell-deficient environment had poor proliferation to
oxLDL-specific stimulation (36).

Our results suggest that congenital B cell deficiency reduces
atherosclerosis and recruits less T cells into lesions suggesting
the possibility of reduced arterial inflammation. To test this
hypothesis, we carried out mRNA expression of cytokines
that are crucially required for inflammation and immune cell
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FIGURE 1 | B cell deficiency reduced atherosclerosis, abolished B cells and reducedCD4T cells in atherosclerotic lesions. ApoE−/− and µMT−/− ApoE−/− mice (male

6–8 week-old) were fed a high fat diet for 8 weeks. At the end of experiment, B cell deficiency did not affect (A) body weight, (B) reduced spleen weight, and (C)

(Continued)
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FIGURE 1 | completely abolished B cells in different tissues. CD4T cells were unaffected (D) in peripheral blood, lymph nodes, and peritoneal cavities however spleen

T cells were severely reduced. (E) B cell deficiency in µMT−/− ApoE−/− mice was associated with augmented plasma BAFF levels. B cell-deficient µMT−/− ApoE−/−

mice showed reduced atherosclerosis as assessed by (F) total intimal lesion area and Oil Red-O stained lipid accumulation, however lipid content corrected as per

lesion size was not affected. (G) Macrophage accumulation as corrected to lesion was not affected, but (H) B cells were completely absent and (I) CD4T cells were

reduced in atherosclerotic lesion of B cell-deficient mice. Representative microimages and histograms shown. Data presented as mean ± SEM of two to three

independent experiments. n = 12–15 per group, *p < 0.05, � ApoE−/− mice � µMT−/− ApoE−/− mice.

recruitment. RT-PCR analysis using atherosclerotic aortic arches
showed reduced expression of proinflammatory cytokines, IL-1β,
TGF-β, MCP-1, M-CSF, and MIF, confirming reduced arterial
inflammation (Figures 2D,E). However, expression of TNF-α,
IFN-γ, IL-12, and IL-17 were unaffected (Figure 2F). Despite
CD4T cells being able to respond to systemic stimulation,
collectively congenital B cell deficiency reduced atherosclerosis
by reduced B and T cell effector functions.

B Cell-Expressed MHCII and CD40
Molecules Are Required for B and T Cell
Interaction in Atherosclerosis
Follicular B cells communicate with CD4 follicular T cells
throughMHCII and CD40 molecules (34). To determine the role
of these molecules in B and T cell interaction in atherosclerosis,
we adoptively transferred spleen B cells isolated from different
donors (Figure S4) into B cell-deficient µMT−/−ApoE−/− mice
(5 million B220+ B cells, i.v tail vein) at the beginning of
8 weeks HFD. FACS analysis showed transferred B2 cells in
recipient spleens at the end of 8 weeks HFD (Figure 3A).
Wildtype B cell recipients had more B cells, yet statistically
not significant. Atherosclerosis in µMT−/− ApoE−/− mice that
received wildtype B2 B cells increased by 109% as assessed
by intimal lesion area (Figure 3B). In contrast, despite having
B cells detected (Figure 3A), comparable body weights (data
not shown) and plasma lipids (Figure S5), while atherosclerosis
was an increasing trend with mice that received MHCII−/−

and CD40−/− B cells, it did not reach statistical significance
(Figure 3B). Lipid and macrophage accumulation corrected for
lesion area was unaffected (Figures 3C,D). As we have shown
that lifelong B cell deficiency reduces lesion CD4 and CD8T
cell recruitment (Figure 1I), we asked if their accumulation
in atherosclerotic lesions in µMT−/− ApoE−/− mice were
increased after transfer of B2 cells. We found that CD4 and
CD8T cell accumulations were increased by 2 to 3-fold in
atherosclerotic lesions following transfer of wild-type B2 cells
(Figures 3E,F). In contrast CD4 and CD8T cells were not
increased in mice that received B cells deficient in either MHCII
or CD40 (Figures 3E,F).

Antigen-experienced B cells migrate to T cell-rich regions
to interact with antigen-specific CD4T cells to initiate their
terminal differentiation to plasma cells as well as to facilitate
CD4T cell effector function. To investigate if transferred B
cells can interact with CD4T cells in secondary lymphoid
organs, we examined whether B cells are in close proximity
to T cells in spleens. Immunofluorescence staining showed
appearance of well-organized B cell follicles and co-localization
between B and T cells in mice that received wildtype or CD40-
deficient B cells compared to B cell-deficient µMT−/−ApoE−/−

mice (Figures 4A,B). However, B cells deficient in MHCII

failed to generate well-organized B cell follicles nor co-
localized with T cells despite their presence in spleen
confirmed by Immunofluorescence staining (Figure 4A)
and FACS (Figure 3A). The data supports the essential role
of MHCII-mediated antigen presentation between antigen-
experienced B and CD4T cells. Using multiple antibodies in
immunofluorescence staining, we identified CD4 follicular
helper T (Tfh) cells as identified by either PD-1 or Bcl6
co-expression in close proximity to spleen B220 B cells
(Figure 4C). These cell-to-cell interactions between CD4 Tfh
cells and B cells were only observed in mice that received
wildtype and CD40-deficient B2 cells, not in those that received
MHCII-deficient B2 cells (Figure 4C), suggesting the essential
requirement of MHCII molecule compared to CD40 molecule in
their interactions.

B Cell-Specific MHC II and CD40
Expressions Are Required for Both B and
CD4T Cell Effector Functions
B and T cell interactions affect effector functions of both B
and T cells. B cell deficiency in µMT-ApoE−/− mice not
only completely abolished total immunoglobulin production but
also significantly reduced activated CD4T cells. To investigate
whether adoptive transfer of B cells into µMT−/− ApoE−/−

mice restores these effector functions, we first assessed plasma
immunoglobulin levels in µMT−/− ApoE−/− mice that received
B2 cells. ELISA determination revealed that plasma total IgG
levels in wild-type and CD40-deficient B2 cell transfer groups
were increased by 23 and 18%, respectively compared to the
total IgG levels of ApoE−/− mice. However, total IgM levels in
WT and CD40-deficient B2 cell transfer groups were detectable
at low levels compared to ApoE−/− mice. In contrast, total
IgM were not detected in PBS and MHCII-deficient B2 cell
transfer groups. When comparing with PBS transfer group,
total IgM levels in WT B cell transfer group was increased,
however CD40-deficient B2 cell transfer groups had increased
total IgM levels that failed to reach statistical significance (p
= 0.0757) (Figure 5A). IgG and IgM antibodies specific to
oxLDL in µMT−/− ApoE−/− mice that received wild-type B2
cells were increased 25 and 66%, respectively whilst mice that
received CD40-deficient B cells increased oxLDL-specific IgG
and IgM levels by 16 and 35%, respectively compared to those
from ApoE−/− mice (Figure 5B). But mice that received either
PBS or MHCII-deficient B cells failed to increase plasma total
or MDA-LDL-specific immunoglobulin levels (Figures 5A,B).
Collectively our data suggest an indispensable role of MHCII
in humoral response in agreement with the finding that IgG
and IgM antibodies are detected in CD40-deficient mice (37).
Next, we determined the number of CD4T cells in spleens; FACS
analysis indicated that more CD4T cells were detected in mice
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FIGURE 2 | B cell deficiency affects CD4T cell activation in spleens and inflammation in atherosclerotic lesions. FACS analysis done at the completion of 8 week high

fat diet feeding showed (A) reduced numbers of naïve (CD44− CD62L+), central memory (CD44+ CD62L+) and effector memory (CD44+ CD62L−) CD4T cells in

(Continued)
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FIGURE 2 | spleens in µMT−/− ApoE−/− mice. Using CellTracking Violet dye, dye-labeled splenocytes (0.5 × 106/ml) were cultured with Concanavalin A (2µg/ml) or

MDA-LDL (20µg/ml) in 96-well U-bottomed plates (see text for detail). FACS analysis showed CD4T cell proliferation upon (B) systemic non-specific stimulation and

(C) MDA-LDL specific stimulation. RNAs extracted from atherosclerotic arches of ApoE−/− and µMT−/− ApoE−/− mice were used to determine (D–F) mRNA

expression of inflammatory cytokines using RT-PCR. Data presented as mean ± SEM of two to three independent experiments. n = 12–15 per group, *p < 0.05, �

ApoE−/− mice � µMT−/− ApoE−/− mice.

FIGURE 3 | Transfer of wildtype, not MHCII- or CD40-knockout B2 cells promote atherosclerosis in µMT−/− ApoE−/− mice. Spleen B2 B cells isolated and purified

from different donors (see text for detail) were adoptively transferred into µMT−/− ApoE−/− mice at the beginning of 8 week HFD. At the end of experiment, FACS

analysis showed that (A) transferred B cells were detected in recipient spleens. Atherosclerosis at aortic sinus was assessed by (B) total intimal lesion areas in

ORO-stained aortic sinus sections. Wildtype, not MHCII- or CD40-deficient B2 B cells augmented atherosclerosis without affecting (C) lipid and (D) macrophage

accumulation expressed as per lesion area. Lesion immune cell analysis showed that (E–F) CD4T and CD8T cell accumulation was reduced in µMT−/− ApoE−/−

mice. Data presented as mean ± SEM of two independent experiments. n = 9 or more per group, *p < 0.05 compared to PBS transferred group. � PBS transfer,

� WT B cell transfer, MHCII−/− B cell transfer, and CD40−/− B cell transfer.
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FIGURE 4 | Transfer of wild type and CD40-deficident B2 cells restore B and T cell localization in B cell deficient µMT−/− ApoE−/− mice. In B cell transfer experiments,

B2 B cells were adoptively transferred into µMT−/− ApoE−/− mice and spleens were collected at the end of 8 week HFD. Frozen-section of OCT-embedded spleens

(Continued)
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FIGURE 4 | were sectioned and immunologically stained with various antibodies. Immune fluorescence staining showed (A) reappearance of B cell follicles and (B) B

cell co-localization with T cells in µMT−/− ApoE−/− spleens that received WT or CD40-deficient B cells. (C) CD4T follicular helper cells identified by PD-1 and Bcl-6 in

close proximity to spleen B220 B cells, as seen in ApoE−/− mice were observed following WT or CD40-deficient B cell transfer into µMT−/− ApoE−/− mice, however

neither PBS nor MHCII-deficient B cell transfer produced such observation. Representative photomicrographs from three different experiments.

that received wildtype B cells compared to PBS-control group
(Figure 5C). In contrast, mice that received B cells deficient in
eitherMHCII or CD40 showed an increasing trend in the number
of spleen CD4T cells, but did not reach statistical significance
(Figure 5C). Further analysis showed that with the wildtype B
cell transfer, there was not only an increase in number of activated
CD4T cells (Figure 5D) but there was also an increase in number
of TNF-α and IFN-γ producing CD4T cells (Figures 5E,F).
B cells deficient in either MHCII or CD40 failed to activate
CD4T cells nor increase CD4T cells expressing TNF-α and IFN-
γ (Figures 5E,F), highlighting the critical role of MHCII and
CD40 expressing on B cells in Th1 l responses accordance with
literature (27, 38) and in agreement with a significant reduction
in spleen IFN-γ+ CD4+ T cells in B cell-depleted mice (12).

DISCUSSION

Several lines of evidence support our conclusion that B cells in
concert with CD4T cells promote atherosclerosis. B and CD4T
cells are recognized for their contribution to inflammation (39,
40). Chronic depletion of CD4T cells by anti-CD4 antibody in
MRL/lpr mice reduced inflammation, arthritis, nephritis, and
dsDNA antibodies (41). When B cells were congenitally deficient,
HFD-fed obese mice did not develop type 2 diabetes, their fasting
sugar, and insulin tolerance tests were unaffected, but helper
CD4T cell function was ameliorated (42). These studies suggest
interactions between B and CD4T cells that are required for
inflammation progression.

Humoral and cellular immune responses are implicated in
development and progression of atherosclerosis. Whilst IgM
antibodies are atheroprotective, the role of IgG antibodies in
atherosclerosis remains uncertain (43, 44). Chimeric atherogenic
mice selectively deficient in transcription factor XBP1 on B cells
(irradiated LDLR-deficient mice, transplanted with Cd79aCre/+

Xbp1fl/fl bone marrow cells) had reduced serum IgG level,
and reduced atherosclerosis (45). However, as these mice also
displayed reduced IgM levels, it is not clear whether the
reduced atherosclerosis is due to IgM loss in chimeric mice. A
recent study also showed that absence of serum IgG and IgM
reduced atherosclerosis in Prdm1fl/fl Cd19cre/+ ApoE−/− mice
(46), suggesting pathogenic properties of IgGs in atherosclerosis
progression.We have also reported that follicular B cells promote
atherosclerosis by T cell-mediated differentiation into plasma
cells and secreting pathogenic IgG (18). Transfer of IgG purified
from hyperlipidemic ApoE−/− mice increased atherosclerosis in
contrast to transfer of IgG purified from normolipidemic mice,
consistent with an atherogenic role of IgG in atherosclerosis (18).

In addition to pathogenic antibodies that interact with lesion
constituents, B cells can confer their atherogenicity locally. We
have shown that B cell-derived TNF-α augments macrophage
production of TNF-α in atherosclerosis (17). Our data indicate
that B deficiency in atherogenic mice reduces inflammation and

atherosclerosis by two distinct pathways. Firstly, B cell deficiency
has the direct effect on reducing atherosclerosis via pathogenic
antibodies and cytokines. Secondly, B cell deficiency impairs
CD4T cell pathogenicity in atherosclerosis. Furthermore, there
may be additional mechanisms through increased plasma
BAFF levels, as a result of B cell deficiency. BAFF, a critical
survival factor for B cells, has anti-inflammatory effects as
BAFF overexpression or neutralization reduced atherosclerosis
(47, 48). In addition to BAFF Receptor (BAFFR), BAFF also
interacts with B cell maturation antigen (BCMA), and TNFR
homolog transmembrane activator and Ca2+ modulator and
CAML interactor (TACI). The anti-inflammatory action of
BAFF is mediated by their interaction with either B1a cells or
macrophages via BAFF-TACI interaction (47, 48).

CD4T cells confer their pathogenicity by two pathways in
autoimmune diseases and chronic inflammation. Firstly, CD4
helper T cells migrate to germinal centers in secondary lymphoid
centers to produce cytokines such as IL-21 and IL-4 that promote
B cell differentiation into plasma cells in germinal centers
(49, 50). The finding is consistent with the report that Tfh
cell deficiency impair germinal center formation and plasma
cell differentiation (51, 52). Secondly, CD4T cell interaction
with follicular B cells promotes CD4T cell activation and
differentiation to effector and memory CD4T cells (50). Our
finding that TNF-α and IFN-γ producing CD4T cells in spleens
increased following WT B cell transfer into µMT−/− ApoE−/−

mice is consistent with their migration to chronically inflamed
arterial plaques. This is further supported by reduced CD4T
cells when B cells are absent. Both proinflammatory TNF-α and
IFN-γ cytokines are atherogenic. We and others have reported
that B cell depletion reduced CD4T cell activities (12, 13, 30,
53). The lack of specificity of current CD4T cell depletion
strategies prevented us from directly assessing the importance
of the reduction in CD4T cell activity on atherosclerosis. T
cell depletion strategies depleted both CD4 and CD8T cells; the
latter also being important in atherosclerosis (31) and antibodies
depleting CD4T cells also deplete CD4+ NKT cells which also
contribute to atherosclerosis (54).

Our data from depletion and transfer experiments suggest
that B cells play a role in T cell trafficking to local inflammatory
sites. CD4T cells, reduced in atherosclerotic lesions of µMT−/−

ApoE−/− mice increased to double their numbers following
WT B2 cell transfer. Immune cell migration depends on
MCP-1, MIF and M-CSF. Genetic deficiencies of MCP-1,
MIF, and M-CSF reduced immune cell accumulation in
atherosclerotic lesions (55–57). MCP-1 regulates migration
and infiltration of monocytes, memory T lymphocytes, and
other immune cells (58). The observation suggests that
MCP-1 is required for recruiting immune cells, resulting
in augmented immune responses in atherosclerotic lesions.
A critical role of CD40-CD154 interaction for CD4T cell
migration has been demonstrated in viral and experimental
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FIGURE 5 | Wildtype and CD40-deficient B2 cells restore plasma immunoglobulins, however only wildtype B2 transfer enhances CD4T cell activation and their

production of TNF-α and IFN-γ in µMT−/− ApoE−/− mice. B2 B cells were adoptively transferred into µMT−/− ApoE−/− mice at the beginning of 8 week HFD. At the

end of experiment, plasma immunoglobulin levels determined by ELISA showed that wild-type and CD40−/− B2 B cell transfer groups increased (A) total IgG, total

IgM and (B) oxLDL-IgG and oxLDL-IgM subclasses. However, only wildtype B2 cells increased (C) total CD4T cells, (D) activated CD44+ CD4T cells and (E) TNF-α-

and (F) IFN-γ-producing CD4T cells in spleens. Data presented as mean ± SEM of two to three independent experiments. n = 9 per group, *p < 0.05 compared to

PBS transferred group. � PBS transfer, � WT B cell transfer, MHCII−/− B cell transfer, and CD40−/− B cell transfer.

autoimmune encephalitis (59, 60). In the absence of B
cells, CD4T cell accumulation is reduced in insulitis (61).
Pro inflammatory cytokine IL1β produced by activated
macrophages modulates immune responses and apoptosis.
Genetic deficiency of IL-1 receptor 1 or treatment with anti-
IL1β decreased atherosclerosis in the aortic sinus and total
aorta of ApoE−/− mice (62, 63). The finding of reduced

macrophage accumulation in atherosclerotic lesions and less
arterial expression of IL1β in µMT−/− ApoE−/− mice is
consistent with the reduced inflammation in atherosclerotic
lesion, and decreased atherosclerosis in µMT−/− ApoE−/−

mice. Collectively our results demonstrate key roles provided
by B2 cells in recruiting CD4T cells to arterial lesions in
atherosclerosis development.
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Our study has also shown that congenital B cell deficiency
in µMT−/− ApoE−/− mice decreases atherosclerosis by down-
regulating macrophage attractant chemokines, reducing total
lesion macrophage numbers, and decreasing inflammation in
atherosclerotic lesions. Our finding of reduced atherosclerosis
in µMT−/− ApoE−/− mice is consistent with recent reports
of B2 cells as proatherogenic B cells in atherosclerosis (12,
13, 29, 30, 53). It is also consistent with human and murine
studies where B cells also promote their pathogenicity by
antibody-unrelated mechanisms because anti-CD20 targeted
B cell depletion ameliorates autoimmune diseases without
affecting levels of plasma autoantibodies (64, 65). Our study
contributes to a better understanding of B cell pathogenicity in
atherosclerosis and provides insights for development of B-cell
targeted therapies.

B cells act as antigen presenting cells to induce T cell responses
to specific antigens. B cells also have roles in development and
maintenance of memory T cells (6, 66–68) to provide optimal
T cell response to antigens in long-term antigen exposure.
However, systemic T cells responses are observed in a B cell-
deficient environment (35, 69, 70) suggesting a role for B cells
in CD4T cell responses to specific antigens. We have shown
that CD4T cells from µMT−/− ApoE−/− mice respond and
proliferate upon Concanavalin A stimulation. We propose that
while B cells are not critical for activation and induction of T cells
in systemic responses, B cells are critically required for CD4T
cells in specific antigen responses, such as lipid antigen in the
setting of persistent hyperlipidemia. Indeed, CD4T cells failed to
respond to lipid antigen in B cell-deficient mice (36).

Antigen presenting cells utilize MHCII to present antigens
to T cell receptors. Whilst interaction between CD80/CD86
and CD28 is required for Th2 responses (71), linkage between
CD40 and CD40 ligand is crucial for activation of Th1 cells
and their responses (7). Failure to promote atherosclerosis in
MHCII- or CD40-deficient B2 transfer indicates that B2 cells
promote atherosclerosis by activating Th1 cells and augmenting
Th1 responses. Our observation is in accordance with reports
where anti-CD40 antibody treatment reduced atherosclerosis in
LDLR−/− mice (72) and inhibition of Th1 responses reduced
atherosclerosis in ApoE−/− mice (73). Recently, Wigren et al.,
and Williams et al., reported that global or B cell-specific
deficiency of MHCII were associated with low level of total IgG
and IgM as well as low or undetectable oxLDL specific antibodies
(74, 75), supporting our data by defining differential roles of a B
cell-specific MHCII and CD40 in generation of plasma cells and
antibodies. Interestingly, in contrast to increased atherosclerosis
in MHCII−/− ApoE−/− double knockout mice (74), MHCII
deficiency on B cells did not affect atherosclerosis in LDLR−/−

mice despite large but incomplete reductions in MHCII in B
cells (75); reductions resulted in reduced IgG1 and IgG2c but
not IgG2b nor IgM. Incomplete depletion of MHCII from B
cells is known to lead to strong selection of escaped B cells
where MHCII is not deleted in the activated and plasmablast
compartments (76, 77), which may partially explain the latter
observation. Specific autoantibody IgG subtypes differ in their
dependence on B cells MHCII expression (76). Our data showing
detectable, but very low level of MDA-LDL specific antibodies

in B cell transfer experiments proposes that a sensitive ELISA is
critically essential for detecting low-level antibodies.

Our finding that atherosclerosis is reduced following B cell
deficiency arising from genetic deficiency of the Ig heavy chain in
µMT−/−ApoE−/− mice is at variance with a previous report that
atherosclerosis is increased in LDLR−/− mice rendered chimeric
for µMT by lethal irradiation and bone marrow transplantation
(36) to induce B cell deficiency. However, irradiation not only
alters the pattern of lesions but also the characteristics of
developing lesions (78). Atherosclerotic lesions in mice subjected
to bone marrow transplantation contain more lipid, larger lipid
cores and greater macrophage numbers than do lesions of mice
not subjected to bonemarrow transplantation (78). Bonemarrow
transplantation alone does not necessarily fully reconstitute the
immune system (79). For example, following bone marrow
transplantation reconstitution of γδ T cells is relatively poor
(79) and this may enhance αβ T cell activity (80). Whether
such mechanisms explain the different results of B cell depletion
following genetic depletion of B cells and transplantation of
bone marrow deficient in B cells remains to be determined.
Similar discrepancies between genetic deletion of IFNγ and bone
marrow transplantation of bone marrow deficient in IFNγ have
also been reported. IFNγ-deficient LDLR−/− mice generated by
crossing LDLR−/− mice with IFNγ−/− mice exhibit reduced
atherosclerosis (81) whilst LDLR−/− chimeric mice generated by
irradiating LDLR−/− mice and transfer of bone marrow from
crossing IFNγ−/− mice exhibited aggravated atherosclerosis (82).

In summary, we have shown that congenital global
B cell deficiency in µMT−/−ApoE−/− mice decreases
atherosclerosis by reducing accumulation of macrophages
and CD4T cells. When B2 cells were adoptively transferred into
µMT−/−ApoE−/− mice, we found augmented atherosclerosis.
Our findings suggest that B cell recruitment of CD4T cells
contributes to atherosclerosis development. Interaction between
B and CD4T cells may be important in atherosclerosis
pathogenesis and targeting B and CD4T cell interaction may
be important therapeutic target to limit arterial inflammation
in atherosclerosis.
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Figure S1 | Genotype and phenotype of µMT−/− ApoE−/− mice. Genomic DNAs

extracted from µMT−/− ApoE−/− and ApoE−/− mice were subjected to

polymerase chain reactions (PCRs) using appropriate primers (see section

Materials and Methods for details). PCR products were separated and visualized

on ethidium-stained TAE agarose gel. Representative PCR results for (A) µMT and

(B) ApoE genotypes shown. Line 1- DNA ladder 8X174 DNA/HaeIII, Line 2-

µMT−/− ApoE−/−, Line 3- µMT−/− ApoE−/−, Line 4- µMT+/− ApoE+/−, Line 5-

µMT+/− ApoE+/−, Line 6- µMT+/+ ApoE+/+. (C) Representative histograms

show deficiency of CD19+ B cells, assessed by FACS analysis, in peripheral

blood, lymph nodes, spleen, and peritoneal cavities. n = 12–15 per group.

Representative photomicrographs and FACS histograms from three different

experiments.

Figure S2 | Plasma lipid profile in hyperlipidemic ApoE−/− µMT−/− ApoE−/−

mice. ApoE−/− and µMT−/− ApoE−/− mice (male 6–8 week-old) were fed a high

fat diet for 8 weeks. Plasma lipid determination was carried out at the end of

experiment. Data presented as mean ± SEM of two to three independent

experiments. n = 12–15 per group.

Figure S3 | B cell deficiency results in absence of IgG and IgM in plasma and of Ig

deposits in lesions. At the completion of 8 week high fat diet feeding, plasma and

spleens from ApoE−/− and µMT−/− ApoE−/− mice were collected. Plasmas were

used to determine the immunoglobulins and frozen section from OCT-embedded

spleens were stained with various antibodies. (A,B) Representative fluorescent

microimages of atherosclerotic lesions stained with FITC-conjugated anti-B220

antibody and counterstained with DAPI showing that B cells are completely

absent in spleens in µMT−/− ApoE−/− mice. ELISA determination showed

(C) plasma total immunoglobulins (total, IgG and IgM) and (D) MDA-specific

oxLDL-immunoglobulins (total, IgG and IgM) in ApoE−/− mice but not in µMT−/−

ApoE−/− mice. (E) Representative microimages of immunoglobulin deposits in

atherosclerotic lesions show immunoglobulin deposits in wildtype but not in

µMT−/− ApoE−/− mice. Data were presented as mean ± SEM of two to three

independent experiments. n = 12–15 per group, ∗p < 0.05, � ApoE−/− mice

� µMT−/− ApoE−/− mice.

Figure S4 | Isolation of naïve B cells for adoptive transfer. Naïve B2 cells were

isolated from different donor mice using magnetic B cell isolation kit (Miltenyi

Biotec). Using biotin-conjugated antibody cocktail against CD43, CD4, and

Ter119, non-B2 cells such as T cells, macrophages and dendritic cells as well as

activated B cells and B1a cells were positively labeled. After manual separation

using MS columns, unlabelled cells were collected. Cell preparation before

magnetic labeling, positively-labeled cells (positive fraction) and unlabelled cells

(negative fraction) were stained with antibodies against CD19 and CD5 and FACS

analysis was carried out on BD FACSCanto II (BD Biosciences). Encashment of

naïve B2 cells was always >99%.

Figure S5 | Plasma lipid profile of hyperlipidemic µMT−/− ApoE−/− mice in

transfer study. B cell-deficient µMT−/− ApoE−/− mice (male 6–8 week-old) were

adoptively transferred with naïve B2 cells, followed by 8 week HFD feeding.

Plasma lipid determination was carried out at the end of experiment. Data

presented as mean ± SEM of two to three independent experiments. n = 9 per

group. � PBS transfer, � WT B cell transfer, MHCII−/− B cell transfer, and

CD40−/− B cell transfer.
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