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“Functional cure” is being pursued as the ultimate endpoint of antiviral treatment in

chronic hepatitis B (CHB), which is characterized by loss of HBsAg whether or not

anti-HBs antibodies are present. “Functional cure” can be achieved in <10% of CHB

patients with currently available therapeutic agents. The dysfunction of specific immune

responses to hepatitis B virus (HBV) is considered the major cause of persistent HBV

infection. Thus, modulating the host immune system to strengthen specific cellular

immune reactions might help eliminate HBV. Strategies are needed to restore/enhance

innate immunity and induce HBV-specific adaptive immune responses in a coordinated

way. Immune and resident cells express pattern recognition receptors like TLRs and

RIG I/MDA5, which play important roles in the induction of innate immunity through

sensing of pathogen-associated molecular patterns (PAMPs) and bridging to adaptive

immunity for pathogen-specific immune control. TLR/RIG I agonists activate innate

immune responses and suppress HBV replication in vitro and in vivo, and are being

investigated in clinical trials. On the other hand, HBV-specific immune responses could be

induced by therapeutic vaccines, including protein (HBsAg/preS and HBcAg), DNA, and

viral vector-based vaccines. More than 50 clinical trials have been performed to assess

therapeutic vaccines in CHB treatment, some of which display potential effects. Most

recently, using genetic editing technology to generate CAR-T or TCR-T, HBV-specific T

cells have been produced to efficiently clear HBV. This review summarizes the progress in

basic and clinical research investigating immunomodulatory strategies for curing chronic

HBV infection, and critically discusses the rather disappointing results of current clinical

trials and future strategies.
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INTRODUCTION

The rate of newly acquired hepatitis B virus (HBV) infection is well-controlled by prophylaxis
with conventional HBsAg vaccines; however, the vast reservoir of nearly 300 million chronic
HBV-infected individuals worldwide still represents a serious threat to humans, leading to up to
about 900,000 deaths every year (1–3). Persistent HBV infection could result in liver cirrhosis
and/or failure, and liver cancer, accounting for most end-stage liver diseases (4, 5).

Currently, PEGylated interferon-α (PEG-IFN-a) and nucleos(t)ide analogs (NUCs) are available
antiviral drugs for the effective treatment of chronic HBV infection (5–8). NUCs, with daily
oral administration, are widely welcomed by chronic hepatitis B (CHB) patients, and suitable for
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individuals with liver cirrhosis, liver failure, and pregnancy, due
to their excellent safety profiles. Although NUCs can control
HBV replication profoundly, and reduce the HBV associated
end-stage liver disease and liver cancer, hepatitis B surface
antigen (HBsAg) clearance, suppression, and/or seroconversion
seldom occur in patients administered monotherapy with NUCs.
The discontinuation of NUC treatment might result in liver
flare or failure. Thus, an uncertain or even lifelong period of
NUC treatment may be needed for most patients with chronic
HBV infection. Alternatively, PEG-IFN-α treatment can lead to
HB e-antigen (HBeAg) clearance and HBsAg seroconversion in
10–30% of cases within a definite duration of therapy (6, 9, 10).
Beside direct antiviral effects, the immunomodulatory property
of IFN-α may ultimately induce an immune control of HBV.
Meanwhile, poor tolerability with frequent severe undesirable
effects and the requirement for subcutaneous administration
limit PEG-IFN-a application.

Recently, “functional cure,” which is characterized by loss
of HBsAg whether or not anti-HBs antibodies are detected, is
becoming an accessible ideal endpoint of antiviral treatment in
CHB (3, 11). “Functional cure” represents continued suppression
of the activity of covalently closed circular DNA (cccDNA)
in the patient liver without the serum markers of viral
replication. The remaining cccDNA may be reactivated once the
immune system is deeply damaged, leading to the recurrence
of hepatitis B. Thus, cccDNA eradication is being pursued
intensively as an ultimate therapeutic goal. It is believed
that host immune control of HBV infection implies complete
elimination or functional inactivation of HBV cccDNA though
the underlying molecular mechanisms are not fully understood
(12). Based on this assumption, enhancing host immunity
to HBV is rationally an attractive approach to cure chronic
HBV-infected patients.

In this review, we summarized the available information about
strategies for enhancing host innate and adaptive immunity for
controlling HBV infection. The relevant basic research resulting
from preclinical studies is reviewed in sections enhancing innate
immunity to establish an antiviral state: results from preclinical
studies and induction of HBV-specific immune responses. The
available results of clinical trials are presented in sections
current clinical trials based on immunotherapy and IFN-α-based
immunotherapy plays an important role in HBV “cure” in
individuals with functional intrinsic immune responses. A
critical consideration of the results of current clinical trials and
discussion about the future strategies are included in section
conclusions and future perspectives.

IMMUNE PATHOGENESIS OF PERSISTENT
HBV INFECTION

The molecular mechanisms accounting for HBV persistence are
not fully elucidated. It is generally accepted that dysfunctional
immune responses play an essential role in persistent HBV
infection as well as liver inflammation, when comparing
the characteristics of immune responses in acute hepatitis B
and CHB (3, 13–16). Immune responses during CHB are
characterized by (1) dysfunctions and exhaustion of HBV-specific

CD4+ and CD8+ T cells (2, 17–19) decreased numbers and
dysfunction of DCs and NKs/NKTs (3, 13, 20–23) up-
regulated/enhanced expression of regulatory factors, including
the immune checkpoint proteins PD-1, CTLA-4, and T cell
immunoglobulin domain and mucin domain-3 (Tim-3) (24–26);
and (4) impaired innate immune response, especially toll-like
receptor (TLR) downregulation and dysfunction (27–32).

To maintain homeostasis, the hepatic immune system
preferentially induces tolerance to antigens flushed from the
portal vein. In CHB, the suppressive mechanisms in the liver
regulate and inhibit T cell functions. It has been confirmed that
intrahepatic inflammatory reactions induce multiple suppressive
pathways in situ in the liver, leading to T cell function
suppression (25). Enzymes such as arginase (33) and IDO (34)
are released by damaged hepatocytes and cause depletion of
amino acids, which are important in maintaining T cell functions
(35). Arginine depletion leads to reduction of CD3ζ levels in
T cells, subsequently causing TCR-pathway dysfunction (36).
Intrahepatic inflammation recruits regulatory T cells (37–41), B
cells, and myeloid-derived suppressor cells (42–44), and activate
stellate cells, leading to IL-10 and TGF-β production (25). The
suppressive events in the liver are vital for protection from severe
damage primed by inflammation, while further impairing the
functionality of HBV-specific T cells.

In general, high HBV DNA, HBsAg, and HBeAg levels
contribute to maintain HBV-specific immune tolerance in
chronically HBV-infected individuals. Reduction of both
circulating and intrahepatic HBV virions and proteins is a
prerequisite for (re-)establishing efficient HBV-specific T-cell
responses (45–48). The first evidence that HBV clearance can
be achieved by adoptive transfer of bone marrow from anti-
HBs-positive donors (49) provides a certain way to cure HBV
infection through immune modulation. Liver transplantation
may also transfer immune cells from vaccinated donors to
recipients, and partially control reinfection of the liver (50). An
increasing number of studies have been carried out to explore
therapeutic strategies including those involving small molecules
to boost HBV immunity in patients, aiming to a functional cure
for HBV infection (51–53).

THERAPEUTIC STRATEGIES FOR CHB

Based on the knowledge about the immune pathogenesis of
chronic HBV infection, a number of innovative strategies may be
applied to enhance HBV-specific immune responses in patients
(Figure 1). On one hand, oral, intranasal, or subcutaneous
application of agonists of pathogen recognition receptors (PRRs),
including TLRs, retinoic acid-inducible gene 1 (RIG-I), and
stimulator of interferon genes (STING), activates host immune
cells and hepatocytes/non-parenchymal liver cells, leading to
the production of IFN/expression of interferon-stimulated genes
(ISGs) and proinflammatory cytokines, which jointly mount
an antiviral state (Figure 2). On the other hand, HBV-specific
CTLs can be induced by therapeutic vaccines, boosted through
checkpoint blockade, or renewed by adoptive transfer of in vitro
activated T/NKT cells or genetically edited HBV-specific T cells
such as chimeric antigen receptor T (CAR-T) or T cell receptor
(TCR)-T cells (Figure 3). These strategies have been explored in
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FIGURE 1 | Approaches for the treatment of chronic HBV infection. Available knowledge about HBV immune control and immunopathogenesis; a number of

immunomodulatory strategies have been tested to enhance innate and adaptive immunity in preclinical models and clinical trials. TLR, toll-like receptor; RIG-I, retinoic

acid-inducible gene 1; STING, stimulator of interferon genes; APOBEC, apolipoprotein B mRNA-editing enzyme catalytic subunit; PBMC, peripheral blood

mononuclear cell; DC, dendritic cell; CIK, cytokine-induced killer; CAR-T, chimeric antigen receptor T-cell; TCR, T cell receptor. Dots in various colors indicate

different cytokines.

FIGURE 2 | Options for enhancing innate immunity and establish an antiviral state. Oral, intranasal, or subcutaneous application of agonists of PARs, including TLRs,

RIG-I, and STING, activates host immune cells and hepatic parenchymal and non-parenchymal cells, leading to the production of IFN and proinflammatory cytokines

as well as ISG expression. TLR, toll-like receptor; RIG-I, retinoic acid-inducible gene 1; STING, stimulator of interferon genes; NF-κB, nuclear factor kappa-B; ISG,

interferon-stimulated gene; cGAS, cyclic GMP-AMP synthetase. Dots in various colors indicate different cytokines. STING expression in hepatocytes remains

controversial.

the past years. Though their potential usefulness is partly proven,
many obstacles hindering the clinical use of these approaches are
still to be overcome in the future.

ENHANCING INNATE IMMUNITY TO
ESTABLISH AN ANTIVIRAL STATE:
RESULTS FROM PRECLINICAL STUDIES

TLR Ligands
TLRs play an important role in the innate immune response
through sensing viral and bacterial PAMPs and bridging
to adaptive immunity. TLRs are widely expressed in

immune cells, hepatocytes, and non-parenchymal liver
cells (NPCs), which contribute to immune control of HBV
(32, 51, 52, 54, 55).

Isogawa and collaborators firstly demonstrated that single

application of ligands specific to TLRs-3, 4, 5, 7, and 9
trigger non-cytopathic, IFN-dependent suppression of hepatic
HBV replication in HBV transgenic mouse models within
24 h (56). These interesting results ignited hope in treating
chronic HBV infection by activating TLR-dependent signaling
pathways. Thereafter, various TLR ligands have been tested
in cell and animal models with HBV replication, as reviewed
previously (52, 57, 58). Direct application of TLR ligands
can potently inhibit HBV replication in primary hepatocytes
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FIGURE 3 | Strategies for inducing HBV-specific immune responses and regaining immunological control of HBV infection. HBV-specific CD8+ T cell responses can

be induced by therapeutic vaccines, boosted through checkpoint blockade, or renewed by adoptive transfer of in vitro activated T/NKT cells or genetically edited

HBV-specific CAR-T or TCR-T cells. CTLA-4, cytotoxic T-lymphocyte-associated protein 4; LAG-3, lymphocyte activation gene-3; PD-1, programmed death-1; TIM-3,

T-cell immunoglobulin and mucin-domain containing-3; APC, antigen-presenting cell; DC, dendritic cell; CIK, cytokine-induced killer; CAR-T, chimeric antigen receptor

T-cell; TCR, T cell receptor. Dots in various colors indicate different cytokines; , Hepatitis B surface antigen/epitopes; Hepatitis B core antigen/epitopes; , Major

Histocompatibility Complex class I molecule; , Major Histocompatibility Complex class II molecule.

and hepatoma cells through IFN-dependent and -independent
pathways. TLR-2 and−4 activation triggers IFN-independent
pathways and leads to a robust inhibition of hepadnaviral
replication by various intracellular pathways in hepatoma cells
and woodchuck hepatocytes harboring woodchuck hepatitis
virus (WHV) (57). On the other hand, stimulating NPCs
(KCs and LSECs) and DCs with TLR ligands could induce a
panel of antiviral mediators (e.g., type I IFN), which inhibit
HBV replication in vitro (59, 60). Thus, TLR stimulation

may not only activate resident parenchymal cells, NPCs, and

infiltrated immune cells in the liver but also recruit circulating
immune cells to establish an antiviral state (Figure 2). Recently,

TLR stimulation has also been found to directly promote

T cell functionality via metabolic regulation, adding to its
capacity for immunomodulation (61–65). Meanwhile, systemic
inflammatory responses after TLR stimulation should be taken
into account.

In woodchucks chronically infected with WHV, weekly

subcutaneous injection of CpG ODN for 16 weeks induces
IFN synthesis with transient and weak viral inhibition (55).
When combined with entecavir, potent inhibition of WHV was

evidenced by early viral responses and a significant decrease in

serum woodchuck hepatitis surface antigen (WHsAg). However,

WHsAg seroconversion was not attained (55). Further data

analysis suggested that CpG ODN application enhances viral
suppression by antiviral treatment.

GS-9620, a TLR7 ligand, has shown great therapeutic potential

in woodchuck and chimpanzee models (54, 57). In chronically

WHV-infected woodchucks, GS-9620 monotherapy for 4–8

weeks led to continued, significant decrease of serum WHV
DNA and sustained WHsAg loss after cessation of treatment
in 13/15 animals. Moreover, 7 of the 13 animals developed
an antibody response against WHV surface antigen (66). In
chronically HBV-infected chimpanzees, reduced HBV viral load
and serum HBsAg level were recorded but without HBsAg loss
(67). A recent study showed that GS-9620 could induce multiple
HBV suppressive factors in human PBMCs, leading to prolonged
type I IFN-associated HBV suppression in primary human
hepatocytes (PHH) and HepaRG cells, as well as enhanced
biosynthesis of immunoproteasome subunits and display of an
immunodominant viral peptide in PHH with HBV-infection.
The latter may promote T cell recognition and activation in the
host and viral control, though GS-9620 itself could not reduce
cccDNA levels in hepatocyte culture systems (68).

RIG-I Activator
SB9200, an activator of RIG-I and nucleotide-binding
oligomerization domain-containing protein 2 (NOD2), can
induce prolonged IFN-α/β and ISG activation in blood/liver in
WHV-infected woodchucks, leading to a 3.7 log10 decrease of
serum WHV DNA and an 1.6 log10 decline in serum WHsAg
when orally dosed with 30 mg/kg for 12 weeks (69). Interestingly,
SB 9200 treatment sequentially followed by ETV administration
induces a much more potent suppression of WHV, with a 6.4
log10 decrease in serumWHV DNA load and a 3.3 log10 decline
in WHsAg level, delaying the recurrence of viral replication.
Thus, SB 9200-induced host responses potentiate the antiviral
efficacy of NUCs (70).
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STING Activator
An alternative host factor, cyclic GMP-AMP synthetase (cGAS),
was reported to be involved in HBV recognition. Indeed, cGAS
can recognize HBV DNA and activate its adaptor protein—
STING, leading to ISG56 expression and resulting in the
suppression of viral assembly (71). Activation of the cGAS-
STING pathway by dsDNA or cGAMP markedly inhibits HBV
replication in cell and mouse models (72). An agonist of
mouse STING, 5,6-dimethylxanthenone-4-acetic acid (DMXAA)
significantly induces the expression of ISGs and reduces hepatic
HBV DNA production in hydrodynamic HBV mouse models.
DMXAA induces a type I IFN-dominated cytokine response,
in contrast to TLR agonists which predominantly trigger
inflammatory cytokine and chemokine responses (73). A recent
study reported that human hepatocytes do not express STING
(74). Nevertheless, treatment of HBV-infected hepatoma cells
in culture with cGAMP or DMXAA leads to a significant
inhibition of HBV replication, evidenced by concentration-
dependent reductions in intracellular HBV mRNA, core-
associated DNA, and secreted HBsAg, yet without apparent
alteration in the amount of cccDNA (75). A splice isoform
of MITA/STING, referred to as MITA-related protein (MRP),
specifically blocks MITA-associated IFN activation while still
inducing the NF-κB pathway. MRP overexpression significantly
inhibits HBV replication by activating the NF-κB pathway
in a hydrodynamic injection mouse model. MITA/STING
deficiency (MITA/STING−/−) enhances HBV replication in
mice. Moreover, HBV-specific humoral and CD8+ T cell
responses are reduced in MITA/STING-deficient animals,
indicating an important role for MITA/STING in anti-HBV
immunity in innate and adaptive responses (76). Altogether,
STING might be a potential target for CHB immunotherapy.

APOBEC-Mediated Deamination
APOBEC-3 enzymes are involved in host innate immunity
against HBV. It was firstly reported in 2005 that human
APOBEC3 enzymes are able to extensively edit HBV DNA
strands via cytidine deamination (77). In HBV-harboring
HepAD38 and HepG2.2.15 cells, cytidine deaminases found
endogenously could edit 10–25% of the HBV rcDNA genome
within the viral capsid (78). Meanwhile, Hsp90 enhances
APOBEC-3-mediated DNA deamination activity in HBV (79).
Recent reports also indicated that APOBEC-3 enzymes may
mediate the antiviral activity of type I IFN and lymphotoxin by
cytidine deamination, leading to cccDNA degradation (80).

Preclinical studies revealed that triggering of innate immunity
leads to the production of antiviral and inflammatory mediators,
with viral suppression to various extents. However, activation
of innate immunity alone presumably does not control HBV
infection, unless the adaptive branch of host immunity
subsequently comes into play. Among the tested agonists, only
the TLR7 ligand GS-9620 has been tested in clinical trials (see
below). Other candidate drugs are not yet ready for clinical
testing. It will be useful to characterize such candidates not only
for activating innate immunity but also for their ability to bridge
to adaptive immunity, given that the specific immune response
to HBV is critical for effective HBV control.

INDUCTION OF HBV-SPECIFIC IMMUNE
RESPONSES

Protein/Polypeptide Vaccines
HBsAg/preS Vaccine
Conventional HBsAg vaccines failed to achieve a significant
therapeutic effect in either preclinical animal models or patients
with CHB. This failure was attributed to HBsAg-specific
immune tolerance. Using IL-12 as an adjuvant, Zeng et al.
showed that HBsAg immunization efficiently reverses systemic
tolerance toward HBV proteins, with enhanced HBV-specific
CD8+/CD4+ T cell responses and reduced CD4+Foxp3+ Treg
cell frequency in HBV-harboring mice (81). The majority
of animals administered IL-12-based vaccine acquired HBsAg
seronegativity, and hepatitis B core antigen (HBcAg) became
undetectable in hepatocytes. Meanwhile, preS1-polypeptide has
been shown in HBV carrier mice to induce robust immune
responses. Anti-preS1 antibody could clear HBV virions and
even lead to HBsAg/HBsAb seroconversion through sequential
administration of preS1 and HBsAg vaccines (82).

HBcAg Vaccine
Markedly elevated frequencies of HBcAg-specific CTLs have
been found in CHB cases capable of controlling HBV replication
in comparison with those who did not (83). Thus, HBcAg-
based vaccines are considered a promising candidate for CHB
treatment. In a pilot study, a peptide-based vaccine containing
HBcAg amino acids 18–27 in combination with a Th epitope
initiated a low-level CTL activity in CHB patients but failed to
clear HBV (84). A synthetic HBcAg vaccine, originally designed
to reduce the risk of liver tumors by Inovio Pharmaceuticals Inc.,
was also reported to be highly potent. However, only very limited
information about this vaccine candidate is available.

HBsAg/HBcAg Compound Vaccines
Therapeutic vaccines comprising HBsAg and HBcAg and the
CpG adjuvant have been shown to elicit strong HBsAg/HBcAg-
specific humoral responses and balanced Th1/Th2 responses
to HBsAg as well as Th1-type responses to HBcAg in
wild-type C57BL/6 mice and HBV transgenic animals. Enhanced
HBsAg/HBcAg-specific cellular immune responses lead to
significantly reduced serum HBsAg levels without liver injury
in HBV transgenic mice (85). A particulate vaccine composed
of HBsAg, HBcAg, and the adjuvant ISCOMATRIXTM could
induce multi-specific and multi-functional T cells in HBV-Tg
mice, especially HBc-specific CD8+ T cells with elevated IFN-
γ, TNF-α, and IL-2 production. Anti-HBsAg titers reached
>10,000 IU/L in 7/8 animals after 4 vaccinations. However,
titers of circulating HBV DNA decreased in vaccinated HBV-Tg
mice after two and four vaccinations although statistical
significance was not reached. HBcAg-positive hepatocytes were
also dramatically decreased without obvious liver damage (86).

Anti-HBsAg Antibody
Antibody-mediated immunotherapy has been assessed in several
preclinical and clinical studies but failed to achieve long-lasting
HBV suppression. Zhang et al. developed a new monoclonal
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antibody (mAb) against HBsAg (mAb E6F6) with remarkable
effects in the treatment of persistent HBV replication in several
mouse models (87). Indeed, a single dose of E6F6 markedly
reduced HBsAg and HBV DNA amounts by over 3 logs for many
weeks in HBV-transgenic animals. E6F6 could not only potently
prevent primary HBV infection but also reduce secondary
spread of HBV from infected hepatocytes in the human-liver-
chimeric mouse model. After E6F6-based immunotherapy, anti-
HBV T-cell response was restored in mice with persistent HBV
replication established by hydrodynamic injection. Fcγ receptor-
dependent phagocytosis is considered to play the most critical
role in E6F6-associated viral immune clearance, independently
on ADCC and CDC (88).

DNA Vaccines
DNA vaccines encoding HBsAg and HBcAg induce both
humoral and cellular immunity against both HBV antigens,
constituting a promising approach for the control of HBV
infection (89–93). Upon intramuscular or intradermal injection,
in situ expressed HBsAg and HBcAg in transfected cells such
as myocytes and APCs are processed and presented to host
immune cells, resulting in specific B and T cell activation (94, 95).
Encouraging results were obtained in pre-clinical studies in the
mouse and woodchuck models assessing diverse technologies to
improve the efficacy of DNA vaccines, including (i) integration of
immunostimulatory cytokines (96); (ii) combination with NUCs
(97, 98); (iii) prime-boost immunization regimens (98, 99); (iv)
electroporation delivery of DNA vaccines (93, 100); and (v)
combination with checkpoint inhibition (93, 100).

In a recent study, Chuai et al. vaccinated rhesus macaques
using a complex procedure. Four animals received three doses
of HBV DNA vaccines encoding HBsAg, PreS1, and HBcAg for
priming, followed by two boosts with recombinant vaccinia viral
vectors encoding HBsAg, PreS1, and HBcAg, with a final boost
using fusion protein including HBsAg and PreS1. Anti-PreS1
antibodies were induced quickly upon initial priming with DNA
vaccination, followed by anti-HBsAg and anti-HBcAg antibodies.
Upon boosting with recombinant vaccinia, both humoral and
cellular immune responses to HBsAg, PreS1, and HBcAg were
markedly induced, with HBcAg-specific CTL response being
the most robust and durable. Further boosting with the fusion
protein maintained the immune responses to all three HBV
antigens until week 98 after the first vaccination. These results
suggested that incorporation of PreS1 and HBcAg may improve
the effects of therapeutic vaccines (101).

Vaccines Based on Viral Vectors
As mentioned in the previous section, Kosinska et al. tested
therapeutic vaccines based on adenoviral vectors in the mouse
and woodchuck models and obtained very promising results (98,
99). Moshkani et al. reported a vesicular stomatitis virus (VSV)-
based vaccine platform (102). Using a highly attenuated VSV
strain expressing MHBs by either intranasal or intramuscular
application, they successfully induced MHB-specific CD8+ T cell
and humoral responses in naive mice capable of preventing HBV
replication after challenge by adeno-associated virus harboring
HBV (AAV-HBV). In mice with persistent HBV replication, the

VSV-MHB system could also induce significant multi-specific
T cell responses, leading to decreased serum and hepatic HBV
antigen and DNA levels and transient elevation of serum alanine
aminotransferase activity. These data provide evidence for the
potential utility of vaccine platforms based on viral vectors as
alternative therapeutic vaccines against CHB.

The design and effectiveness of HBV vaccines have been
improved over the years. Clearly, HBV-specific T cells have been
stimulated by these vaccine candidates in different experimental
settings with variable levels of HBV suppression. The most
effective vaccines are those based on viral vectors, which show
superiority over other types in terms of T cell induction.
Nevertheless, other types such as DNA vaccines could be applied
repeatedly without limitation and used in combination with
viral vectors. Currently, preclinical and clinical studies using the
available vaccine candidates have been rather unfruitful, leaving
the major question as to whether the currently available HBV
vaccines are potent enough for immunotherapeutic approaches.
The hurdles to be overcome likely lie in the recruitment of
activated immune cells into the liver and the maintenance
and amplification of primed HBV-specific immunity within
the liver. Thus, combinations of antiviral treatment and
additional immunomodulatory drugs including TLR ligands and
checkpoint inhibitors may be necessary to achieve effective, long-
lasting T cell immunity.

HBV-Specific T-Cell Therapy
Recently, useful technologies to induce or generate antigen-
specific T cells were developed. This is a fast-growing research
field with great potential for the treatment of chronic viral
infections. HBV-specific T cells could be induced by DC vaccines,
boosted by checkpoint blockade, or renewed by adoptive transfer
of lab-produced HBV-specific T cells like CAR-T and TCR-T
cells (103).

DC Vaccines
As the most powerful professional antigen-presenting cells, DCs
play vital roles in bridging the innate immunity and the adaptive
immunity. Meanwhile, myeloid DCs (mDCs) were found to
regulate the functional differentiation of HBV-specific CD8+ T
cells in immune transfer experiments (104). While PD-1 was
identified to mediate functional exhaustion of HBV-specific
CD8+ T cells, T cell functions could be restored by CD40
stimulation of mDCs. This has been validated from bench to
bedside in CHB treatment using HBsAg/HBcAg-pulsed DCs. In
HBV transgenic mouse models, HBsAg-pulsed DCs could induce
HBsAg-specific immune responses. Interestingly, HBcAg-pulsed
DCs induce both HBsAg- and HBcAg-specific T cell responses,
leading to loss of HBsAg with anti-HBsAg seroconversion
(105, 106).

CIK/DC-CIK
Cytokine-induced killer (CIK) cells, produced ex vivo via
treatment of PBMCs or cord blood mononuclear cells with
IFN-γ, anti-CD3 antibody, IL-1, and IL-2, are featured as cells
with a mixed T- and NK cell-like phenotype (CD3+CD56+).
CIK cells target infected and cancer cells in both MHC-restricted
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and MHC-unrestricted manners, inducing rapid and unbiased
immune reactions. Therefore, CIK cells attract attention as a
potential therapeutic tool in malignancies and viral infections
(107, 108).

DC-CIK refers to the co-culture of CIK cells with DCs or
sequential adoptive transfusion of autologous DCs and CIKs,
engaging the crosstalk between DCs and CIKs. DCs, especially
antigen pulsed ones, can stimulate NK cells and initiate antigen-
specific T- and B-cell responses (109). Increasing evidence shows
that combination of DCs can reduce the frequencies of regulatory
T cells in CIK cell cultures and increase the rate of CD3+CD56+

cells (110).

Immune Checkpoint Inhibitors
Blockade of immune checkpoints such as PD-1/PD-L1
signaling may relieve the negative regulation of specific
T cells or even revive exhausted T cells. Application of
antibodies targeting PD-L1 in woodchucks with WHV
infection, combined with ETV administration and DNA
immunization, successfully enhanced virus-specific T cells,
resulting in continued inhibition of viral replication, production
of anti-WHsAg antibodies, and complete viral clearance in
certain woodchucks (100). A recent ex vivo study showed
that HBV-specific CD4+ T cells isolated from individuals with
HBeAg-negative HBV infection could be activated by OX40
stimulation combined with PD-L1 blockade, with remarkably
increased IFN-γ and IL-21 production in vitro. Functional
boost of HBV-specific CD4+ T cells via both treatment with
OX40 and PD-1 pathway blockade might be useful in curing
CHB (111).

Checkpoint inhibitors alone have shown only limited efficacy
in chronic HCV patients (112). Virus-specific CD8+ T cells
could be restored through PD-1 blockade in latent HBV carriers
(113). Similarly, blockade of other checkpoint molecules such as
Tim-3 and CTLA-4 can also restore virus-specific CD8+ T-cell
responses in CHB patients (114, 115).

Genetically Edited T Cells (CAR/TCR-T)
Spontaneous HBsAg clearance is observed in more than 90%
of adults with acute HBV infection accompanied by strong
intrinsic or adaptive immune responses (116, 117). Patients with
CHB lack effective T cell responses for viral clearance due to
various immune tolerance mechanisms. Current T-cell-based
therapy uses different types of engineered T cells, which express
predefined antiviral characteristics. The basic principle of this
process is the use of a new well-functioning T-cell library to
replace or enhance the low or depleted energy T-cell library of
the host and target the virus-specific immunodominant epitopes
(118, 119). Therefore, this strategy may lead to immunological
control of HBV infection in patients and CHB cure in long term.
However, there are several points that need to be addressed for
establishing its effectiveness and safety for CHB cure. First, strong
T-cell-mediated killing may lead to severe liver damage and
acute liver failure; secondly, it is necessary to demonstrate that
engineered T cells indeed have improved functionalities and are
able to remain functional under immune tolerizing conditions in
the liver.

CAR-T cells can be engineered to identify antigens in an
MHC non-dependent manner, providing a wider range of targets
compared with natural T-cells. CAR-T cells show highly effective
anti-tumor activities in a variety of tumors, including CD19+

acute leukemia, and may be developed into a safe and effective
tumor treatment strategy (120). Bohne et al. firstly generated
CAR-T cells targeting HBsAg. CAR-T cells directed against the
“a” determinant of HBsAg and aa37-43 in the preS1 protein were
able to recognize HBsAg-positive primary human hepatocytes
and HepG2.2.15 cells, and specifically eliminate HBV-infected
target cells (118).

A couple of studies have assessed the in vivo effects of CAR-
T/TCR-T cells directed to HBV in mouse models (121–124).
Kah et al. showed that HBV-TCR-T cells could lyse cultured
HBV-harboring hepatoma cells, and viral loads were reduced
within 12 days of treatment with three injections of HBV-
TCR-T cells in HBV-infected human liver chimeric mice (122).
Three reports about HBsAg-CAR-T cells are available. Krebs
et al. showed that CD8+ T cells expressing HBsAg-specific CARs
recognize different HBV subtypes and could be expanded in
immunocompetent HBV transgenic mouse models, resulting in
efficient control of HBV replication with only transient liver
damage (121). Kruse et al. tested HBsAg-CAR T cells in HBV-
infected human liver chimeric mice. As a result, an average
of 4.7-fold reduction of serum HBsAg, 3.0-fold decrease in
viral load, and 70% reduction of HBcAg-positive hepatocytes
were found 36 days after adoptive transfer of HBsAg-CAR
T cells (123). Meanwhile, human plasma albumin levels were
unaltered, suggesting non-cytopathic viral clearance. Festag et al.
engineered fully human, second-generation CART cells targeting
HBsAg and tested them in an AAV-HBV mouse model with
specific tolerance to human HBsAg-CAR. In this system, long-
lasting antiviral effects were demonstrated with 2 log10 decrease
of HBsAg and 60% reduction of HBV-DNA for up to 110 days
upon adoptive transfer. However, HBsAg-CAR T cells failed
to completely clear HBV in the animals (124). Recently, HBV-
specific T cells produced by lymphocytes using HBV-T cell
receptor mRNA could reduce the viral load of HepG2.2.15 cells
by 50% with no overt liver toxicity (125). Whether HBV-specific
T cells could indeed suppress HBV efficiently while not directly
killing hepatocytes requires further investigation. The approach
with HBV-specific CAR/TCR-T cells represents a technology
with great therapeutic potential.

Though DC-CIK based therapy has been applied in patients
in China, its systematic analysis has not been performed.
It is important to follow up patients administered DC-
CIK treatment and determine the actual usefulness of this
approach. The recent progress in T-cell-based therapies for
tumor treatment is encouraging and provides therapeutic
guidance for major chronic viral infections with HIV and
HBV. Unlike in tumor treatment, the safety issue in antiviral
therapy is significantly stricter and any risk of uncontrolled
overshooting immune responses in patients is not acceptable.
Similarly, the application of immune checkpoint inhibitors
faces similar challenges and needs to balance the enhancement
of host immune responses and the control of the risk of
undesired immunopathology.
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CURRENT CLINICAL TRIALS BASED ON
IMMUNOTHERAPY

Many immunotherapeutic approaches have been tested in diverse
animal models; however, only few of these attempts reached
the phase of clinical trials (Table 1). It should be pointed out
that combination therapy with potent antivirals and therapeutic
DNA and viral-vector-based vaccines was partially successfully
tested in the woodchuck model, with complete viral control and
induced anti-surface antibody. Yet, similar approaches failed in
chronically HBV-infected patients.

GS-4774
GS-4774 is a recombinant yeast-based vaccine that contains
HBV-specific antigens such as HBx protein and large HBsAg
(126). Its safety, tolerability, and immunogenicity have been
verified in normal healthy individuals. However, GS-4774
showed no clinical benefit in virally suppressed individuals with
CHB in a Phase II study. There was no significant decrease
in mean HBsAg levels, with ≥0.5 log10 IU/ml reductions in
HBsAg in only three patients administered a high GS-4774 dose
of 40 YU, and no case of HBsAg clearance. Five HBeAg-positive
individuals administered GS-4774 had HBeAg loss, with none
recorded among control patients (127).

Recently, the results of an open-label, multicenter,
randomized study (http://clinicaltrials.gov no: NCT02174276) of
CHB patients using tenofovir disoproxil fumarate (TDF) alone
or combined with GS-4774 were published (128). Significantly
increased IFN-γ, TNF, and IL2 production was evidenced in
HBV-specific CD8+ T cells from individuals administered
GS-4774 and TDF at weeks 24 and 48, but not in those under
TDF monotherapy. Increased T-cell functions were correlated
with reduced numbers of regulatory T cells. Again, GS-4774
treatment resulted in no reduction of HBsAg levels in patients.
Thus, GS-4774 is able to stimulate host CD8+ T cell responses
but not sufficient to control HBV.

NASVAC
The nasal vaccine candidate (NASVAC) is composed of HBsAg
and HBcAg. In Phase I experiments, nasal spray with NASVAC
was shown to induce anti-HBcAg antibodies in all subjects
30 days after administration of 3 doses. Seventy-five percent
of the tested subjects developed anti-HBsAg antibodies at the
latest time point of 90 days upon the start of vaccination (139).
NASVAC was also well-tolerated after intramuscular application,
with all the 14 enrolled patients developing HBV-specific
lymphoproliferative responses. A total of 80 CHB patients were
administered NASVAC intranasally or subcutaneously in a Phase
III, randomized, controlled clinical trial. Compared with Peg-
IFN treatment, NASVAC therapy resulted in a similar proportion
of patients with viral load under the detection limit at the end
of treatment (59.0 vs. 62.5%, p > 0.05). A higher percentage
(57.7% vs. 35.0%) of patients had sustained HBV load under the
detection limit at 24 weeks of follow-up (130). However, these
results need to be verified in future clinical trials.

YIC
The HBsAg-hepatitis B immunoglobulin (HBIG) complex (YIC)
has been tested in HBeAg-positive CHB patients in a Phase II
clinical trial with six doses. Compared with the control group
administered alum only, the patients vaccinated with YIC showed
improved HBeAg seroconversion (9% in the control group vs.
21.8% in the YIC group), enhanced anti-HB production, and
decreased viral load (140, 141). However, a Phase III clinical trial
with 12 doses failed to show satisfying results (142). Indeed, the
trial exploring the immunological mechanisms of YIC (clinical
registration number: ChiCTR-TRC-11003189) showed that CHB
patients immunized with YIC in combination with adefovir
treatment exhibit increased CD4+ and CD8+ T cell responses. A
significant increase in IFN-γ production and reduced expression
of inhibitory factors including IL-10, TGF-β, and Foxp3 were
detected in CD4+ T cells from individuals immunized with
YIC (143).

HepTcell
HepTcell is a mixture of nine synthetic peptides comprising
HBV-specific T-cell epitopes. In a Phase I trial performed in
the United Kingdom and South Korea, HepTcell was tested in
HBeAg-negative CHB cases treated with entecavir or TDF. Three
monthly injections of HepTcell were well tolerated and induced
cellular immune responses against HBV antigens in patients
(131). A Phase II trial is anticipated to start in 2020 to evaluate
the immune responses of HepTcell with more injections in an
expanded patient cohort with chronic HBV infection.

DNA Vaccines
At the moment, a number of clinical studies on DNA-based HBV
vaccines are still ongoing (Table 1). In an early French Phase
I/II clinic trials, therapeutic DNA vaccines have been confirmed
as safe in CHB patients (132, 133). However, satisfying results
have not been obtained even in combination with NUCs, with
only transient/weak T cell responses, increase in NK cells, and
no sustained virological responses. In HBV carriers receiving
lamivudine treatment, a DNA vaccine containing the majority
of HBV genes in addition to IL-12 DNA could induce HBV-
specific IFN-γ secreting T-cells, maintained for 40 weeks or
more upon therapy and correlating with virological responses
(144). A non-replicative adenoviral vector harboring HBsAg,
HBcAg, and Polymerase (TG1050) was shown to induce strong
HBV multi-specific and prolonged T-cell responses in the mouse
model (145). A Phase Ib study was performed in CHB patients
and demonstrated the safety and immunogenicity of TG1050,
supporting future testing in combination with antivirals (146).

The Anti–PD-1 Antibody Nivolumab
In a Phase Ib study (ACTRN12615001133527), the anti–PD-
1 antibody nivolumab was tested at a single dose in HBeAg-
negative CHB cases with viral suppression, either alone or in
combination with GS-4774. Reduced HBsAg levels were detected
in all 22 individuals administered 0.3 mg/kg nivolumab alone
or with GS-4774 at week 12. Interestingly, 2/10 patients in
the GS-4774 + nivolumab group and 1/12 of the nivolumab
monotherapy group had serum HBsAg reductions ≥ 0.5 log10
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TABLE 1 | Current clinical trials based on immunotherapy.

Therapeutics Vaccine/agonist Company/Organization Status References

GS4774 X, large-S Gilead Sciences I-IIs (126–128)

NASVAC HBsAg+HBcAg Clinical Research Organization, Dhaka,

Bangladesh

III (129, 130)

INO-1800 Plasmids encoding HBsAg +

HBcAg

Inovio I No data available

HepTcell T cell epitopes Altimmune I (131)

DNA vaccine preS2 +S Institut National de la Santé Et de la

Recherche Médicale, France French

National Agency for Research on AIDS

and Viral Hepatitis

I/II (132, 133)

DNA vaccine JNJ-64300535 Janssen Sciences Ireland UC I No data available

DNA vaccine-HB-110 S+preS+Core+Pol. Genexine, Inc. I No data available

DNA vaccine UN PowderMed I No data available

DNA vaccine HBs Genexine, Inc. NA No data available

DNA vaccine INO-1800+INO-9112 Inovio Pharmaceuticals I No data available

TG1050 ADV-S+C+Pol. Transgene I No data available

ChAd155-hIi-HBV UN GlaxoSmithKline I No data available

HPDC-T cells HB-Vac Sun Yat-Sen University I/II No data available

AIC649 Inactivated parapox virus AiCuris I (134)

GS-9620 TLR-7 agonists Gilead Sciences II (135, 136)

RO7020531,RG7795(ANA773),

RG7854

TLR-7 agonists Roche I No Results Posted

JNJ-64794964 TLR-7 agonists Janssen I (137)

GS-9688 TLR-8 agonists Gilead Sciences II No data available

SB 9200 RIG-I agonists Spring Bank Pharmaceuticals I No data available

GS-9992 RIG-I agonists Gilead Sciences II No data available

γδT Cells – Jinan University Guangzhou I No data available

Nivolumab Anti-PD-1 Gilead Sciences Ib (138)

IU/ml at 24 weeks. A single individual with significantly
decreased HBsAg levels in the nivolumab arm showed HBsAg
loss at week 16, and anti-HBsAg responses at 10 weeks upon trial
completion with anti-HB titers surpassing 500 IU/L 12 months
after treatment (138).

Oral TLR-7/8 Agonists
There are currently several oral TLR-7/8 agonists in clinical trials,
including GS-9620, RO7020531, RG7795 (ANA773), RG7854,
JNJ-4964 (AL-034/TQ-A3334), and GS-9688 (Table 1). GS-
9620 represents an effective, selective, and orally active TLR7
agonist. Its safety has been confirmed in treatment-naïve or
currently treated individuals with chronic HBV infection. No
marked circulatory IFN-a increase and associated symptoms
were observed, although ≥2-fold ISG15 increase was evidenced
in serum samples from individuals administered 2- or 4-mg GS-
9620 (136, 147). Twelve-week GS-9620 administration in CHB
patients withHBVwell suppressed byNUCs resulted in increased
T- and NK-cell responses and decreased NK cell-mediated T cell
inhibition, while no significant decrease in serum HBsAg levels
was achieved. The beneficial effect of GS-9620 in strengthening
HBV-specific immune responses needs to be validated with a
longer assessment period or combination with IFN therapy (148).
In another Phase II study, GS-9620 treatment of naïve CHB

patients, even after combination with tenofovir (TDF), did not
significantly decrease HBsAg levels (135). Another TLR 7 agonist,
RO7020531, is being assessed in a Phase I study.

AIC649
AIC649 is a patented inactivated parapox virus (iPPVO) and
a novel biological immunomodulator. AIC649 could induce
natural, self-limiting immune responses and boost immune
responses to unrelated pathogens. A preclinical study in the
woodchuck model demonstrated that AIC649 administration
leads to a significant decrease in WHsAg even after cessation
of treatment (149). Continuous WHsAg suppression as well as
anti-WHsAg antibodies and cell-mediated immune responses
were measured in combination with ETV (Poster AASLD
2017-10-24), indicating a potential for treatment of chronic
HBV infection.

DC/DC-CIK
Clinical examination indicated that HBsAg-pulsed DCs induce
anti-HBsAg antibody and HBsAg-specific cellular immunity
in 2/5 and 1/5 CHB patients, respectively, without obvious
liver damage. Anti-HB antibodies were detectable 1 month
after administration of HBsAg-pulsed DCs and increased
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progressively for 5 months in one patient (105). HBsAg-
pulsed DC vaccines could accelerate HBsAg clearance as well
as HBsAg/HBsAb seroconversion in patients with low HBsAg
levels (Meng et al. unpublished data). Autologous DC-vaccines
could efficiently inhibit HBV replication, decrease the viral load,
clear HBeAg, and induce HBeAg/anti-HBe seroconversion, even
leading to loss of HBsAg (150). However, randomized controlled
studies are required for further validation of DC vaccines for
treatment of CHB.

In a clinical study, over 2 log 10 fold decrease in HBV load
was detected in 21/33 (63.6%) of CHB patients administered
HBsAg activated autologous DC-CIK (151). CIK without HBsAg
pulse could also reduce serum HBV load and promote HBeAg
clearance in patients with high ALT levels. At 36 weeks of
follow-up, HBeAg negativity and HBeAg seroconversion were
found in 33.3 and 9.5% of CHB patients who received CIKs,
respectively (152).

Yet, clinical trials based on immunotherapy did not show
satisfactory results. The trials with DNA vaccines and YIC
failed to deliver positive results, reducing the hope placed in
immunotherapy. However, the rather negative results in these
studies are not surprising as therapeutic immunomodulation is
not simply the induction of adaptive immunity but needs to
tackle negative immune regulation established during chronic
viral infections. It is important to test these approaches in
cohorts of patients under antiviral treatment and suppressed
HBV replication. In such patients, the host immune system
may recover to some extent from HBV-mediated impairment
and respond more robustly to immune stimulation. There are
patients with sustained low HBV loads, which may hint to
naturally enhanced immune control of HBV infection. It would
be useful to select such patients for future clinical trials. There
are still a great number of options and combinations of these
approaches to be considered, along with new innovations from
future research.

IFN-α-BASED IMMUNOTHERAPY PLAYS
AN IMPORTANT ROLE IN HBV “CURE” IN
INDIVIDUALS WITH FUNCTIONAL
INTRINSIC IMMUNE RESPONSES

PEG-IFN-α possesses antiviral and immunomodulatory effects,
and remains the most effective drug for the treatment of CHB
patients. In the treatment of naïve CHB patients, Peg-IFN-α
administration for 48 weeks achieves superior efficacy over
lamivudine, as reflected by HBeAg seroconversion, HBV DNA
clearance, and HBsAg seroconversion. Although only 4% of
HBsAg loss was reported at 6 months off-therapy, this rate
reached 11% after 4 years of follow-up (153, 154).

PEG-IFN-α has been demonstrated to enhance HBsAg
loss, especially in patients administered NUCs with HBsAg
titers of <1,000 IU/ml. HBsAg clearance rates at 48 weeks
were 9% (2 out of 22) and 15% (4 out of 26), in switch-
to and add-on therapy CHB patients, respectively (155). A
systematic review revealed that CHB patients treated with
NUCs for at least 48 weeks are more likely to achieve

HBsAg loss (11%), using a PEG-IFN-α-based combination
treatment (10). HBsAg loss occurred significantly often in
selected CHB patients in a new SWITCH study with initial
administration of NUCs and switch to PEG-IFN-α-2a (155).
Another study demonstrated the effectiveness of PEG-IFN-α-
2a for the treatment of inactive HBsAg carriers, resulting in
high rates of HBsAg depletion and seroconversion (9). PEG-
IFN-α treatment showed enhanced HBsAg seroconversion rate
in CHB cases with low HBsAg and HBV DNA levels. Therefore,
more clinical trials (e.g., NCT02745704, NCT02893124, and
NCT02838810) are currently on the way to identify the optimal
usage of Peg-IFN-α treatment in CHB patients with low HBsAg
levels. Peg-IFN-α may contribute significantly to the cure of
HBV infection if diversely integrated in multi-drug regimens,
e.g., with lower dosage or intermittent application to avoid severe
adverse effects.

Peg-IFN-lambda (Peg-IFN-λ), a type-III IFN, has been
attributed dual immunomodulatory effects on both innate
and adaptive immune responses in chronic HBV infection.
IFN-λ shares similar ISG induction pathways as IFN-α, and
Peg-IFN-λ exerts antiviral effects similar to those of Peg-
IFN-α. Interestingly, Peg-IFN-λ showed substantially improved
tolerability than Peg-IFN-α, since IFN-λ binds to type III
interferon receptors, which are restricted to cells of epithelial
origin, including hepatocytes (156, 157). Thus, the clinical
application of Peg-IFN-λ may benefit CHB patients.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Chronic HBV infection is considered a result of HBV-specific
immune tolerance. Based on this concept, breaking immune
tolerance and restoring HBV-specific immune responses may
ultimately lead to HBV control and clearance in patients. It
becomes possible to induce HBV-specific immune responses
in patients, yet not with the desired results of HBV control.
Immunotherapeutic approaches are also hampered by the
risk of overshooting immune responses in CHB patients and
causing uncontrolled liver damage. Thus, combinations of potent
antiviral treatment and carefully adjusted immune modulation
may achieve a “cure” of CHB, without severe liver damage and
disease progression. Nevertheless, HBV-specific CAR-T/TCR-
T cells in combination with checkpoint inhibitors may be a
potential strategy for HBV control.

In the past years, an essential role for HBV-specific T
cell responses in viral control has been emphasized. Though
functional T cell response is required for HBV control, it
is definitely not sufficient for a successful immunotherapeutic
approach. Given that the various therapeutic vaccines tested so
far were highly effective in priming specific T and B cell responses
to HBV antigens, they generally do not achieve significant and
long-lasting viral suppression in animal models and patients.
These rather disappointing results may have diverse reasons but
the potential conceptual problem should not be ignored. Transfer
of large numbers of activated CD8+ T cells to HBsAg in HBV
Tg mice only led to transient suppression of HBV replication
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(158). Transfer of splenocytes from HBsAg-vaccinated mice to
HBsAg Tg mice resulted in sustained production of anti-HBsAg
antibodies and HBsAg clearance in the peripheral blood of
recipient mice (159). However, HBsAg-specific CD8+ T cells
became undetectable, while HBsAg production in the liver
continued in recipients. Importantly, no inflammation and T
cell infiltration in the liver of Tg mice were observed. Further,
HBV-specific T cells could be detected in mice with persistent
HBV replication after hydrodynamic injection, but did not enter
the liver unless an intrahepatic immune activation was triggered
by TLR3 stimulation (160). A recent report also showed that
HBV-specific T cells are detectable in the peripheral blood of
young patients in the immune tolerant phase (103, 161). HBV-
specific T cells were found to possess the ability to proliferate and
produce cytokines (162). Specific CD8+ T cells in all mentioned
cases apparently could not cause chronic liver inflammation,
consistent with the findings reported by other immune transfer
studies (163). Therefore, the antiviral effects of HBV-specific
T cells may require appropriate conditions in the liver. TLR
agonists may be useful for the promotion of T cell functions in
the liver (160, 164, 165), by recruiting various immune cells into
the liver to form tertiary lymphoid structures (166–168). These
aspects have been discussed in recent reviews and need to be
investigated in future studies (32, 52, 58, 92).

Beside T cell-mediated antiviral effects, other mechanisms
for HBV control need to be considered in future approaches.
The roles of other immune cell types are not yet well studied
in the context of HBV immunity. NK cells may contribute
significantly to HBV control during acute and chronic infection
(22, 169, 170), playing an important role for successful IFN-α
therapy (171, 172). At the moment, modulation of the NK cell
activity to control HBV infection has only been tested in few
studies and needs more attention (173). Recently, the function of
HBV-specific B cells in HBV infection has been characterized by
using fluorescently labeled HBV proteins, showing impairment
in chronically infected patients (174–176). Modulation of B
cell function and antibody production may represent another
option for immunotherapy (87, 177). A number of host genetic
determinants have been identified to contribute to HBV control
and pathogenesis (178). Many of these determinants play a role
in immune control of HBV infection. However, there are other
factors such as UBE2L3 gene that regulate HBV replication
by controlling cccDNA stability and yet unknown processes
(179). By comparing hepatic gene expression profiles in patients

from different phases of the natural course of chronic HBV
infection, a number of differently expressed host genes were
found to contribute to HBV control in inactive carriers with
low HBV loads (180). This result is somewhat relevant as
no immune-related gene was actually found to be active in
such patients, indicating that immune mechanisms may not
be effective in patients with low HBV replication and gene
expression. This is rational as antigen-specific T cells may target
infected cells only with sufficient levels of antigen production
and would ignore hepatocytes with HBV production below
the recognition threshold. Apparently, there are diverse non-
immune host restrictions for HBV replication that are important
for achieving long-term, non-cytotoxic HBV control.

While we appreciate the great relevance of host immune
responses for HBV control, successful therapy of chronic HBV
infection may require combinations of antiviral treatment with
NUCs, activation of intrahepatic innate immunity, stimulation of
specific T cell responses, and finally switching on of non-immune
mechanisms for sustained HBV control without undesired side
effects. Recent findings pointed out the central role of cccDNA
and/or integrated HBVDNA in hepatocytes for “functional cure”
of chronic HBV infection. It is yet unknown whether HBsAg
seroconversion/clearance alone would protect against HCC with
cccDNA or integrated HBV DNA still present in hepatocytes.
Likely, immunotherapeutic approaches may clear at least a great
part of infected hepatocytes with cccDNA and/or integrated HBV
DNA if they express HBV proteins, thereby reducing the risk of
HCC development. These aspects deserve further investigation.
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