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Neutrophils are the most abundant leukocytes in human blood and critical actors of

the immune system. Many neutrophil functions and facets of their activity in vivo were

revealed by studying genetically modified mice or by tracking fluorescent neutrophils

in animals using imaging approaches. Assessing the roles of neutrophils can be

challenging, especially when exact molecular pathways are questioned or disease states

are interrogated that alter normal neutrophil homeostasis. This review discusses the

main in vivo models for the study of neutrophils, their advantages and limitations. The

side-by-side comparison underlines the necessity to carefully choose the right model(s)

to answer a given scientific question, and exhibit caveats that need to be taken into

account when designing experimental procedures. Collectively, this review suggests that

at least two models should be employed to legitimately conclude on neutrophil functions.
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INTRODUCTION

Neutrophils are key players of the immune system. They are the first leukocytes to be recruited
to inflammatory sites (1) and they can contribute to inflammation through several mechanisms.
These include their capacity to engulf and eliminate pathogenic agents or particles through
phagocytosis, an NADPH oxygenase-dependent mechanism with reactive oxygen species synthesis
and antibacterial enzymes mobilization (2). Moreover, neutrophils can also release lipid mediators,
such as PAF or LTB4, thereby facilitating the recruitment of circulating cells (3). Furthermore,
neutrophils can release Neutrophil Extracellular Traps (NETs), which are composed of DNA
decorated with proteins such as cathepsins, histones, neutrophil elastase and myeloperoxidase
(MPO) (4). NETs are sticky weblike structures, which are thought to trap pathogens and toxins,
thereby inactivating them and preventing them from spreading (4, 5).

Mouse models of human diseases have progressively been developed in parallel with techniques
and strategies to deplete neutrophils, to knockout genes for key neutrophil enzymes, and to
visualize these cells in vivo. Traditional models for the study of neutrophils, including models of
depletion or mutant mice, allowed a global comprehension of neutrophil biology. Nevertheless,
these models notably raised questions of specificity, and hence justified the generation of novel
models in recent years (6, 7). Together, these advances rendered mouse models advantageous for
the study neutrophils in health and disease. Here, we summarize and discuss currently available
mouse models for neutrophil depletion and highlight the main models deficient in key neutrophil
enzymes. Moreover, strategies to visualize neutrophils and NETs in vivo are examined.
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INDUCIBLE DEPLETION OF NEUTROPHILS

One commonly used approach to study the role of a given cell
type is to deplete the cell type of interest in vivo in order to
characterize the resulting phenotype. Numerous studies have
used inducible neutrophil depletion strategies, as they enable
to control neutrophil deficiency at different stages of interest.
Furthermore, drugs and depleting antibodies can be used in
virtually all mouse strains, and are thus convenient and versatile
tools for the study of neutrophil biology.

Cyclophosphamide
Cyclophosphamide is a pro-drug that is used in humans as
an antitumor agent (8). The designation “prodrug” is due to
the fact that cyclophosphamide needs to be metabolized by
liver enzymes such as cytochrome P450 for the formation of
alkylating cytotoxic agents (9). Metabolized cyclophosphamide
triggers the formation of DNA crosslinks and lesions (9) that
lead to cell cycle arrest and cell death, thereby limiting the
proliferation of dividing cells (10). This explains its use as
an antitumor drug. Treatment of mice with cyclophosphamide
increases the susceptibility of mice to pathogenic agents
and has been used for the development of mouse models
of infection (11, 12). Indeed, intraperitoneal injection of
cyclophosphamide triggers the death of hematopoietic stem cells
and incapacitates remaining cells preventing their proliferation
and differentiation (13). Neutrophils are rather short-lived cells
(14, 15). Hence, pharmacological depletion of hematopoietic
stem cells is associated with an almost complete disappearance
of blood neutrophils as early as 3–4 days after intraperitoneal or
subcutaneous cyclophosphamide injection (11, 16).

This background explains the choice of this drug to assess the
role of neutrophils in vivo (17–19). Mice are usually treated with
a high dose of cyclophosphamide (150 mg/kg) on day 0 and with
a low dose (100 mg/kg) 3 days later (11, 16, 17, 20). Three to four
days after the last treatment with cyclophosphamide, mice exhibit
a strong neutrophilia with a 3-fold increase of blood neutrophils
compared to untreatedmice (11, 16). Indeed, repetitive injections
are necessary if long-term effects of neutrophil depletion are to be
evaluated (17). A clear advantage of the use of cyclophosphamide
to induce neutropenia in mice is the relatively low price of this
drug, and its capacity to render any mouse strain neutropenic.
However, a major limitation of this approach is the fact
that cyclophosphamide is all but neutrophil specific. Indeed,
cyclophosphamide-treated mice also exhibit markedly reduced
numbers of circulating monocytes, B and T cells (11, 16, 17, 20).
These confounding factors render the interpretation of results
obtained in cyclophosphamide-treated animals challenging. For
example, after treatment with cyclophosphamide, Streptococcus
pneumoniae-infected mice showed a higher number of lung
colony-forming units (CFUs) (21). However, the role of
neutrophils in controlling lung CFU numbers has since come
into question. Marks et al. treated S. pneumoniae-infected mice
with neutrophil depleting antibodies and revealed they had
similar CFUs to mice treated with an isotype control antibody,
a difference that was explained by the lack of specificity of
cyclophosphamide (22). In conclusion, while cyclophosphamide

represents a convenient first tool to predict the role of neutrophils
in vivo, findings obtained using this drug require confirmation
with other approaches to address neutrophil biology.

Vinblastine
Vinblastine is another cytostatic drug (23) that can bind
to tubulin molecules, thereby disrupting the assembly of
microtubules (24) and interfering with cytoskeletal dynamics.
Thus, vinblastine targets dividing cells and leads to mitotic
arrest (25). Treatment of mice with vinblastine induces strong
neutropenia (26, 27). Nevertheless, this drug is rarely used
to study neutrophils in vivo. Overall, vinblastine exhibits the
same disadvantages as cyclophosphamide. It displays a poor
selectivity in blood (as illustrated by a respective 35 and 39%
reduction in blood monocytes and lymphocytes) (26), and
induces cytotoxicity in other cell types such as pancreatic cells
(28) and during spermatogenesis (29). Furthermore, vinblastine
might affect any cellular process involving microtubule assembly,
limiting its use for in vivo experiments.

Depleting Antibodies
Neutrophil depletion can also be induced by the systemic
administration of specific antibodies. As pharmacological drugs,
depleting antibodies are efficient in WTmice and most knockout
mice, which circumvents the necessity to generate mutant mice.

Anti-Gr-1
The monoclonal rat IgG2b antibody RB6-8C5 was originally
reported to specifically bind to neutrophils (30, 31), and
recognize the surface molecule Gr-1. Treatment of mice with
RB6-8C5 anti-Gr-1 antibodies leads to a profound neutropenia
(32–34) that lasts for up to 3–5 days depending on the injected
dose (32, 35). Early reports suggested that RB6-8C5-mediated
depletion was neutrophil-specific and would not affect other cell
types such as monocytes (31, 33). These findings were however
challenged by the findings that mice infected with the helminth
Nippostrongylus brasiliensis also exhibited a severe reduction of
blood eosinophils upon RB6-8C5 injection (36), and that RB6-
8C5 treatment could induce a decrease of blood and spleen
monocytes and memory-type CD8+ T cells (35, 37). A more
precise analysis of Gr-1 revealed that Gr-1 represents a family
of two GPI-anchored proteins, Ly6C, and Ly6G (30). Ly6G
is specifically expressed on the surface of mouse neutrophils
(30), and thus represents a good candidate to selectively target
neutrophils and trigger their depletion in vivo. Ly6C, however,
is mainly expressed on neutrophils and monocytes but also
in macrophages, and subpopulations of CD8+ T cells (38–
41), which could account for the lack of selectivity of RB6-
8C5 antibodies.

Neutrophil depletion by RB6-8C5 was reported to be
unaffected by the treatment of mice with Fc-block (anti-
FcγRII/III antibodies) or in FcRγ-knockout mice (34).
Disruption of complement activation by pre-treatment
with cobra venom factor delayed—but did not prevent—
the RB6-8C5-induced neutrophil depletion (34), suggesting that
neutrophil depletion occurs through complement-dependent
and -independent pathways. The role of complement is not
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likely to be dependent on the membrane attack complex since
neutrophils are not sensitive to membrane attack complex-
induced death (42). However, C3-deficient mice were shown
to exert no depletion upon RB6-8C5 treatment (43), indicating
that opsonization of neutrophils is a prerequisite for their
depletion. Moreover, sterile inflammation in the peritoneum can
be induced by injection of thioglycolate triggering a peritonitis
with a characteristic sequential change in cell population and
cell maturation. Following activation of receptor for Advanced
Glycation Endproducts (44, 45), neutrophils are the first cells
to be recruited to the injection sites followed by monocytes,
which become the main cell population between day 3 and
6 of peritonitis. In this context, pre-treatment of mice with
RB6-8C5 antibodies induced neutrophil apoptosis, suggesting
that other pathways could participate in neutrophil depletion in
thioglycolate-induced inflammatory conditions (46). Injection
of RB6-8C5 antibody in TNF-α pre-treated mice induces death
due to microvessel obstruction and coagulation resulting in
respiratory defects (34, 47). This is thought to be a consequence
of neutrophil activation following binding of RB6-8C5 antibodies
to TNF-α-primed cells (34, 47). These observations further reveal
that RB6-8C5-induced depletion cannot be used in every context
due to potential adverse reactions triggered by the antibody
itself (as observed in TNF-α-primed mice). Other limitations
of RB6-8C5-induced depletion include a side-specific depletion
pattern that needs to be considered when planning experiments.
Indeed RB6-8C5 was reported to be inefficient in the liver (48).
Finally, RB6-8C5 treatment may trigger other side effects, such
as myeloid cell expansion and upregulation of macrophage
markers, probably through STAT-1, 3, and 5 engagement (46).

Despite the now well-described lack of specificity, RB6-8C5
antibodies have been used extensively (alone or in combination
with other approaches) to study the role of neutrophils in
various diseasemodels, includingmodels of infection (35, 49, 50),
arthritis (51, 52), wound repair (53) and anaphylaxis (54).

Anti-Ly6G
The rat IgG2a antibody 1A8 has been described as being
specific for Ly6G (30), and therefore as interacting specifically
with neutrophils (55). Intraperitoneal injection of 1A8 induces
a nearly complete depletion of blood and spleen neutrophils
(35, 55), and an 80% decrease of liver neutrophils (35), while
monocyte counts remain unaffected (35, 55). However, 1A8 is less
efficient than RB6-8C5 antibody for the induction of neutrophil
depletion. Indeed, mice are usually treated with a 2-fold higher
dose of 1A8 than RB6-8C5 (55, 56). Furthermore, 2 days post-
treatment, neutrophil counts rise again in 1A8-treatedmice while
it is not the case in RB6-8C5-treated mice (55). Finally, 1A8
efficiency has recently been questioned, as 1A8-treated 24 weeks
old C57BL/6J mice showed no neutrophil depletion (57). The
same observation was conducted with bone marrow neutrophils
from BALB/c mice (58). To circumvent this low efficacy, it
was recently suggested that combining 1A8 treatment with a
secondary antibody injection could lead to a 90% depletion of
blood neutrophils (57). Nevertheless, this statement needs to be
tempered since the 1A8-induced neutrophil depletion was still
efficient in 9 and 24 weeks old BALB/c and FVB/N mice, and

in 9 weeks old C57BL/6J mice (57). Furthermore, 1A8-induced
neutrophil depletion was also questioned in PbNK65-infected
C57BL/6mice and CFA-challenged BALB/cmice (58) and further
demonstrates the need to verify the depletion efficacy when using
this antibody.

Studies investigating the in vivo mechanism underlying 1A8-
induced depletion described that depletion of macrophages
prior to 1A8-treatment decreases the efficiency of neutrophil
depletion (59), suggesting that macrophages are key effector
cells for neutrophil depletion (59). This was confirmed by
intravital microscopy, revealing that neutrophils opsonized
with fluorescently labeled 1A8 antibody were phagocytized
by macrophages in the spleen, liver and bone marrow (60).
Interestingly, the same group reported that the choice of
fluorochrome had an influence on the depletion efficiency and
suggested that this might be due to differences in the binding of
the labeled antibodies to Ly6G. For instance, 1A8-FITCwasmore
efficient at inducing neutrophil depletion than 1A8-APC (60).

1A8 antibody has been extensively used to study the
contribution of neutrophils in vivo. It was for example used to
show that neutrophils support metastasis formation (61), limit
muscle alteration after intense exercise (62), and participate
in protection against S. pneumoniae (63). Moreover, with the
availability of this more neutrophil-specific antibody, several
studies reassessed the role of neutrophils in vivo. For instance,
in a context of Herpes Simplex Virus type-1 infection, treatment
of mice with RB6-8C5 had resulted in an increased sensitivity
of the mice toward the virus, suggesting a protective role of
neutrophils (64, 65). However, the use of 1A8 antibody to deplete
neutrophils did not alter the virus replication, questioning the
previously described role of neutrophils in anti-viral reactions
(65). Similar results were obtained for bacterial infections with
Listeria monocytogenes. It was previously shown that RB6-8C5-
treated mice failed to control L. monocytogenes infection and
it was concluded that neutrophils played an important role in
defense against this pathogen (49). More recently, it was verified
that RB6-8C5-treated mice did not control L. monocytogenes
infection. However, going further, it was also demonstrated that
1A8-treated mice showed the same L. monocytogenes-induced
mortality as WT mice (66), questioning the requirement of
neutrophils in this context. Using a model for monocyte specific
depletion, it was demonstrated that monocyte-depleted mice
died of infection (66), suggesting that monocytes are the key
players in defense against L. monocytogenes whereas neutrophils
are dispensable. This suggested that the phenotype of RB6-
8C5-treated mice was due to the depletion of monocytes and
not neutrophils.

NIMP-R14 is a second monoclonal antibody reported to
recognize Ly6G (67). NIMP-R14 treatment leads to >95%
depletion of spleen and blood neutrophils (20, 68–70).
Neutrophil counts return to basal levels about 3 days post-
NIMP-R14 injection (69), suggesting that repetitive injections
are needed for long-term experiments (which is also the case
for RB6-8C5 and 1A8). NIMP-R14 antibody has been used to
study neutrophil functions in many disease models, including
glomerulonephritis (71), anti-Helicobacter pylori immunity
(72), autoimmune encephalomyelitis (73), and experimental

Frontiers in Immunology | www.frontiersin.org 3 January 2020 | Volume 10 | Article 3130

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stackowicz et al. Neutrophil Study in vivo

models of anaphylaxis (68, 70). In contrast to 1A8 antibody
driven depletion for which no unwanted side-effects have
been described, several reports described a 2-fold decrease
in blood monocytes and Ly6Chigh spleen monocytes after
NIMP-R14 treatment (68, 70, 74), questioning the specificity of
this antibody.

While high doses of anti-Gr-1 and anti-Ly6G antibodies
induce neutrophil depletion, these antibodies have also been used
at a low dose to bind neutrophils without inducing cell depletion.
This “low dose” strategy was used as a mean to assess the in vivo
role of Ly6G. Injection of 10 µg of RB6-8C5 anti-Gr-1 or 5 µg of
1A8 anti-Ly6G antibodies prevented neutrophils from migrating
toward inflamed tissues in a model of arthritis, suggesting that
Ly6G is a key regulator of neutrophil migration (75). These
findings were, however, challenged by the observation that
RB6-8C5 anti-Gr-1 antibody-covered neutrophils show normal
recruitment to the tissues in a mouse model of Staphylococcus
aureus cellulitis (76). Moreover, Ly6G knockout mice (called
Catchup mice) also showed normal neutrophil migration and
functions inmultiple models of sterile or infections inflammation
(77). The binding of anti-Gr-1 and anti-Ly6G antibodies to
neutrophils in the absence of neutrophil depletion highlights
the necessity to appropriately evaluate the efficacy of their
depletion. This is particularly critical in an inflammatory context,
in which large numbers of neutrophils are released from the
bone marrow. For instance, the TLR4 agonist carrageenan has
extensively been used to induce acute inflammatory reactions,
leading to the recruitment of neutrophils to the injection site
(78). It has been shown that pre-treating mice with RB6-5C8
was sufficient to reduce the number of peritoneal neutrophils
to 99%, even if mice were later intraperitoneally injected with
carrageenan, 36 h after RB6-5C8 treatment (79). Furthermore,
it is to note that neutrophils might be covered by anti-Gr-
1 or anti-Ly6G antibodies, and thus appear as Ly6G negative
cells in flow cytometric analysis. For example, in mice treated
with anti-Ly6G NIMP-R14, bone marrow or lung neutrophils
were not fully depleted but appeared as Ly6G-negative cells
in flow cytometry analysis, due to epitope masking by NIMP-
R14 antibodies (58, 70). As neutrophils are the major side
scatter-high (SSChigh) leukocyte population, we recommend
to verify that treatment with a neutrophil-depleting antibody
induces marked reduction in the number of SSChigh cells.
Ideally, such analysis should be performed in combination
with the use of complementary neutrophil markers to ascertain
neutrophil depletion. These complementary markers include
CD11b, Ly6C, or the 7/4-antigen, independently of the fact that
these molecules are also expressed by other cell types such as
monocytes or macrophages (80, 81). One possible strategy to
identify “Ly-6G masked” neutrophils is to use either of the
additional markers and subsequently exclude non-neutrophils
from the gate by co-staining with other monocyte or lineage
markers such as CD115 or B220 and including information
from the forward vs. side scatter analysis (82). Alternatively,
as anti-Ly6G and anti-Gr-1 antibodies are rat monoclonal
antibodies, depleting antibody-covered neutrophils could be
detected by revelation of the depleting antibodies themselves
using fluorescently-labeled anti-rat IgG. Indeed, two studies

used an anti-rat IgG2b to evaluate RB6-8C5-induced neutrophil
depletion (48, 83).

The pharmacological approaches to deplete neutrophils are
presented in Table 1.

PMNDTR Mice
Diphtheria toxin (DT) is a protein composed of two subunits that
is released by Corynebacterium diphtheriae during infection (84).
The human membrane-anchored form of the heparin-binding
EGF-like growth factor (HB-EGF precursor) acts as the DT
receptor (DTR) (85). Mouse HB-EGF precursor does not bind
efficiently to DT, due to several amino acid exchanges in the HB-
EGF domain that is critical for DT-receptor interactions. As a
consequence, mouse cells show significantly enhanced resistance
to DT-induced death (86).

By introducing the simian DTR into specific mouse cells, it
is possible to render such cell populations sensitive to DT, and
induce depletion of these cells upon DT injection (87). Indeed,
binding of subunit B to the diphtheria toxin receptor (DTR)
on human or monkey target cells induces entry of DT into the
cell through receptor-mediated endocytosis (88). Once in the
prelysosomal vesicles, a drop of pH induces the penetration of
a domain of the DT subunit A through the vesicle membrane,
leading to the release of DT into the cytoplasm (89). There, the
DT subunit A binds to elongation factor 2 and inhibits protein
synthesis and consequently triggers apoptosis (90).

It has been postulated that one molecule of DT can kill a
eukaryotic cell (91), rendering this model of depletion extremely
efficient. This is generally achieved using the “Cre-Lox” system.
First, a loxP-flanked STOP cassette was introduced in the DTR
gene (92) and this construct was inserted into the mouse
locus Gt(ROSA)26Sor. The Rosa 26 is constitutively active and
ubiquitously expressed in mice, which accounts for its success to
drive transgenes and reporter constructs (92, 93). In the presence
of Cre-recombinase, the STOP cassette is removed, allowing
expression of the DTR. In the following, these mice will be
referred to as iDTR mice (92).

One caveat of this method is the requirement of a promoter
that is specific for the cell type of interest, in order to restrict
expression of DTR to that particular cell type. hMRP8-Cre-
ires/GFP mice were used to assess the specificity of the human
MRP8 (hMRP8) promoter (6, 94–97). The transgenic construct
encompasses an internal ribosome entry sites (98) that allows
the concomitant expression of both the recombinase Cre and
GFP under control of the myeloid cell-specific human MRP8
(hMRP8) promoter (94, 99). Using these mice, it was shown
that GFP expression in mainly found in neutrophils (6, 95–97).
However, it is important to note that hMRP8 promoter activity
was also reported in 10–20% into some monocyte/macrophages
populations (6, 97). Residual promoter activity was also initially
noticed in a portion of granulocyte-macrophage progenitors
(GMPs) (95). However, these findings were not confirmed in a
more recent study (6).

Based on these promising findings, iDTR mice were crossed
with hMRP8-Cre mice to generate a new mouse model of
inducible neutrophil depletion [hereafter called PMNDTR mice
(6)]. Indeed, these mice exhibit an almost complete neutrophil
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TABLE 1 | Pharmacological approaches to deplete neutrophils.

Name Targets Main advantages Main limitations References

Drugs Cyclophos-

phamide

DNA � Rapid and efficient

� Depletion can be

performed in any

mouse strain

� Poor specificity

� Needs

repetitive injections

(11, 16, 17)

Vinblastine Tubulin � Rapid and efficient

� Depletion can be

performed in any

mouse strain

� Poor specificity

� Needs

repetitive injections

(26, 27)

Depleting antibodies RB6-8C5 Gr-1 (Ly6G; Ly6C) � Rapid and efficient

� Depletion can be

performed in most

mouse strains

(exceptions include

Ly6G−/− Catchup mice)

� Also affects other

Gr-1 expressing cell

types (monocytes,

eosinophils,

memory-type CD8+

T cells)

� Repetitive injections

needed for

long-term depletion

(32, 34)

1A8 Ly6G � High specificity

� Depletion can be

performed in most

mouse strains

(exceptions include

Ly6G−/− Catchup mice)

� Less efficient than

anti-Gr-1

� Requires high dose

of antibodies

� Repetitive injections

needed for

long-term depletion

(35, 55, 56)

NIMP-R14 Ly6G � Rapid and efficient

� Depletion can be

performed in most

mouse strains

(exceptions include

Ly6G−/− Catchup mice)

� Also affects Ly6Chi

monocytes

� Repetitive injections

needed for

long-term depletion

(68, 69)

depletion in the blood, bone marrow and spleen 24 h after a
single intraperitoneal injection of 500 ng DT (6, 20). These
results were confirmed by another group, which showed that
subcutaneous injection of DT (10 ng/g mouse body weight)
for three consecutive days results in depletion of about 90% of
neutrophils in the blood and lungs (100). DT-injection did not
affect the counts of most of the leukocyte populations tested,
such as blood and spleen eosinophils, basophils, B, and T cells
(6). The same results are obtained with peritoneal lavage fluid
macrophages, mast cells, dendritic cells, B and T cells, and
bone marrow eosinophils, basophils, B cells and GMPs (6).
Neutrophils started to re-appear in the blood 2 days after DT
treatment, reaching normal levels at day 3 (6). This highlights
the fact that repetitive DT injections are required for long-
term neutrophil depletion using PMNDTR mice. Importantly,
neutrophil depletion in PMNDTR mice was also accompanied by
a reduction in blood Ly6Clow and Ly6Chigh monocytes, and in
spleen Ly6Chigh monocytes (6), confirming that some hMRP8-
driven expression occurs in the monocyte lineage. This will have
to be taken into account when interpreting results obtained using
PMNDTR mice.

One major advantage of this model is the possibility to

perform the adoptive transfer of purified WT or mutant

neutrophils into DT-treated PMNDTR mice. This is achievable
due to the fact that non-DTR expressing neutrophils will not
be depleted by the DT treatment. For instance, DT-treated

PMNDTR mice were shown to be more sensitive to LPS-induced
endotoxemia. Whereas, engraftment of these mice with WT
neutrophils restored their resistance (confirming the protective
role of neutrophils in this setting), this was not the case when
transferred neutrophils were MPO-deficient, suggesting that
neutrophil-derived MPO is necessary for the resistance against
LPS (6). Bowers et al. transplanted bone marrow cells from
control (DTR−) or PMNDTR mice into recipient irradiated
mice. One week later, mice were treated daily with DT for
7 days (i.p.), which resulted in a complete depletion of the
granulocyte population (identified as Gr1+CD115− cells) inmice
transplanted with bone marrow cells from PMNDTR mice but not
from DTR− mice (101).

Besides using the hMRP8 promoter to control Cre-
recombinase expression, the latter was also inserted in the
neutrophil-specific ly6G locus (77). These mice were recently
crossed with iDTR mice as a novel model for neutrophil
depletion (57). Unfortunately, upon DT injection, no drop in
blood neutrophil counts was reported (57).

MOUSE MODELS WITH CONSTITUTIVE
NEUTROPENIA

The rapid turnover of neutrophils and the capacity of
the bone marrow to quickly increase neutrophil output in
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response to inflammatory signals in a process called emergency
granulopoiesis (102) limits the use of inducible neutrophil
depletion strategies for the study of long-term and inflammatory
processes. Indeed, this would require repeated injections of DT
or neutrophil-depleting antibodies. For instance, this could lead
to the formation of anti-DT antibodies, lowering the efficiency
of the depletion, as reported in CD11c-DTR mice (103). Several
mouse models with constitutive neutropenia have been described
and could theoretically circumvent these issues. However,
constitutive neutropenia renders mice more susceptible to
infections, and each of the constitutive neutropenic models
presents with its own limitations that will be discussed below.

G-CSFR−/− Mice
A first mouse model with constitutive neutropenia was generated
and described by Liu et al. (104). It is caused by the deletion of
the Granulocyte Colony-Stimulating Factor Receptor (G-CSFR)
gene. G-CSFR−/− mice exhibit 80 and 50% decreased counts of
blood and bone marrow neutrophils, respectively, and residual
bonemarrow neutrophils aremore prone to apoptosis (104). This
model was used to show the pro-inflammatory role of neutrophils
in collagen-induced and antibody-induced arthritis (105, 106),
leading to the proposal of G-CSFR as a new target in human
rheumatoid arthritis (106). Additionally, an immunosuppressive
function of neutrophils was put forward using this model,
characterized by the neutrophil-dependent regulation of antigen-
presentation by dendritic cells in vivo (107). Recently G-
CSFR−/− mice were shown to exhibit abnormally high responses
in distal lymph nodes upon immunization, suggesting that
neutrophils play a role in the restriction of the immune
response to draining lymph nodes after immunization (108).
Overall, however, G-CSFR−/− mice are rarely used, probably
due to the already mentioned residual neutrophils (7, 104)
and the anticipated side effects caused by G-CSFR deficiency.
Indeed, G-CSFR plays a major role in endothelial cell regulation
(109), in the induction of migration and proliferation (110), in
bone regeneration through osteoblast regulation (111) and in
sympathetic nerve neurons signaling (112). Although an effect
of G-CSFR deletion on these processes has not been extensively
described in the literature, G-CSFR−/−mice likely exhibit several
abnormalities that extend beyond their neutropenia.

Cxcr2−/− Mice
Neutrophil release from the bone marrow is tightly regulated
by CXC chemokine receptors, such as CXCR2 and CXCR4.
Whereas, neutrophils are retained in the bone marrow through
constitutive expression of CXCL12 by bone marrow stromal
cells acting on CXCR4, CXCR2 stimulation by Glu-Leu-Arg
(ELR)+ chemokines induces the mobilization of CXCR2+

neutrophils (113). Comprehensively, Cxcr2−/− mice (114)
display a partial neutropenia with 60% decreased neutrophil
counts in the blood compared to WT mice (113). Interestingly,
spleen neutrophil counts are not affected by the deletion,
whereas mature neutrophils in the bone marrow are twice
more numerous in Cxcr2−/− mice than in WT mice (113).
This accumulation is accompanied by a lack of mobilization
of Cxcr2−/− neutrophils to the blood upon G-CSF treatment

(113). Opposing the action of CXCR2, Cxcr4−/− mice and
WT mice treated with the CXCR4 blocking agent AMD3100
exhibit elevated blood neutrophil counts (113, 115). These two
models can thus be used in studies requiring mice presenting
with neutrophilia in the blood, whereas Cxcr2−/− mice can be
used as a model for mild neutropenia. A reduced neutrophil
recruitment in Cxcr2−/− mice was for instance described in
contexts of Dextran Sodium Sulfate-colitis-induced acute kidney
injury (116), Toxoplasma gondii infection (117), autoantibody-
mediated arthritis (118), or posttraumatic neutroinflammation
(119). Nevertheless, this model is rarely used. This is likely
due to the relatively high number of residual neutrophils found
in Cxcr2−/− mice. Furthermore, CXCR2 is also expressed by
monocytes/macrophages, mast cells, endothelial and epithelial
cells (120–122), and the CXCR2 deficiency might thus also
modify the biology of these cell populations. For instance,
Cxcr2−/− mice were shown to exhibit exaggerated inflammatory
response to cutaneous and peritoneal inflammatory stimuli
(123). Using anti-Ly6G antibodies to deplete neutrophils, the
authors suggested that the inflammatory phenotype observed
in Cxcr2−/− mice might be neutrophil-independent, but
depends on accumulation of a non-neutrophilic CXCR2 positive
leukocyte population (123).

Gfi-1-Deficient Mice
In 2002, a new mouse model was generated, in which the Gfi-
1 (Growth factor independence-1) gene was inactivated through
the removal of the exons 2 to 4 and partial removal of exon 5
(124). Gfi-1 had been described 9 years earlier, as encoding a
protein that, if activated by a promoter insertion of proviruses
could abolish the dependency of thymoma cells toward IL-2
(125). Through the analyses of the Gfi-1 gene sequence, it was
predicted that the encoded protein could bind DNA through
the engagement of zinc finger domains, and suggested that this
interaction could lead to a down-regulation of the transcription
of specific genes (125), as verified 3 years later (126). Before
the generation of Gfi-1−/− mice, Gfi-1 was therefore mainly
investigated for its role in T cell differentiation and activation
as well as in lymphomagenesis (125–128), thus restricting its
spectrum of action to lymphoid cells.

However, following a more careful analysis of the Gfi-1
expression, it was first detected in the bone marrow (129) before
it was demonstrated that its expression was not at all restricted
to the lymphoid compartment. Indeed, granulocytes and LPS-
activated macrophages also express the Gfi-1 gene (124).

One year after the first description of a Gfi-1−/− mouse (124),
a second strain was generated, in which the exons 1, 2, and a
part of 3 were deleted, resulting again in mice unable to express
Gfi-1 (130). Not surprisingly, both Gfi-1−/− models develop a
similar phenotype, with high mortality rates, reduced growth and
decreased cell numbers in the thymus (124, 130). One of the most
striking features of Gfi-1−/− mice is the quasi absence of mature
neutrophil numbers in the blood, spleen and bone marrow
(124, 130), highlighting the role of this gene in the differentiation
and/or survival of neutrophils. Furthermore, neutropenia is
accompanied by the appearance of an abnormal cell population,
described as “blastoid monocytic cells” or “atypical myeloid
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cells.” This population exhibits specific characteristics of the
granulocyte lineage as well as of the macrophage lineage (130),
such as ring-shaped nuclei and low expression levels of Gr-
1 and Mac-1 together with high expression of Mac-3 and M-
CSFR (124, 130). Interestingly, these cells are still capable of
phagocytosis and oxidative burst (124, 130). Altogether, these
characteristics indicate that the atypical myeloid cells, which
develop in Gfi-1−/− mice, share features of immature neutrophils
and macrophage precursors (130).

Adding to the two Gfi-1−/− mouse strains, another model of
Gfi-1 deficiency was developed using the Cre-Lox system (131).
Exons 4 and 5 of the Gfi-1 gene were flanked by two LoxP sites
and Gfi-1fl/fl mice were crossed with EIIa-Cre transgenic mice,
to induce a constitutive deletion of Gfi-1 from the early embryo
stage (132). Consistently with the two previous models, these Gfi-
1−/− mice exhibit abnormal features such as small body size and
a high percentage of atypical myeloid cells (131). Using the CD4-
promoter, this model enabled the restriction of the mutation to
CD4-T cells, and thus, the assessment of the specific function of
Gfi-1 in T-cells (131, 133).

Finally, a knock-in mouse model was generated in which
the Gfi-1 gene was replaced by the gene encoding GFP (which
they called Gfi-1GFP/GFP mice) (134). This strain enabled the
study of the expression and roles of Gfi-1 during T and B-cell
differentiation and activation. Overall, Gfi-1GFP/GFP mice display
the same phenotype as Gfi-1−/−, including reduced growth and
profound neutropenia (134, 135).

The constitutive neutropenia in Gfi-1-deficient mice can, to
a certain extent and for a short period of time, be compensated
by the adoptive transfer of neutrophils or their precursors. This
approach has been used to study the role of neutrophils in
the K/BxN model of antibody-mediated arthritis (136). Gfi-
1−/− mice were resistant to the development of arthritis in
this model. Arthritis could, however, be restored, following sub-
lethal irradiation and engraftment withWT bone marrow cells (a
process which resulted in the production of mature neutrophils
within 2 weeks) before the transfer of K/BxN serum. By contrast,
arthritis was not restored upon adoptive transfer of bone marrow
cells from C5aR-, CD11a-, or FcRγ-deficient mice, suggesting
that expression of these molecules on neutrophils is required for
the development of arthritis in this model (136).

Although Gfi-1-deficient mice are useful tools to assess
the role of neutrophils in vivo, many additional phenotypical
abnormalities due to the lack of Gfi-1 expression have to be
taken into account when interpreting findings obtained with
these mice. First, disrupting neutrophil differentiation leads to
the appearance of an abnormal myeloid cell population, which is
still capable of inducing inflammation and can act as effector cells
(124, 130). Moreover, Gfi-1−/− mice present with thymus aplasia
(124, 130, 134), abnormal differentiation of dendritic cells (137),
iNKT cells (138) and T-cells (124, 130, 134), aberrant production
of IL-2, TNF, IL-10, and IL-1b (124, 133), development of eye
inflammation and the presence of abscesses (124, 130). Gfi-1
was later shown to be also expressed in developing inner ear,
retina, brain and dorsal root ganglia (139, 140). In accordance
with these reports, Gfi-1 deficiency results in a complete loss of
hair cells by apoptosis before birth as well as in a severe loss
of spiral ganglion neurons that is visible 5 months after birth

(140). This causes behavior defects as Gfi-1 mutant mice are
ataxic, do not respond to noise, circle, and develop head tilt (140).
Most importantly, Gfi-1 mutant mice exhibit delayed growth and
higher mortality; these features are undoubtedly a limiting factor
for long-term studies (124, 130). They are significantly restored
when Gfi-1−/− mice are kept in SPF conditions (141). Along this
line, the generation of Gfi-1fl/fl mice (133) provides a great tool
for the restriction of the mutation to neutrophils and limitation
of negative side effects. It was, however, reported that 10–20%
of Gfi-1fl/fl mice exhibited features of Gfi-1−/− mice, such as
reduced body size, even though no Cre was expressed (133).

Genista Mice
An additional mouse strain was generated and was named
“Genista” mice. In these mice, Gfi-1 activity is impaired due to
a point mutation in one of the zinc finger domains following
N-ethyl-N-nitrosourea-induced random mutagenesis (142, 143).
The C318Y point mutation in the third zinc finger domain in
the Gfi-1 gene does not affect Gfi-1 expression but is likely to
affect the interaction of Gfi-1 with DNA. Strikingly, it leads to
the generation of highly neutropenic mice but did not result in
delayed growth or increasedmortality, even in conventional non-
SPF conditions (142, 143). Furthermore, although the authors
reported reduced cell numbers in the thymus of Genista mice,
and reduced B cell precursors, these mice exhibited normal T
and B cell differentiation and function (142). Thus, this model
of neutropenia exhibits less phenotypic abnormalities than Gfi-
1−/− mice (142, 143).

Nevertheless, NK cells from Genista mice have been shown
to exhibit impaired responsiveness in vivo and in vitro (143).
Indeed, neutrophils are thought to be central actors for the
differentiation and activation of NK cells (143, 144) and
their absence leads to impaired maturation and function of
NK cells (143). Furthermore, it has also been shown that in
Genista mice, interfering with neutrophil differentiation leads
to the appearance of abnormal CD11b+/Ly-6Gint myeloid cells.
Interestingly, this population appears to be arrested right after
the metamyelocytic stage (142) and thus, in a more mature
stage than in Gfi-1−/− mice (124, 130). Mature neutrophils
are thought to be necessary for autoantibody-induced arthritis
(136, 145), and immune complex-mediated alveolitis (146).
Surprisingly, and different to results obtained in Gfi-1−/− mice,
Genista mice still developed significant inflammation in these
two models, albeit at reduced levels when compared to WT mice
(142). This suggests that residual CD11b+/Ly-6Gint cells even
though not fully mature are capable of sustaining inflammatory
processes, and thus, question the use of Genista mice for in vivo
studies of neutrophil functions. Intriguingly, however, Genista
mice failed to provide resistance to acute bacterial infection
(142), implying that neutrophil features acquired after the
metamyelocytic stage are required for these effector functions.
Consecutively, Genista mice have been used to study neutrophil
functions in different models, for example in host defense against
certain pathogens (67, 147, 148).

LysM-Cre Mcl-1fl/fl

Myeloid cell leukemia-1 (Mcl-1) belongs to the anti-apoptotic
Bcl-2 family. It is expressed by neutrophils and plays a role
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in delaying apoptosis, especially when neutrophils are activated
(149, 150). Neutrophils rely on Mcl-1 for survival (151), as
it represents the only member of the Bcl-2 family expressed
by neutrophils (149). Using the Mcl-1fl/fl mice expressing Cre
under the LysM promoter (152), Dzhagalov et al. deleted Mcl-
1 in neutrophils and macrophages (153). LysM-Cre Mcl-1fl/fl

mice exhibited a 3-fold decrease in blood neutrophils and a
high percentage of apoptotic neutrophils as compared to WT
mice, whereas the phenotype of macrophages did not seem to
be affected (153). Residual neutrophils still expressed Mcl-1 and
thus, had escaped Cre-mediated gene deletion, which represents a
potential limitation for the use of LysM-Cre Mcl-1fl/fl mice (153).

A few years later, LysMCre/Cre Mcl-1fl/fl mice that are
homozygous for the Cre gene were described (7), as opposed
to the previously described LysM-Cre Mcl-1fl/fl mice (153). This
bi-allelic expression of the Cre-recombinase resulted in severely
neutropenic mice with a reduction of over 93% in the spleen and
bone marrow, and a 98% reduction of circulating neutrophils
in homeostatic conditions (7), and which remained neutropenic
even upon thioglycolate-induced peritonitis (7). None of
the other cell populations assessed—circulating monocytes,
eosinophils, B and T cells, bone marrow dendritic cells and
macrophages, splenic dendritic cells, T and B cells—seems to be
affected by this mutation, with the exception of a decrease in
bone marrow B cells and an increase in splenic macrophages
(7). LysMCre/Cre Mcl-1fl/fl mice can breed as homozygous but
display higher mortality rates and reduced offspring numbers
in SPF and non-SPF conditions (7). LysMCre/Cre Mcl-1fl/fl

mice were used to emphasize the fact that neutrophils are
necessary for the sensitization and elicitation phases of 2,4,6-
trinitrochlorobenzene-induced contact hypersensitivity (154),
and were, as expected, protected against K/BxN serum-transfer
arthritis and anti-CVII antibody–induced dermatitis, while
displaying an increased susceptibility to infection with S. aureus
andC. albicans (7).When interpreting results obtained with these
mice, one should bear in mind that these mice are also knockout
for Lysozyme M in all cells.

MRP8-Cre Mcl-1fl/fl

The same authors also crossed Mcl-1fl/fl mice with mice
expressing Cre under the control hMRP8 promoter (7). Indeed,
MRP8-CreMcl-1fl/fl mice showed severe neutropenia (with more
than 99% reduction in circulating neutrophils as compared to
WT mice, whereas blood monocytes, eosinophils, T and B cells
were not affected by the mutation (7). Unfortunately, this severe
neutropenia was accompanied by high mortality (only 30%
survival at 1 year of age) and poor breeding productivity (7),
hampering the use of these mice for in vivo studies.

Foxo3a:Foxo3a-Deficient Mice
The forkhead class O (FOXO) subfamily of transcription
factors are key in regulating the apoptosis, proliferation and
control of oxidative stress in immune cells (155). Foxo3a is
the main FOXO member expressed in lymphoid organs, and
Foxo3a−/− mice (156) were shown to exhibit exaggerated
lymphoproliferation and inflammatory reactions in various
organs (156). This phenotype was accompanied with the presence

of over-activated T helper cells releasing high amounts of Th1
and Th2 cytokines (156). It was further shown that Foxo3a
was an inhibitor of the NF-κB pathway, and that its absence
unleashed pro-inflammatory gene signature in Foxo3a−/− mice
(156). With respect to its action in neutrophils, it was shown
that Foxo3a−/− mice were resistant to neutrophil-dependent
inflammatory reactions, such as immune complex-mediated
arthritis, or thioglycollate-induced peritonitis (157). Indeed,
Foxo3a-deficient neutrophils were more susceptible to Fas
ligand-induced apoptosis (157) which engendered an incapacity
of neutrophils to persist in inflamed tissues and subsequently
a neutropenia (157). This suggests Foxo3a−/− mice could be
used as a model to assess the function of neutrophils during
inflammation, although the inflammatory state of these mice
as well as the high numbers of apoptotic neutrophils could be
limitations to the use of these mice.

The characteristics of genetic models of inducible and
constitutive neutropenia are presented in Table 2.

KNOCKOUT OF KEY NEUTROPHIL
MEDIATORS

Neutrophils exert a multitude of mechanisms of action that
are based on different key enzymes. Knockout models of these
enzymes have been developed in the last decades and allowed the
study of their precise roles. The main models are summarized in
Table 3, as well as their limitations that need to be kept in mind
when using these mice.

First, one has to bear in mind the abnormalities that can
be induced by the knockout itself. For instance, knockout
of the iron-binding protein lactoferrin (an enzyme produced
by neutrophils and which has anti-microbial as well as anti-
inflammatory properties) leads to a 6% decrease in circulating
lymphocyte counts, but to an increase in circulating neutrophil
and eosinophil numbers (of respectively 46 and 89%) (177).
This could lead to phenotypic particularities that are not directly
linked to a role of lactoferrin.

Neutrophil enzymes are often closely related and can exhibit
redundant roles, which can limit the use of mice deficient for
only one of these enzymes. For instance, neutrophil elastase (NE),
cathepsin G and proteinase 3 are 3 serine proteases (180). Double
mutants have therefore recently been developed to demonstrate
the roles of NE and cathepsin G in the endotoxic shock cascade
(181) and in lung defense against S. pneumoniae (182), and of
NE and proteinase 3 in immune complex-induced neutrophil
activation (183).

In addition, neutrophil enzymes are generally not restricted
to neutrophils but are also expressed by other cell populations.
This suggests that the exclusive use of enzyme-knockout models
might lead to an over-estimation of the roles of neutrophils.
For instance, MPO is also expressed by monocytes, macrophages
and peritoneal B lymphocytes (184); and Cathepsin G by splenic
dendritic cells and microglia (185). Furthermore, in addition
to its role in NETosis, protein arginine deiminase 4 (PAD4)
is implicated in macrophage extracellular trap release (186).
To circumvent these difficulties, a conditional model of PAD4

Frontiers in Immunology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 3130

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stackowicz et al. Neutrophil Study in vivo

TABLE 2 | Characteristics of genetic models of inducible and constitutive neutropenia.

Mice Neutrophil numbers Advantages Potential limitations References

Inducible PMNDTR

(hMRP8-Cre

iDTRfl)

� Marked reduction (>90%)

in blood, spleen, bone

marrow and lung

neutrophils upon

DT injection

� Normal number of neutrophils until

injection of DT

� Neutrophil population can be

restored in DT-treated PMNDTR

mice upon adoptive transfer of

DTR− neutrophils

� DT injection reduces levels of blood and

spleen monocytes

� Depletion is transient and needs

repetitive injections for long-term

experiments

� Possible off-target or other side effects

of repeated treatment with DT

(6)

Constitutive CXCR2−/−
� Reduction of 60% of

blood neutrophils

� No reduction of spleen

neutrophils and higher

counts of bone marrow

mature neutrophils

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� High numbers of residual neutrophils

� Also expressed by other cell populations

(such as monocytes/macrophages,

mast cells, endothelial and epithelial

cells)

� Side effects caused by CXCR2

deficiency such as

neutrophil-independent exaggeration of

inflammatory reactions

(113)

G-CSFR−/−
� Reduction of 80 and 50%

of blood and bone

marrow neutrophils

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� High numbers of residual neutrophils

� Side effects caused by G-CSFR

deficiency

� Potential appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

(104)

Gfi-1−/−
� Quasi absence of mature

neutrophil numbers in the

blood, spleen and

bone marrow

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� Emergence of an abnormal myeloid cell

population that can induce inflammation

reactions

� Thymus aplasia

� Abnormal differentiation of immune cell

populations (such as dendritic cells,

iNKT cells and T-cells)

� Potential appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

� Aberrant production of cytokines

� Manifestation of eye inflammation and

abscesses

� Behavior abnormalities (ataxia, no

response to noise and head tilt)

� Delayed growth and high mortality

(124, 130)

Ella-Cre

Gfi-1fl/fl
� NA � Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� Gfi-1fl/fl mice could be used to

restrict the mutation to neutrophils

� Emergence of an abnormal myeloid cell

population that can induce inflammation

reactions

� Delayed growth and high mortality of

Ella-Cre+; Gfi-1fl/fl mice

� 10–20% of Gfi-1fl/fl mice exhibited

features of Gfi-1−/− mice, such as

reduced body size, even with no Cre

expression

� Thymus aplasia

� Potential appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

(131, 133)

Gfi-1GFP/GFP
� Quasi absence of mature

neutrophil numbers in the

blood and bone marrow

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� Gfi-1 expressing cells are GFP+

and allow the study of Gfi-1

expressing cells

� Emergence of an abnormal myeloid cell

population that is capable of inducing

inflammation reactions

� Thymus aplasia

� Abnormal differentiation of immune cell

populations (such as T-cells)

� Potential appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

� Delayed growth and high mortality

(134, 135)

(Continued)
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TABLE 2 | Continued

Mice Neutrophil numbers Advantages Potential limitations References

Genista

(Gfi-1C318Y )

� Marked reduction (around

90%) in blood neutrophils

� Normal growth and mortality, even

in conventional non-SPF

conditions

� Normal T and B cell differentiation

and function

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� Impaired responsiveness of NK cells

� Emergence of abnormal

CD11b+/Ly-6Gint myeloid cells capable

of sustaining inflammatory processes

� Thymus aplasia

� Potential appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

(142, 143)

LysM-Cre

Mcl-1fl/fl
� 3-fold decrease in

circulating neutrophils

� High percentage of

apoptotic neutrophils

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� High numbers of residual neutrophils

escaping deletion

� Knock-out of Lysozyme M

� Appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

(153)

LysMCre/Cre-

Mcl-1fl/fl
� Marked reduction of

neutrophil counts in the

blood (98%), spleen and

bone marrow (>93%).

� Most of the other immune cell

populations seem unaffected by

the mutation

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� Decrease in bone marrow B cells and

increase in splenic macrophages

� Higher mortality rate and reduced

offspring numbers in SPF and non-SPF

conditions

� Knock-out of Lysozyme M

� Potential appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

(7)

hMRP8-Cre

Mcl-1fl/fl
� Marked reduction (>99%)

in blood neutrophil counts

� Other immune cell populations

seem unaffected by the mutation

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� High mortality (only 30% survival at 1

year of age)

� Low breeding productivity

� Appearance of compensatory

mechanisms due to constitutive

neutrophil deficiency

(7)

Foxo3a −/−
� 50% reduction of

circulating neutrophils

� Neutrophil population can be

restored upon adoptive transfer of

WT neutrophils

� Depletion effective from birth and

does not require any treatment

� High numbers of apoptotic neutrophils

� Exaggerated lymphoproliferation and

more prone to inflammation reactions

� Overactivated T-helper cells

(157)

knockout has been developed by flanking the PAD4 gene with
loxP sequences (167). Using the neutrophil-specific promoter
MRP8 (95), MRP8-Cre PAD4fl/fl have been generated to restrict
PAD4 deletion to neutrophils, and to demonstrate that NETs
can facilitate the formation of premetastatic niches in a context
of ovarian cancer (187). This approach could in principle be
adapted to all neutrophil key enzymes for the generation of
neutrophil-restricted knockouts, to facilitate the analysis of the
real contribution of neutrophils in vivo.

Finally, it is noteworthy that a new mouse model has

recently been generated in which the caspase recruitment
domain-containing protein 9 (CARD9) is selectively knockout
in neutrophils (Mrp8-Cre+ Card9flox/flox) (188). Mice carrying
this mutation do not develop autoimmune syndromes
such as autoantibody-induced arthritis or skin blistering
(188), due to a lack of chemokine/cytokine release from
CARD9-defient neutrophils through Src-family kinases,
Syk, PLCγ2, Bcl10/Malt1, and NFκB (188). This model
provides therefore a possibility to investigate the functions of
neutrophil-released chemokine/cytokine in diverse physiological
and pathological settings.

IN VIVO TRACKING OF NEUTROPHILS

Tracking neutrophils temporally and spatially, or assessing their
activity can be informative when studying these cells in vivo.
Indeed, it gives clear evidence of their dynamics, and it may help
to dissect the cellular and molecular pathways implicated in their
release from the bone marrow as well as in their recruitment to
sites of inflammation.

Assays Using in vitro Imaging System (IVIS)
Luminol is a chemical molecule that can directly be oxidized by
HOCl produced by myeloperoxidase (MPO), or by MPO using
other reactive oxygen species (ROS) (189). Oxidized luminol
emits photons and can therefore be used as a mean to reveal
the presence of active MPO (190). Using a in vivo imaging
system (IVIS), it has been shown that systemic treatment of
mice with luminol lead to the formation of a bioluminescent
signal in tissues infiltrated by activated neutrophils in contexts
of acute dermatitis, and arthritis (190, 191). No signal was
generated in inflamed tissues of MPO−/− mice, even if these
mice showed the infiltration of activated eosinophils (190). This
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TABLE 3 | Characteristics of models of knockouts of neutrophil key enzymes.

Mutant Gene name Phenotype or limitations References Pharmacological

inhibitor

MPO−/− Myeloperoxidase � Increased ROS production by neutrophils

� Impaired PMA-induced NETosis

� Normal neutrophil counts in diverse tissues

tested

� Expressed by other cell types (such as

monocytes, macrophages, peritoneal

B lymphocytes)

(158–162) 4-Aminobenzoichydrazide

NE−/− Elane � Impaired neutrophil functions (NETosis,

pro-inflammatory cytokines release,

phagocytosis and transmigration)

� Normal circulating leukocyte counts

(159, 163–

165)

Sivelestat

Cathepsin G−/− Cathepsin G � Decreased production of mast cell protease-2.

� Normal hematopoietic population counts in

diverse tissues tested

� Expressed by other cell types (such as splenic

dendritic cells and microglia).

(166) β-keto-phosphonic acid

PAD4−/− Protein

arginine

deiminase 4

� Increased bone marrow hematopoietic

multipotent progenitor numbers

� Normal neutrophil morphology and differentiation

� Normal circulating neutrophil counts

� Expressed by other cell types (such as circulating

eosinophils and monocytes)

� Impaired NETosis

(167–170) Cl-Amidine

Ncf1*/* Neutrophil

cytosolic

factor 1

� Development of spontaneous chronic severe

arthritis postpartum

� Impaired ROS production by neutrophils and

macrophages

� Disrupted T cell functions

� Impaired NETosis

(171–175)

Proteinase 3−/− Proteinase 3 � Increased bone marrow hematopoietic stem

progenitor numbers

(176)

Lactoferrin−/− Lactoferrin � Normal neutrophil morphology and differentiation

� Normal neutrophil functions (phagocytosis,

granule mobilization) although defects in

PMA-induced oxidative burst

� Decrease in circulating lymphocyte counts but

increase in circulating neutrophil and eosinophil

numbers

� Also expressed in monocytes, macrophages and

subpopulations of dendritic cells

(177–179)

suggests that eosinophil peroxidase failed to induce a luminescent
signal and further shows that luminol-induced signal is specific
to MPO. Luminol has extensively been used as a mean to
demonstrate the occurrence of inflammation reactions as well
as the infiltration of neutrophils in tissues, for instance during
anaphylaxis reaction (191), tumorigenesis (192) or acute and
chronic intestinal inflammation (193). One caveat of luminol-
based assays is the fact that neutrophils are not the exclusive
producers of MPO, since this enzyme is also produced by
monocytes/macrophages (184).

Other fluorescent probes have been developed following the

same model, such as the Neutrophil Elastase 680 FAST imaging

agent, allowing the imaging of NE activity in mice (194), as

shown in a context of occurrence of colorectal cancer (195).
Finally, probes binding specifically to neutrophil membrane have
been generated, such as the cFIFIF-PEG-Cy7 that interacts with

neutrophil formyl peptide receptor (196). This probe was for
example validated in a context of ear inflammation (196).

Neutrophil Tracking Using Intravital
Microscopy
The development of imaging technologies such as intravital
two- and multi-photon microscopy gave rise to the development
of new strategies to track neutrophils in vivo. Indeed, these
technologies allow the live imaging of neutrophils deep in
the tissues.

First, in vivo tracking of neutrophils can be performed
using adoptive transfers of pre-stained neutrophils. This can be
performed by isolating neutrophils from the bone marrow of
donor mice, and staining these cells with a fluorescent dye such
as CarboxyFluorescein Succinimidyl Ester [CFSE, that is cell
permeable and binds to covalently to intracellular proteins (197)]

Frontiers in Immunology | www.frontiersin.org 11 January 2020 | Volume 10 | Article 3130

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stackowicz et al. Neutrophil Study in vivo

prior to transfer of the cells into recipient mice (198). Although
this requires a heavy experimental procedure, it allows the use of
mutant donor mice to target the molecular pathways implicated
in the process of interest. This strategy was for instance employed
to show that expression of the receptor IL-1R on the surface of
neutrophils does not play a major role in the recruitment of these
cells in inflamed tissues in a context of Staphyloccocus aureus
infection (198).

Furthermore, labeled antibodies can be systemically injected
to stain neutrophils in vivo. Indeed, It has been shown that
low doses of anti-Ly6G antibodies do not interfere with
neutrophil biology (76). No difference was thereby shown in
the lung trafficking of red blood cells and neutrophils in a
mouse model of Sickle cell disease when compared with WT
mice (199).

To circumvent the need to treat mice with antibodies, it
is possible to use or generate new strains of mice expressing
reporter genes in neutrophils. For instance, LysM-EGFP mice
were generated by inserting the GFP gene into the lysozyme M
locus (152). In these mice, GFP+ cells are mainly neutrophils and
monocytes/macrophages (152). LysM-EGFP mice were used to
track neutrophils in vivo using two-photon intravital microscopy
to show for instance that neutrophils do not directly interact
with mycobacteria in the liver of infected mice (200). LysM
promoter is also active in monocytes and macrophages (152)
neurons (201) and alveolar type II cells in the lungs (202). This
lack of cell specificity could thus potentially limit the use of
LysM-EGFP mice for the imaging of neutrophils. One strategy
to bypass this has been to deplete monocytes and macrophages
by treating LysM-EGFP mice with clodronate liposomes to
visualize the recruitment of neutrophils in atherosclerotic lesions
(203). Nevertheless, the side effects of the clodronate liposome
treatment need to be taken into account when analyzing the data.
Another strategy could be to target a more selective promoter,
such as the neutrophil-related protein Ly6G (30).

Catchup mice were generated by replacing the first exon
of Ly6g by the “Cre-tom” sequence corresponding to the
sequences of the Cre recombinase and the fluorescent molecule
tdTomato (77). Homozygous mice exhibit endogeneous
staining of neutrophils in red, but are Ly6g deficient. To
increase the levels of the tdTomato reporter gene expression
and to restore the expression of Ly6G, Catchup mice were
crossed with mice expressing the fluorescent molecule
tdTomato under control of the Cre-dependent promoter in
the ubiquitous ROSA26 locus (204). These Ly6g(Cre-tom;
wt) ROSA26(tom; wt) mice were called CatchupIVM−red

mice. These mice express high levels of tdTomato in 80–
90% of bone marrow, blood and spleen neutrophils, while
red fluorescence appears to be restricted to neutrophils.
Nevertheless, it is to note that CatchupIVM−red neutrophils
express slightly decreased levels of Ly6G when compared
to WT neutrophils (77). Neutrophils from CatchupIVM−red

mice function normally in vitro and in vivo, they exhibit the
same morphology as WT neutrophils and are easy to track,
being endogenously stained in red. Using intravital two-
photon microscopy, it was possible to show that neutrophils
from CatchupIVM−red mice lacking FcγRIV exhibit impaired

recruitment to inflamed tissues in a context of experimental
epidermolysis bullosa.

MRP8-Cre mice express the Cre recombinase followed by an
IRES-GFP reporter gene. This allows detection of GFP at low
levels in neutrophils by flow cytometry (6, 95). However, GFP
expression is likely too low to permit detection of neutrophils
by microscopy using MRP8-Cre mice. However, MRP8-Cre mice
were crossed with mice expressing a Cre-inducible YFP gene
under the control of the ROSA26 locus. This lead to high levels
of YFP expression in ∼ 80% bone marrow, blood and spleen
neutrophils (6, 97). However, YFP expression was also reported
in 10–20% of some monocyte and macrophages populations in
MRP8-Cre YFPfl mice (97), which limits the use of these mice for
imaging approaches.

IN VIVO CHARACTERIZATION OF NETs

NETosis is an innate immune mechanism that involves the
release of DNA decorated with histones and granule enzymes
upon neutrophil activation (205). Since their first description
in 2004 (4), NETs have extensively been studied and their
contribution to human diseases has been suggested in many
different settings. These include atherosclerosis (206), cancer
metastasis (61), or thrombosis and allergic conditions (207–209).

Despite their reported multiple involvements, characterizing
NETs in vivo remains challenging. Neutrophils (and other cells)
can release DNA through multiple processes, including necrosis,
and it is often difficult to stain DNA in-depth within the
tissues and combine this staining with appropriate markers to
distinguish NETs from other forms of tissular DNA. Methods to
study NETosis have been reviewed elsewhere (210) and will only
be briefly discussed here.

The occurrence of NETosis in vivo is often shown using
fluorescent dyes revealing the colocalization of neutrophils (211),
extracellular DNA [using non-permeable DNA intercalating
agents such as Sytox Green (212), Sytox Orange (213–215)
or propidium iodide (PI) (213–215)], and NET-associated
molecules [i.e., NE, MPO or citrullinated histones (213–215)].
Images are then acquired by use of intravital microscopy [two-
photon (206, 211, 215), multiphoton (214), or spinning disk
(212, 213)]. 3D reconstructions of NETting neutrophils can even
be performed to assess the morphological changes happening
during NETosis (213).

CONCLUDING REMARKS

The use of mouse models for the study of neutrophils in vivo
represents a milestone in the understanding of the biology of
these cells, and has enabled the deep interrogation of a number
of pathways leading to diverse pathologies. For instance, DNase
I, that digests the DNA backbone of NETs, has been approved
as a therapeutic drug to treat Cystic Fibrosis after the discovery
that NETs play a pivotal role in the disease (216). Whereas,
early neutrophil depletion approaches often resulted in a more
generalized deficiency of hematopoietic cells, recent advances in
our understanding of neutrophil biology lead to the generation
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of more specific ways of depleting neutrophils. Nevertheless, the
selectivity, specificity and the side effects of each of the different
strategies need to be carefully evaluated, before concluding on
neutrophil functions. The use of at least two different models
seems indeed to be recommended to undoubtedly define the
roles of neutrophils. Furthermore, the use of mutant mice helps
to decipher the molecular pathways of interest. The expression
of neutrophil key enzymes is often shared with other cell
populations and the Cre-lox system will at term allow the
generation of a library of mice exhibiting a deficiency of key
enzymes specifically in neutrophils.

Although visualization of neutrophil activity using IVIS is an
easy tool to assess the contribution of neutrophils in vivo, recent
advances in intravital microscopy allow more precise tracking
of neutrophils in vivo. These imaging approaches permit the
observation of the behavior of the neutrophils, their interactions
with other cell populations, and may finally help to answer some
debated aspects of neutrophil biology. However, the analysis of
deep organs still remains challenging.

Today, in vivo tracking of NETosis clearly remains one of
the most challenging tasks. While it is relatively straightforward
to visualize neutrophils and extracellular DNA, this co-staining
is not sufficient to provide convincing proof of NETs. Indeed
evidence for the presence of histones or signature enzymes
associated to the DNA is a minimum necessity. Further
difficulties result from the fact that there is an ongoing debate
on the definition of NETosis, and as a consequence NETs.
Indeed many different signaling pathways have been put forward
and proposed to result in either suicidal, nuclear NETosis or

mitochondrial vital NETosis (217). Moreover, the observation of
NETs in a given pathology does not necessarily mean that NETs
play a role in such disease, and proving so can be very challenging.

In conclusion, there is now a wide range of tools for
assessing the functions of neutrophils in vivo. The main
issue is therefore the choice of the methods used. Therefore,
one needs to consider each advantage and caveat of these
methods. Furthermore, confirming the results using at
least two different approaches seems necessary to avoid
overestimating or underestimating the true contribution of
neutrophils in vivo.
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