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The endoplasmic reticulum (ER) is the major organelle in the cell for protein folding

and plays an important role in cellular functions. The unfolded protein response (UPR)

is activated in response to misfolded or unfolded protein accumulation in the ER.

However, the UPR successfully alleviates the ER stress. If UPR fails to restore ER

homeostasis, apoptosis is induced. ER stress plays an important role in innate immune

signaling in response to microorganisms. Dysregulation of UPR signaling contributes to

the pathogenesis of a variety of infectious diseases. In this review, we summarize the

contribution of ER stress to the innate immune response to invading microorganisms

and its role in the pathogenesis of infectious diseases.

Keywords: ER stress, infection, infectious disease, UPR (unfolded protein response), bacteria, viruses, pathogen,
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INTRODUCTION

The endoplasmic reticulum (ER) is crucial for maintaining cellular calcium homeostasis and for
the production, processing, and transport of proteins and lipids (1). The rough ER working with
membrane-bound ribosomes produces the protein and continues protein assembly, while the
smooth ER synthesizes lipids, phospholipids, and steroids (2). The ER is sensitive to stresses that
perturb the intracellular energy level, redox state, or calcium concentration. If the protein-folding
function of the ER is reduced by stresses, unfolded proteins or misfolded proteins can accumulate.
To prevent the resulting cytotoxicity, the unfolded protein response (UPR) is activated (1). ER-
resident transmembrane proteins such as inositol-requiring enzyme 1 (IRE1), protein kinase R
(PKR)-like ER kinase (PERK), and activating transcription factor 6 (ATF6) are implicated in
activation of the UPR (3).

To maintain protein-folding homeostasis in the ER, mRNA translation is transiently attenuated
through phosphorylation of eIF2α leading to ATF4 activation (2). IRE1α-dependent decay (RIDD)
suppresses the load of new synthesized protein in ER through degradation of ER-localized mRNAs,
ribosomal RNAs, and miRNAs (4, 5). Spliced X-box binding protein-1 (XBP-1) mRNA induced by
activated IRE1α regulates the expression of numerous target genes including ER chaperones and
ER-associated protein degradation (ERAD) components (6, 7). For instance, BiP is known to be
an important factor in modulating the UPR to avoid apoptosis (4). ER stress regulates autophagy
by modulating the release of calcium from the ER to cytosol and by modulating the activation of
mTORC via PI3K/AKT or AMPK (8). Autophagy is also essential to maintain cellular homeostasis
through degradation of dysfunctional components from the cells by using lysosomal degradation
pathway (8, 9). The activation of three main molecules of UPR induces autophagy via regulation of
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ATG genes (8). The spliced XBP-1 directly binds to beclin-1 gene
promotor region (10).

Another clearance mechanism to degrade the accumulation
of misfolded proteins is the ERAD pathway. ERAD substrates
recognized by ER chaperone are delivered to ERAD adaptors on
ER membrane and then it is retro-translocated into the cytosol
(11). The misfolded proteins undergo proteolytic degradation by
the ubiquitin proteasome system to maintain the proteostasis
(11). When the accumulation of misfolded proteins in the ER
overwhelms the capacity of the ERAD system, ER stress, detected
by the ER stress sensors IRE1, ATF6, and PERK, activates the
UPR, but excessive ER stress may eventually lead to apoptosis
(1, 12). Although the mechanism of UPR is well-known, it
is not clear how the response regulates both apoptotic and
adaptive pathways. A previous report suggested that instabilities
of pro-survival and pro-apoptotic mRNAs and proteins mediate
adaptation to ER stress (13). It was proposed that Death Receptor
5 (DR5) integrates dynamic UPR signals to control apoptosis in
relation to ER stress (14).

In stressed cells, unfolded and misfolded proteins may
accumulate in ER and ER-folding capacity is exceeded, causing
apoptosis (15). PERK and eIF2α phosphorylation play an
important role in protecting cells against the consequences
of ER stress (16). Diverse stress stimuli-induced eIF2α
dephosphorylation causes cells to die due to ER stress (12).
Although C/EBP Homologous Protein (CHOP) is a well-
known transcription factor induced by eIF2α phosphorylation,
deregulated CHOP expression promotes apoptosis (17). CHOP
promotes the expression of Bim, a pro-apoptotic protein,
and decreases the expression of anti-apoptotic Bcl-2 (18).
The GADD34, transcriptional target of CHOP, induces eIF2α
dephosphorylation leading to restoration of protein translation
(12). However, the overexpression of GADD34 can elicit
apoptosis (12). Hyperactivated IRE1α cleaves and degrades
precursor of miRNAs that normally repress translation of
caspase-2 mRNA, and thus induces mitochondrial apoptotic
pathway (19). Disruption of the cellular Ca2+ homeostasis
induces calpain activation, which cleaves Bid and pro-caspase-12,
and subsequently triggers caspase-3-dependent apoptosis (20).

It is well-known that ER stress is associated with the
pathogenesis of various diseases such as obesity, diabetes,
cancer, neurodegenerative disorders, inflammatory diseases, and
infectious diseases. However, we have only vague ideas of how
ER stress is involved in the pathogenesis of infectious diseases.
Recently, many scientists are trying to unveil the implication of
ER stress in infectious diseases. Thus, a better understanding
of the regulatory mechanisms of ER stress will be important
in the development of new therapeutics to treat refractory
infectious diseases.

THE UPR IN IMMUNITY

ER stress induces an inflammatory response by activating
UPR transcription factors and plays an important role in the
pathogenesis of inflammatory and autoimmune diseases,
such as obesity, diabetes, atherosclerosis, myositis, and

inflammatory bowel disease (21). The UPR has important
roles in the development of immune cells because UPR
regulates immune cell differentiation, activation, and cytokine
production (21). The immunostimulant lipopolysaccharide
(LPS) induces inflammatory cytokine production and activates
the transcription of ER chaperone genes, including spliced XBP-
1, BiP, ATF4, and CHOP (21, 22). Spliced XBP1s in response to
toll-like receptor (TLR) is necessary for macrophages to produce
proinflammatory cytokines (23). It has been known that the
IRE1α-XBP-1 pathway activates production of TNF and IL-6 in
macrophages of cystic fibrosis patients (24). Additionally, the
IRE1α/TRAF2 pathway-mediated NOD1 and NOD2 signaling
provides ER-stress-induced inflammation (25). Many studies
have shown that the role of ER stress is associated with immune
cell differentiation, activation, and cytokine production.

A recent report suggests that XBP-1 is important for the
differentiation of Th17 cells (26). Interestingly, it is known
that the IRE1–XBP-1 pathway is activated by acute infection
and is required for T cell differentiation (27). Another role
of the IRE1–XBP-1 pathway is to support the functions of
plasma cells and the survival of dendritic cells (28, 29). UPR
is implicated in host immunity due to its involvement in
calcium signaling, glycosylation, lipid metabolism, and oxidative
protein folding (30). Activation of the T-cell receptor, the B-
cell receptor, the Fc-γ receptor, and various cytokine receptors
causes calcium efflux from the ER through inositol 1,4,5-
trisphosphate receptor (IP3R) (30). The resulting increased
intracellular calcium concentration activates cellular signaling
molecules to promote T-cell activation, maturation of myeloid
cells, and cellular differentiation, adhesion, and death (31).
The increased levels of ROS triggered by ER stress activate
not only proinflammatory signals but also inflammasome
formation, suggesting that ER stress exerts immunogenic
effects (32).

The transcription factor nuclear factor kappaB (NF-κB)
regulates the immune response of the host. ER-stress-mediated
activation of NF-κB may modulate the production of cytokines
(21). The IRE1α-TRAF2–IKK interaction is known to activate
NF-κB, which in turn leads to the production of TNF-α (33).
IRE1α induces inflammation by activating JNK (34, 35). The
interaction between ER stress and MAPKs (JNK, p38, and ERK)
may contribute to inflammatory responses. Therefore, the UPR
plays a critical role in regulating the immune response.

RELATIONSHIP OF ER STRESS WITH
PATHOGENS

In mammalian cells, the UPR is triggered by three ER-
stress sensor proteins, IRE1, PERK, and ATF6, to restore ER
homeostasis (3). Infection by the majority of known pathogens
activates the UPR. Modulation of the functions of the ER by
pathogens can result in their survival/replication or clearance
because ER stress is associated with autophagy or apoptosis.
Although little is known about the role of the ER-stress response
in the pathogenesis of viral and bacterial infection, the regulation
of ER stress might be important in intractable infectious diseases.
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Bacterial Infection and ER Stress
Bacterial virulence factors are involved in UPR activation. LPS
from Gram-negative bacteria binds to TLR4 that is delivered
by Glucose-regulated protein 94 (Grp94) (36). The expression
of Grp94 (an HSP90-like protein specialized for protein folding
and quality control in the ER) is increased by LPS stimulation
(36). The cytotoxin subtilase, produced by Shiga-toxigenic
Escherichia coli, cleaves BiP, resulting in DNA fragmentation
and UPR-mediated apoptosis (37). Similarly, the Shiga toxin
produced by the enteric pathogens Shigella dysenteriae serotype
1 and enterohemorrhagic E. coli increases ER-stress-mediated
apoptosis by inducing release of Ca2+ from the ER to the cytosol
and upregulating PERK-CHOP-mediated DR5 (38, 39). Subunit
A of unfolded cholera toxin (CT) retro-translocates through the
ERmembrane to the cytoplasm, where it directly binds to the ER-
luminal domain of IRE1α (40). Streptolysin O and streptolysin S
of group A Streptococcus (GAS) induce the production of ATF4,
which upregulates the expression of proliferation-related genes
of GAS (41). ER stress is also important for biofilm formation,
microcolony aggregation, distribution, and spread of GAS during
infection of soft tissues (42). The pore-forming toxin listeriolysin
O (LLO) produced by Listeria monocytogenes induces the three
axes of the UPR before cell entry (43). Therefore, diverse bacterial
taxa induce the UPR by secreting toxins (Figure 1A).

The obligate intracellular pathogen Chlamydia induces the
UPR by upregulating BiP (44, 45). Chlamydia infection also
induces TLR4/IRE1-mediated activation of PKR, which enhances
IFN-β production (46). Brucella abortus localizes to the ER by
transforming its fine reticular pattern into a thicker tubular
structure (47). Also, VceC of B. abortus directly binds BiP and
selectively activates the IRE1–XBP-1 pathway, which increases
the IL-6 level (47). Enhancement of the UPR by co-stimulation
with IFN-β promotes the replication of B. abortus in host cells
(48). Thus, modulating the UPR may be useful for treating
brucellosis or chlamydia infection (Figure 1A).

Bacterial infections are frequently caused in chronic diseases
such as obesity, type 1 and type 2 diabetes (T2D), and
atherosclerosis (49, 50). The reason that altered immune
functions in these chronic diseases are observed is because the
immune system can be affected by chronic stress (15, 50). It has
been known that different ER stress sensors are activated during
bacterial infection (11). Therefore, understanding the diverse
roles of ER stress sensors during bacterial infection might be
effective to treat chronic diseases in the future.

Mycobacterial Infection and ER Stress
Mycobacterium tuberculosis (Mtb) is the causative agent of
tuberculosis (TB), does not produce toxins, and grows very
slowly. However, Mtb infection induces ER stress in host cells.
Mycobacterial ESAT-6 andHBHA induce ER stress by promoting
ROS production, by disrupting intracellular calcium homeostasis
(51, 52). ER-stress-induced apoptosis suppresses the intracellular
growth of Mtb by activating caspase-12 in the outer membrane
of the ER (52). Phosphorylation of eIF2α is reported to be an
important component of the ER stress response that modulates
the intracellular survival of Mtb (Figure 1B) (53).

Interestingly, Mtb-induced ER chaperones contribute to
the translocation of CRT or Par-4 to the plasma membrane
of macrophages, leading to apoptosis and suppression of
Mtb growth (54, 55). Also, mycobacterial infection induces
an ER-stress response due to accumulation of misfolded or
unfolded TNF-α in the ER; this indicates that Mtb-mediated
overproduction of proinflammatory cytokines induces ER stress
in macrophages (Figure 1B) (56). Moreover, activation of
the RIDD pathway suppresses the intracellular growth of
mycobacteria (57). Therefore, investigation of the regulatory
mechanism of ER stress during mycobacterial infection might
suggest new therapeutic targets for multidrug-resistant TB.

Viral Infection and ER Stress
Viruses modulate host defense mechanisms to escape the host
immune response. Viruses may interact with the host UPR
to maintain an environment favorable for establishment of
persistent infection. Indeed, viral infection can disturb ER stress
(58). ER stress and the UPR are reported not to protect against
infection by reovirus and hepatitis B virus but, rather, promote
their replication (59, 60).

The PERK pathway is important for host antiviral defense
(61). The PERK-mediated phosphorylation of eIF2α may be
responsible for regulating viral replication (62). Similarly,
regulation of the phosphorylation of eIF2α is important for
the survival of enveloped viruses, such as herpes simplex
virus (HSV) (63). HSV reduces the level of MHC-I by
promoting its ER-associated degradation (ERAD), leading to
suppression of the immune response (64). Infection by human
immunodeficiency virus type 1 induces the degradation of CD4
by ERAD (64). RIDD degrades mRNAs to reduce ER load
and alleviates ER stress (9). Although it is unclear whether
RIDD activation is beneficial for all viral infectivity, RIDD
is closely associated with viral RNA synthesis (4, 9). This
is likely because virus replication requires large quantities of
membrane proteins and lipids, which are produced in the
ER (Figure 2).

CHOP plays an important role in suppressing infection
of host cells by RNA viruses (9). For example, porcine
circovirus type 2 (PCV2) triggers the eIF2α-ATF4–CHOP
pathway and activation of caspases (65). West Nile virus
and coxsackie virus B3 induce ER-stress-mediated apoptosis
by promoting the synthesis of CHOP (66, 67). Interestingly,
IRE1 is reportedly essential for induction of autophagy
during infection with infectious bronchitis virus (Figure 2)
(68). Thus, further investigation of the ER stress response
would enhance our understanding of the pathogenesis of
viral infection.

CONCLUSION AND FUTURE
PERSPECTIVES

Knowledge of the mechanisms by which viruses modulate the
UPR has advanced more than that of bacteria. The interaction
between pathogenic bacteria and ER stress is under active
investigation, but the role of ER stress in the pathogenesis
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FIGURE 1 | Schematic overview of unfolded protein response (UPR) signaling during bacterial infection. (A) Three ER stress sensors–IRE1, PERK, and ATF6–are

activated when the accumulation of misfolded protein aggregates promotes recruitment of BiP. Bacterial infection and toxins activate the UPR. (B) During

mycobacterial infection, co-translocated calreticulin and ERp57 form a complex with TNFR1 and CXCR1 in the plasma membrane, leading to apoptosis, and

suppression of intracellular Mtb. The interaction of Par-4 and BiP leads to apoptosis by inducing Mtb-mediated ER stress and activating the FADD/caspase-8/-3

pathway. The mycobacterial antigens HBHA and ESAT-6 affect the ER membrane and induce the release of Ca2+ from the ER to mitochondria, leading to the

production of reactive oxygen species and apoptosis.
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FIGURE 2 | Schematic overview of UPR signaling during viral infection. Viral infection induces ER stress and the UPR, which promotes cell survival by inhibiting

apoptosis. Some viral infection induces ER-stress-mediated apoptosis by promoting the synthesis of CHOP. IRE1 activates RIDD to promote the degradation of

ER-localized mRNAs. The activation of RIDD may enhance viral protein synthesis. The interaction between the UPR pathways and the autophagic response is

implicated in the pathogenesis of viral infection.

of infectious diseases is unclear. How ER stress modulates
bacterial survival and how bacteria modulate ER stress to
promote their replication need to be studied. ER stress is not
only associated with autophagy but also with the immune
response to pathogens. Targeting ER stress and the UPR
with small molecules is emerging as a promising therapy for
treatment of various diseases such as neurodegeneration, cancer,
metabolic diseases, stroke, and heart disease (69). Therefore,
studies of the regulatory mechanisms of ER stress during
pathogenic infection are warranted. The results of such efforts
are likely to lead to the development of novel host-derived
therapeutics for infection by multidrug-resistant bacteria or
emerging viruses.
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