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Most animals maintain mutually beneficial symbiotic relationships with their intestinal

microbiota. Resident microbes in the gastrointestinal tract breakdown indigestible food,

provide essential nutrients, and, act as a barrier against invading microbes, such

as the enteric pathogen Vibrio cholerae. Over the last decades, our knowledge of

V. cholerae pathogenesis, colonization, and transmission has increased tremendously.

A number of animal models have been used to study how V. cholerae interacts

with host-derived resources to support gastrointestinal colonization. Here, we review

studies on host-microbe interactions and how infection with V. cholerae disrupts these

interactions, with a focus on contributions from the Drosophila melanogaster model.

We will discuss studies that highlight the connections between symbiont, host, and

V. cholerae metabolism; crosstalk between V. cholerae and host microbes; and the

impact of the host immune system on the lethality of V. cholerae infection. These studies

suggest that V. cholerae modulates host immune-metabolic responses in the fly and

improves Vibrio fitness through competition with intestinal microbes.
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INTRODUCTION

Background
A complex set of interactions among host intestinal cells, and gut-resident microbes, impacts
the viability of all participants. For example, commensal microbes consume intestinal nutrients,
and generate metabolites that influence development, growth, metabolism, and immune system
function in the host (1–8). Introduction of microbes with pathogenic potential to the gut lumen,
or rearrangements to the composition or distribution of gut microbial communities, can have
substantial impacts on intestinal homeostasis for the host (9). In particular, shifts in niche
occupancy by gut bacteria, or alterations to metabolic outputs from the gut microbiome, can result
in the development of severe intestinal disease (10–13). For example, Bacteroides thetaiotaomicron,
a common human commensal, cleaves host glycans to produce fucose, a sugar that modulates
the virulence of enterohemorrhagic Escherichia coli (14). Despite the importance of regulated
molecular exchanges among host and microbial cells for host fitness and microbial function, our
knowledge of pathogen-commensal interactions in the context of immune-metabolic regulation
and intestinal disease is still quite limited. To fully understand such complex, multipartite
interactions, it is essential that we deploy all relevant experimental systems at our disposal.

Drosophila melanogaster is a valuable experimental tool for studying host-microbe interactions.
Lab-raised strains of Drosophila associate with a limited number of bacterial taxa (15–17),
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dominated by easily cultivated Acetobacter and Lactobacillus
strains that are accessible to genetic manipulation, and
deployment in large-scale screens. Researchers have access to
simple protocols for the establishment of flies with a defined
intestinal microbiome (18, 19), and there is an abundance
of publicly available lines for the genetic manipulation of
fly intestinal function. Combined, these advantages allowed
researchers to make substantial breakthroughs in understanding
how flies interact with intestinal bacteria (20). Importantly, given
the extent to which genetic regulators of intestinal homeostasis
are conserved between vertebrates and invertebrates (20, 21),
discoveries made with the fly have the potential to illuminate
foundational aspects of host-microbe interactions. However,
there are several key differences to note between flies and
vertebrates that partially limit the utility of the fly model.
Specifically, flies lack lymphocyte-based adaptive defenses, and
the fly microbiome is considerably different to that reported
in vertebrates.

Antimicrobial Defenses in the Fly Intestine
Drosophila integrate physical, chemical, proliferative, and
antibacterial strategies to neutralize intestinal microbes, and
prevent systemic infection of the host (Figure 1) (22, 23). The
chitinous peritrophic matrix lines the midgut, and presents a
physical barrier against bacterial invasion (24), similar to the
mucus lining of the vertebrate intestinal tract. The germline-
encoded immune deficiency (IMD) antibacterial defense
pathway, a signaling pathway similar to the mammalian
Tumor Necrosis Factor pathway (25), detects bacterial
diaminopimelic acid-type peptidoglycan, and acts through
the NF-κB transcription factor family member, Relish, to induce
expression of antimicrobial peptides (26–29). At the same time,
Dual Oxidase (Duox) and NADPH Oxidase (Nox) protect the
host from gut bacteria through the generation of bactericidal
reactive oxygen species (30, 31). Evolutionarily conserved
growth regulatory pathways respond to damage of epithelial
cells by promoting a compensatory growth and differentiation of
intestinal stem cells (ISCs) in infected flies (32–35). This adaptive
repair mechanism maintains the epithelial barrier, and prevents
systemic infection of the host. Combined, these antibacterial
defenses protect the host from infection, and maintain beneficial
relationships between the fly and their gut microbiome.

The Drosophila Microbiome
The fly microbiome is transmitted horizontally through the
deposition of bacteria on the outer surface of freshly laid
embryos, and is maintained through the ingestion of food
contaminated with bacteria (36). Gut bacteria regulateDrosophila
intestinal homeostasis by affecting metabolism, growth, and
immunity in the host. Interactions between the host and gut
microbiota have been extensively covered in several recent
reviews (20, 37–39), and will not be discussed in detail here.
In brief, detailed studies have uncovered roles for symbiotic
Lactobacillus and Acetobacter species in the control of fly
metabolism and growth (40–42). For example, a dehydrogenase
activity in Acetobacter pomorum, produces acetic acid that
regulates insulin signaling, carbohydrate, and lipid levels in the

FIGURE 1 | Schematic representation of the adult Drosophila midgut.

Intestinal bacteria are contained within the lumen by a chitinous peritrophic

matrix (PM). Bacteria diaminopimelic acid-type peptidoglycan activates the

immune deficiency (IMD) pathway in enterocytes (EC), leading to production of

antimicrobial peptides (AMP). In enteroendocrine cells (EE), IMD controls

expression of the metabolism-regulatory hormone Tachykinin (Tk). Epithelial

reactive oxygen species (ROS) generated by NADPH oxidases (NOX) also

contribute to bacterial killing while cues from the bacterial microbiome promote

the growth of intestinal progenitor cells (IPC), composes of intestinal stem cells

(ISC), and enteroblasts (EB).

host (40). In addition to the effects of individual symbionts on
nutrient allocations in the host, interactions among bacterial
communities have significant effects on host metabolism, growth,
and physiology (43–47). Vibrio cholerae (V. cholerae) has
emerged as a particularly useful tool to study interactions
between the host, the intestinal microbiota, and an enteric
pathogen. A pioneering study in 2005 established that flies are
susceptible to oral infection with V. cholerae, dying within a few
day from a diarrheal disease with symptoms similar to cholera in
humans (48). The genetic tractability of the fly and V. cholerae
established this system as a very attractive model to identify
key host and microbial determinants of pathogenesis. In the
following years, a number of studies uncovered complex roles
for metabolism, host immunity, epithelial growth, and microbial
antagonism in the outcome of V. cholerae pathogenesis in the fly.
In this review, we will discuss key findings from these studies,
and outline what they tell us about host-microbe interactions in
general, and V. cholerae-mediated pathogenesis in particular.

Vibrio cholerae: Pandemics and
Pathogenicity
Vibrio cholerae is a curved, Gram-negative member of the
Vibrionaceae family of Proteobacteria (49). It inhabits aquatic
environments, and copepods and chironomids are reported
as natural reservoirs in marine ecosystems (50, 51). Intestinal
colonization by V. cholerae causes the diarrheal disease, cholera,
and is considered a substantial public health threat, especially
in countries with poor sanitation and contaminated water (52).
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The first cholera pandemic emerged in 1817, with an expansion
of cholera beyond the Indian subcontinent (53). Since then,
the world has witnessed an additional six pandemics, with the
seventh pandemic ongoing (54). Models that estimate cholera
burden predict ∼3 million cases of disease per year, resulting in
roughly 100,000 deaths (55).

Vibrio cholerae strains are divided into classical and
non-classical serotypes, with classical ones expressing the O1
antigen on their surface (56, 57). Classical serotypes are further
subdivided into two biotypes—classical and El Tor—that differ
in the expression of a number of markers, such as hemolysins
(58–61). The outbreak of epidemic cholera that spread through
southeast Asia in 1992 is caused by the non-classical strain
of V. cholerae 0139 (62), whereas the ongoing pandemic that
originated in Indonesia in 1961 is caused by the El Tor
biotype (63). El Tor causes a milder cholera disease (64), with
infected individuals frequently remaining asymptomatic early in
infection (65).

Vibrio cholerae encodes several virulence factors that regulate
survival, colonization, and pathogenicity (66–69). Cholera toxin
(CT) is a hexameric adenosine diphosphate-ribosyl transferase
that contains one A subunit surrounded by five B subunits
(70, 71). Upon release into the intestinal lumen via a type
two secretion system (72), the B pentamer of CT interacts
with host GM1 ganglosides (73), permitting toxin endocytosis,
and a subsequent cytosolic release of the A1 subunit (74). A1
ADP-ribosylates the Gs alpha subunit, locking Gαs in an active
state (75). Active Gαs elevates adenylate cyclase activity, greatly
increasing levels of 3′,5′-cyclic AMP, resulting in excess protein
kinase A (PKA) activity (76). PKA stimulates an efflux of chloride
ions through the cystic fibrosis transmembrane conductance
regulator channel (77), leading to an uncontrolled flow of water,
sodium and potassium ions into the intestinal lumen. This
extreme, and rapid, dehydration results in the voluminous rice-
water diarrhea that hallmarks cholera disease (78). In addition
to CT, V. cholerae require the toxin co-regulated pilus virulence
factor for pathogenesis (79). Toxin co-regulated pilus is a type
IV pilus system that mediates colonization of the small intestine
by a self-associate mechanism that supports the formation
of bacterial microcolonies (80). Toxin co-regulated pilus also
serves as the receptor for the CTXϕ bacteriophage. CTXϕ

encodes ctxAB, and converts benign V. cholerae to pathogenic
strains. The ability to synthesize toxin co-regulated pilus
is advantageous for V. cholerae in aquatic environments,
as it improves V. cholerae fitness by facilitating inter-
bacterial interactions during colonization of host chitinaceous
surfaces (81).

Although fluid replacement through oral rehydration
solutions, antibiotic therapy, and vaccines are effective treatment
options for patients with cholera, increased rates of antibiotic
resistance among classical (82) and non-classical (83) strain of
V. cholerae complicate treatment of the disease. Therefore, new
antibacterial strategies that effectively target V. cholerae virulence
factors are critical to contain this deadly disease. Over the last
century, a variety of animal models that include rabbits, mice,
fish, and flies, have been used to study Vibrio-host interactions
and each of these models have added to our understanding

of virulence, host responses to infection, interactions between
Vibrio and host microbes, and cholera vaccine development.

The Rabbit Model
The first animal model to study V. cholerae dates back to
1884 when Nicati and Rietschin inoculated V. cholerae into the
duodenum of guinea pigs, resulting in cholera-like symptoms
(84). Since then, both infant and adult rabbit models of
cholera have been widely used by researchers (85–87). As
adult rabbits are resistant to oral infection with V. cholerae,
the pathogen is typically introduced to the animal by ligated
ileal loop surgery. In this technique, the small intestine of the
rabbit is sealed at two ends, and the pathogen is delivered by
injection into the ligated loop, allowing direct measurement
of intestinal fluid secretion (88). The rabbit model has been
very instructive for understanding V. cholerae distribution in
the small intestine during infection, the importance of the
mucosal barrier to prevent systemic infection of V. cholerae,
and mechanisms of V. cholerae attachment to the intestinal
epithelium (89, 90). As infant rabbits are capable of developing
toxin co-regulated pilus-dependent cholera, they have been
useful to study the reactogenicity associated with developing
live attenuated V. cholerae vaccines as well (91). However,
despite these advances, Vibrio pathogenesis studies using the
rabbit ligated ileal loop model are labor-intensive, and do not
replicate the normal route of infection. An alternative, oro-gastric
infection model with infant rabbits pre-treated with the stomach
acid production inhibitor, Cimetidine, allows oral infection and
provides a valuable adult mammal model that circumvents needs
for surgical interventions (87).

The Mouse Model
The infant or suckling mouse in commonly used to study
V. cholerae pathogenesis (92). In this model, infant mice are
infected via the oro-gastric route. In the infant mouse, the
intestinal microbiome has not fully developed, allowing V.
cholerae to colonize the host with diminished colonization
resistance from commensal microbes. Studies working with
infant mice have uncovered essential virulence factors of
V. cholerae. For example, the toxin co-regulated pilus (93), and
ToxR (69), which regulates toxin co-regulated pilus expression
were originally characterized in the suckling mouse model.
The adult mouse model was also a significant contributor to
understanding the mechanisms of V. cholerae pathogenesis using
accessory toxins such as hemolysin, hemagglutinin/protease,
and multifunctional auto-processing RTX toxin (94). These
observations were important to understand the ability of V.
cholerae to express toxins other than CT to prolong its
colonization in the host without severe diarrheal symptoms.
However, this model comes with some limitations, as suckling
mice do not develop watery diarrhea, and lymphocyte-based
immune defenses are not fully developed in the host (95–97).
Furthermore, as infant mice are separated from their mothers,
they have a limited survival and reduced timeframe for research
performance. Adult mice are less efficient for cholera studies
as they are naturally resistant to V. cholerae colonization (98).
Thus, manipulations such as removal of intestinal microbes
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by antibiotic treatment (99), or infection by ligated ileal loop
surgery (100), are necessary for colonization of adult mice
with V. cholerae.

The Zebrafish Model
V. cholerae is found in the intestinal tract of fish in the
wild, where the bacteria degrades macromolecules ingested
by fish via its chitinase and protease, building a commensal
relationship between fish and V. cholerae (101). Analysis of
cholera patients from an outbreak in 1997 showed that dried
fish consumption was significantly associated with the spread
of disease, implicating fish as potential vector for V. cholerae
(102). Building on associations between fish and V. cholerae
in the wild, the zebrafish, Danio rerio, has recently been
developed recently as a natural host model to study V. cholerae
(103). Importantly, pathogenic strains of V. cholerae cause a
cholera-like disease characterized by host intestinal colonization,
epithelial destruction, diarrhea, and the expulsion of live
pathogens (103). Unlike the adult rabbit model, researchers do
not require surgical interventions prior to infection, and in
contrast to the mouse model, investigators are not restricted to
working with antibiotic-treated juveniles (103, 104). Fish and
humans have similarly complex microbiomes that shift with age
and diet (105), making fish a useful model to study interactions
between commensal bacteria and the invading pathogen (106).
However, it is important to note that fish cannot be raised in
axenic conditions, and it is technically challenging to generate
and maintain fish populations with fully defined microbiota for
sustained periods.

The Drosophila Model
Insects such as chironmids (107) and houseflies (108) are
candidate reservoirs of V. cholerae, and some studies suggest
a correlation between disease transmission and increases in fly
population, during cholera outbreaks, or in areas where the
disease is endemic (109). Given the association ofV. choleraewith
arthropod vectors, researchers tested the utility of Drosophila
as a model to characterize V. cholerae pathogenesis. Drosophila
infections typically involve oral delivery of the pathogen, or
introduction of the pathogen into the body cavity of the fly
through a septic injury (110). In contrast to non-pathogenic
Vibrio strains, injection of V. cholerae into the body cavity
resulted in a rapid death of infected flies, raising the possibility
of using flies as a model to study V. cholerae pathogenesis
(111). In a foundational study from 2005, researchers showed
that continuous feeding of adult flies with V. cholerae caused a
cholera-like disease characterized by loss of weight, and rapid
death that required a functional Gαs in the host (48), establishing
flies as a valuable model to characterize V. cholerae pathogenesis.
However, in contrast to vertebrates, ctx mutants remain lethal
to flies, suggesting CT-independent pathogenic mechanisms
in adult flies. Furthermore, Vibrio polysaccharide-dependent
biofilm formation is important for persistent colonization of
the fly rectum and for V. cholerae-mediated lethality (112),
whereas Vibrio polysaccharides interfere with colonization of the
host intestine (113). Thus, the fly is a useful tool to identify
uncharacterized virulence factors that affect interactions between

V. cholerae and an arthropod host. As studies with this model
progress, it will be interesting to determine how such virulence
factors impact pathogenesis in vertebrate models.

Vibrio cholerae and the IMD Pathway
The IMD pathway modifies expression of host genes that
control processes as diverse as bacterial killing, metabolism, and
intestinal homeostasis (114–121). Mutations in the IMD pathway
are linked with intestinal phenotypes that implicate IMD as a
critical modifier of host-bacteria interactions. For example, IMD
is required to survive enteric infections with entemopathogenic
Pseudomonas entomophila (122). Additionally, IMD pathway
mutants are characterized by changes to the composition of
the intestinal microbiome, modified distribution of live bacteria
throughout the intestine (123), and elevated bacterial loads in
the intestine (17, 123–127). It is tempting to speculate that
IMD controls bacterial populations through the direct release
of antimicrobial peptides into the gut lumen. This hypothesis
is supported by a recent study that confirmed a failure to
contain infectious Gram-negative and fungal pathogens in
flies that lack antimicrobial peptide genes (29). However, we
cannot exclude the possibility that IMD-dependent control of
bacterial populations includes inputs from other processes such
as intestinal metabolism. Consistent with this hypothesis, studies
have revealed links between immune and insulin activity in
several models (128–132), including flies (120, 133–138), and
IMD activity controls expression of the metabolism-regulatory
peptide, Tachykinin, in enteroendocrine cells of the anterior
midgut (117). In addition to metabolic deregulation, IMD
pathway mutants are characterized by accelerated proliferation
of intestinal progenitor cells, intestinal tissue dysplasia, and early
death (34). Many of these phenotypes are reverted by elimination
of the gut microbiome (124), confirming links between IMD, gut
microbial composition, and intestinal health. As flies are highly
amenable to modifications of intestinal gene activity, Drosophila
has emerged as a particularly valuable tools to characterize links
between host epithelial immunity, and V. cholerae pathogenesis.

In flies, reactive oxygen species generation does not appear to
affect V. cholerae pathogenesis (139). In contrast, septic injury
of adult flies with V. cholerae causes elevated expression of
IMD-responsive antimicrobial peptides. Furthermore, induced
expression of antimicrobial peptide genes attenuated V. cholerae
pathogenesis in the septic injury model (111). These observations
suggest that IMD will have protective effects against V. cholerae.
However, characterization of flies challenged with V. cholerae
through the natural, oral route, revealed an unexpected link
between host immunity and pathogenesis. Specifically, although
oral infection promotes the expression of IMD-responsive
antimicrobial peptides in the intestine, IMD pathway mutants
displayed an enhanced survival after oral infection with V.
cholerae (140), indicating that host immune activity contributes
to V. cholerae pathogenesis. Follow-up work showed that
mutations in the IMD pathway have minimal effects on levels
of intestinal V. cholerae (139). Nonetheless, whereas V. cholerae
inhibit ISC growth in wild-type flies, ISC proliferation is
unimpaired in the intestines ofV. cholerae-infected IMDpathway
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mutants (139) suggesting that V. cholerae-dependent activation
of IMD inhibits ISC proliferation, accelerating host death.

Studies of links between host immunity and V. cholerae
pathogenesis uncovered an involvement of the Drosophila
oxidation resistance 1 ortholog, mustard (mtd), in host viability
(139, 141). Mustard is a Lysine Motif domain-bearing protein
with roles in pupal eclosion (142). A gain-of-function mutant,
mtdEY04695, that increases expression of a nuclear localized
mustard isoform, significantly improves the survival duration
of flies infected with V. cholerae (141). Molecular work
showed that mtdEY04695 mutants process the IMD-responsive
NF- κB transcription factor Relish normally, and express most
antimicrobial peptides to wild type levels after infection (139,
141). However, genome-wide transcriptional studies uncovered
broad overlaps between the expression profiles ofmtdEY04695 and
an IMD pathway mutant, including diminished expression of the
diptericin antimicrobial peptide, suggesting interactions between
mustard function and IMD activity. Similar to IMD pathway
mutants, mtdEY04695 flies are capable of progenitor cell growth
after infection, supporting the notion of links between immune
activity, ISC proliferation, and host survival. Looking forward,
it will be interesting to characterize the immune phenotypes of
loss-of-function mutations in themtd locus.

A recent study from our group examined the consequences of
IMD inactivation in defined intestinal cell types for host viability
after infection with V. cholerae (143). We found that inhibition
of IMD in differentiated enterocytes significantly extended the
survival times of infected flies, whereas inhibition of IMD in
the progenitor cell compartment shortened survival times. These
observations suggest that the activity of IMD in enterocytes is
sufficient to enhance V. cholerae pathogenesis. The mechanism
by which immune activity influences V. cholerae pathogenesis
requires clarification. In this context, we note that IMD is
required for the delamination of damaged cells in the intestinal
epithelium (119). As V. cholerae causes extensive damage to the
midgut epithelium (139, 140, 144), we consider it is possible that
V. cholerae kills the host, in part, by activating IMD-dependent
sloughing of the epithelium. In this untested model, excess
delamination effectively disrupts the epithelial barrier, preventing
the transduction of growth cues to progenitor cells, and leading
to systemic infection and host death. However, we cannot
exclude alternative, and potentially non-exclusive mechanistic
links, such as metabolic dysfunction, between immune activity
and host mortality. In particular, there is a considerable amount
of data linking intestinal metabolism to disease progression in
infected flies.

Vibrio cholerae and Host Metabolism
The gut microbiota modifies metabolism in Drosophila, with
implications for host growth and development (40, 42, 145).
For example, symbiotic Ap are a source of thiamine during
development (146). Additionally, Ap-derived acetate stimulates
insulin signaling activity in the fly (40). The Drosophila
insulin response pathway is highly similar to the vertebrate
counterpart (147), and Ap-dependent control of insulin activity
affects key developmental processes such as intestinal growth,
size regulation, and storage of energy (40). Similar to Ap,

symbiotic Lactobacillus plantarum plays an important role in the
regulation of larval growth. In this case, Lp activates intestinal
peptidases, at least partially in an IMD-dependent manner
(148), to promote the uptake of amino acids from the larval
growth medium, thereby activating the Target of Rapamycin
complex, and promoting larval growth (42). When considering
microbial control of host metabolism, it is important to note that
higher-order interactions in a complex community of intestinal
bacteria impact host health and fitness (43). For example,
interactions between symbiotic Acetobacter and Lactobacillus
species influence lipid homeostasis in adult flies (149).

A genetic screen for V. cholerae mutants with impaired
pathogenesis in flies identified the CrbRS two-component system
as a modifier of host killing (150). CrbRS is composed of the CrbS
histidine kinase sensor, and the CrbR response regulator. CrbRS
controls expression of acetyl CoA-synthase (acs1), a bacterial
regulator of acetate consumption. In E. coli, expression of
acs1 activates the acetate switch, whereby bacteria switch from
production to consumption of the short-chain fatty acid, acetate
(151). The acetate switch is conserved inV. cholerae, as mutations
in crbR, crbS, or acs1 prevent consumption of acetate by V.
cholerae in liquid culture (150, 152). These observations suggest
that V. cholerae-dependent virulence may involve consumption
of intestinal acetate by the pathogen. Consistent with that
hypothesis, provision of dietary acetate was sufficient to extend
survival times in flies infected with V. cholerae. Mechanistically,
the authors showed that consumption of intestinal acetate by
wild-type V. cholerae disrupted insulin signaling in the host,
leading to intestinal steatosis and depletion of lipid stores from
the fly fat body, an insect organ with functional similarities to
the vertebrate liver and white adipose tissue (153). Removal of
lipids from the flymedium prevented steatosis, and extended host
viability, confirming a role for lipid homeostasis in V. cholerae
pathogenesis. Interestingly, CrbS is expressed during V. cholerae
infections in mice and humans (154, 155), raising the possibility
that pathogenic consumption of intestinal acetate is a general
virulence strategy of V. cholerae.

Links between metabolism and pathogenesis extend beyond
short-chain fatty acid consumption. For example, mutations of
the V. cholerae glycine cleavage system also attenuate virulence
in the fly model (156). These mutants colonize fly intestines
with equal efficiency as wild-type V. cholerae, indicating that
the phenotype is likely a consequence of an increased ability
of the host to tolerate infection. In line with this hypothesis,
glycine cleavage mutants fail to suppress ISC division, and
do not affect lipid levels in fat tissue or homeostasis. Instead,
glycine cleavage mutants have increased levels of methionine-
sulfoxide in their intestines, and dietary supplementation with
methionine-sulfoxide, or mutation of the host Methionine
sulfoxide reductase A (MsrA) gene extended host viability and
restored lipid homeostasis to flies infected with V. cholerae,
implicating methionine-sulfoxide availability in pathogenesis.

Metabolic regulation is also sensitive to quorum-sensing by
V. cholerae. A recent study showed that quorum sensing in
the El tor C6706 strain minimizes pathogenesis in flies, as
deletion of the quorum-sensingmaster regulator, hapR, increased
pathogenesis (157). HapR suppresses the expression of CT
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(158), and toxin co-regulated pilus virulence factors (159), and
inhibits expression of Vibrio polysaccharide (160, 161), a biofilm
exopolysaccharide that enables colonization of the Drosophila
rectum (112). The elevated pathogenesis observed in 1hapR
strains was not the result of increased biofilm formation. Instead,
the phenotype appears to be the consequence of increased
succinate uptake by 1hapR due to elevated expression of the
Vibrio cholerae INDY succinate transporter. Consistent with this
model, supplementation of the infection medium with succinate
significantly extended survival times of flies infected with1hapR.
Similar to phenotypes associated with methionine-sulfoxide, and
acetate, succinate consumption byV. choleraewas associated with
depletion of lipid stores from the fat body, suggesting a possible
role for inter-organ regulation of lipid homeostasis in the survival
of infection with V. cholerae.

Vibrio cholerae and ISC Growth
Much of the data above describe the phenotypic impacts of
V. cholerae-mediated consumption of intestinal metabolites.
However, it is important to remember that V. cholerae competes
with gut-resident bacteria for attachment to the intestinal niche
(162). Thus, V. cholerae-dependent displacement of intestinal
bacteria can also affect the profile of metabolites available to the
host. For example,V. cholerae encodes a type six secretion system
(T6SS) that delivers an array of toxins to susceptible prokaryotic,
and eukaryotic, prey (163–165). Two studies from our group
implicated the T6SS in Drosophila pathogenesis mediated by
the El Tor strain, C6706. The first study showed that the T6SS
targets symbiotic Acetobacter pasteurianus for killing, and that
the T6SS contributes to host killing (144). T6SS-dependent killing
of the host requires the presence of Ap, and association of
adult flies exclusively with T6SS-refractory Lactobacillus species
is sufficient to extend the viability of C6706-infected hosts. These
data indicate that T6SS-mediated killing of flies proceeds through
an indirect route that requires host association with Acetobacter.

More recently, we showed that the T6SS also affects epithelial
renewal in infected flies. In agreement with previous work
(139), we showed that V. cholerae causes extensive damage
to the midgut epithelium, but fails to activate compensatory
proliferation in basal progenitor cells (166). Removal of the
T6SS diminishes epithelial damage, and restores renewal in
infected midguts. These effects are not the result of direct
interactions between the T6SS and the host epithelium, as
removal of the intestinal microbiome restores renewal capacity
to midguts infected with C6706. Collectively, these data
indicate that the T6SS contributes to V. cholerae-mediated
inhibition of epithelial renewal in a manner that requires a
gut microbiome. In these assays, inhibition of renewal is not
a simple consequence of interactions between V. cholerae and
symbiotic Acetobacter. Instead, inhibition of renewal required
association of infected flies with a tripartite community of gut
bacteria, consisting ofAp, Lactobacillus brevis, and Lp, suggesting
that T6SS-dependent arrest of progenitor growth is the result of
complex interactions between the pathogen and a community
of symbionts. Interestingly, quorum sensing appears to be an
important factor in progenitor renewal. In vertebrates, themaster
quorum sensor regulator, hapR is not expressed at early stages

of infection, where V. cholerae are present in low density. The
absence of HapR allows for production of the toxin coregulated
pilus, and CT, resulting in disease. As V. cholerae numbers
increase, quorum sensing-dependent production of HapR results
in a repression of virulence genes. In our studies, we used a C6706
strain with low hapR expression (167), allowing for expression

FIGURE 2 | Schematic representation of the impact of pathogenic Vibrio
cholerae on metabolism, growth and immunity in the adult Drosophila midgut.

For clarity, we have broken the individual responses into separate panels,

although it is important to note that growth, metabolism and immunity share

regulatory components in vivo. By consuming metabolites such as methionine

sulfoxide (MetO) and acetate, V. cholerae affects lipid homeostasis contributing

to death. At the same time, V. cholerae impairs IPC growth pathways,

although it is unclear how this affects symbiont-dependent growth responses

(indicated with a question mark). Finally, the host IMD pathway contributes to

pathogenesis by impairing IPC growth, and possibly by affecting epithelial

turnover (indicated by a question mark).

Frontiers in Immunology | www.frontiersin.org 6 January 2020 | Volume 10 | Article 3128

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Davoodi and Foley Vibrio cholerae Pathogenesis in Drosophila

of virulence genes in the fly. In contrast, earlier studies with
several C6706 strains that express hapR failed to arrest progenitor
growth, and were not pathogenic to flies (157). Mutation of hapR
in these strains restored pathogenesis, and blocked proliferation.
In total, these studies hint at a sophisticated interplay between
quorum sensing, bacterial competition, and epithelial renewal in
the host. It will be interesting to determine the mechanistic basis
for these interactions in future studies.

CONCLUSION AND FUTURE DIRECTION

In this review, we have discussed the utility of D. melanogaster as
an experimental model to understand V. cholerae pathogenesis.
In the last 15 years, work with the fly uncovered a complex
series of interactions between the invading pathogen, the
intestinal microbiome, and host defense mechanisms (Figure 2).
V. cholerae disrupts lipid metabolism in enterocytes, and
in the fat body, suggesting impacts of the pathogen on
communication between these critical regulators of lipid
homeostasis. Host immune defenses contribute to pathogenesis,

as IMD pathway mutants survive infections longer than their

wild-type counterparts, and display an improved epithelial
renewal response. It will be interesting to determine the
mechanistic links between immune activity and epithelial
renewal, and to determine how changes to lipid metabolism
impact pathogenesis. We also consider it important to
remember that growth, immunity, and metabolism share
numerous regulatory components. The fly is a particularly
valuable model to ask how these evolutionary conserved
pathways interact to orchestrate systemic responses to a global
health threat.
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