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Heme is one of the most abundant molecules in the body acting as the functional core of

hemoglobin/myoglobin involved in the O2/CO2 carrying in the blood and tissues, redox

enzymes and cytochromes in mitochondria. However, free heme is toxic and therefore its

removal is a significant priority for the host. Heme is a well-established danger-associated

molecular pattern (DAMP), which binds to toll-like receptor 4 (TLR4) to induce immune

responses. Heme-derived metabolites including the bile pigments, biliverdin (BV) and

bilirubin (BR), were first identified as toxic drivers of neonatal jaundice in 1800 but have

only recently been appreciated as endogenous drivers of multiple signaling pathways

involved in protection from oxidative stress and regulators of immune responses. The

tissue concentration of heme, BV and BR is tightly controlled. Heme oxygenase-1 (HO-

1, encoded by HMOX1) produces BV by heme degradation, while biliverdin reductase-A

(BLVR-A) generates BR by the subsequent conversion of BV. BLVR-A is a fascinating

protein that possesses a classical protein kinase domain, which is activated in response

to BV binding to its enzymatic site and initiates the downstream mitogen-activated

protein kinases (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. This links

BLVR-A activity to cell growth and survival pathways. BLVR-A also contains a bZip DNA

binding domain and a nuclear export sequence (NES) and acts as a transcription factor

to regulate the expression of immune modulatory genes. Here we will discuss the role

of heme-related immune response and the potential for targeting the heme system for

therapies directed toward hepatitis and cancer.

Keywords: heme, biliverdin reductases, inflammation, bilirubin, cancer, liver disease

INTRODUCTION

Many human diseases are associated with immune dysfunctions affecting the host ability to
control inflammation. Under normal physiological conditions, the activation of pro-inflammatory
processes is resolved by the controlled response to reinstate tissue homeostasis. For this reason, cells
and organisms have evolved to integrate protective molecular mechanisms that specifically counter
inflammatory effector functions in order to threshold the response and re-establish homeostasis
upon inflammatory resolution (1, 2). The details of heme metabolism have only been appreciated
in the last 30 years while bile pigments were known a century earlier. Heme is a tetrapyrrolic
porphyrin ring that coordinates an Fe2+ atom and is catabolized by heme oxygenases (HO-1,
encoded by HMOX1 or HO-2, encoded by HMOX2) into biliverdin (BV), iron, and carbon
monoxide (CO) (3–5). The subsequent conversion of BV to bilirubin (BR) is catalyzed by biliverdin
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reductases (BLVR), for which two isoforms exist in humans,
BLVR-A and BLVR-B (Figure 1). These enzymatic reactions
can be best visualized by the colorful stages occurring during
bruising: (i) the initial dark purple is due to heme release
from damaged red blood cells (RBC), (ii) while the green color
corresponds to BV, (iii) and finally the yellow color is BR
which is also responsible for the yellow pigmentation evident
during jaundice.

BV and BR possess strong antioxidant, anti-inflammatory
and protective properties (6) and have recently been shown
to participate as regulators of inflammatory reactions in sepsis
and organ injury. BR exerts general immunosuppressive effects
with possibly important clinical consequences, as evidenced
by multiple experimental as well as clinical studies (7–11). In
humans, BR is the most prominent bile pigment and is very
effective at counteracting cellular oxidative stress, protecting
cells against lipid oxidation, attenuating oxidative damage to
proteins, and acting as a scavenger of nitric oxide (NO) and
reactive oxygen species (ROS) (12–14). Consistent with this,
mildly elevated plasma BR levels have been negatively correlated
with the risk for atherosclerosis, stroke (15, 16), cancer (17, 18),
and inflammatory diseases including ulcerative colitis or Crohn’s
disease (19–23). This strongly suggests an immunomodulatory
role for BR. Under physiologic conditions, for disposal from
the body, BR is conjugated to glucuronic acid in the liver by
bilirubin UDP glucuronosyl transferase (UGT1A1) and then
secreted within the bile into the intestinal lumen (24). In the
colon, BR is de-conjugated by microbial-produced enzymes and
can be partially reabsorbed into the circulation, but it has also
been suggested to contribute locally to gut immune homeostasis
by modulating T cell activation (25, 26). Furthermore, recent
work showed that BR acts as a scavenger of superoxide within
neural synapses, protecting against excitotoxicity and neuronal
death during neurostimulation with ligands such as with
NMDA (27).

The physiological turnover of heme derived from RBC
generates both BV and BR. In adults, HO-1-mediated heme
cleavage occurs predominantly on the alpha-meso carbon to
generate BV. Subsequently, BLVR-A, the predominant BLVR
isoform in adults, converts BV to the BR-IXα isoform of BR
(28, 29). Conversely, BLVR-B is the dominant isoform found

FIGURE 1 | Schematic representation of the heme degradation pathway.

Damaged red blood cells release free heme, which is converted to biliverdin by

heme oxygenase-1 (HO-1, HMOX1) in a reaction that generates carbon

monoxide (CO) and iron (Fe2+). Biliverdin is in turn converted to bilirubin by

biliverdin reductase A (BLVR-A).

in the fetus and produces the BR-IXβ isoform (30, 31). The
highest levels of BR-IXβ are found in fetal bile, indicating that
heme catabolism in utero differs from that in adults (32). Thus,
unconjugated BR-IXβ is the first bilirubin pigment to appear
in bile during fetal development, being observed as early as at
14 weeks gestation (33). At 16 weeks gestation, small amounts
of unconjugated BR-IXα are also detected in human fetal bile,
indicating the maturation of liver-uptake and biliary-secretion
mechanisms (33). Furthermore, BR-IXβ accounts for 60–95%
of the unconjugated bilirubin in the first sample of excreted
meconium, but its amount decreases rapidly during the first
5 days in full-term newborns while declining more slowly in
preterm neonates (34, 35). This may be related to the fact that BR-
IXβ cannot easily cross the placenta and it needs to be excreted
into bile without previous conjugation to glucuronic acid (36).

Heme is the primary inducer of HMOX1 gene expression.
Since the main function of HO-1 is to degrade heme, this
results in a negative feedbackmechanism formaintaining cellular
homeostasis under stress conditions, HMOX1 expression will be
driven in cells and tissues where excess heme is present until the
excess heme is cleared (37). HO-1 expression is also induced by
other stressors, including UV radiation, hormones, endotoxins,
and cytokines. HO-1 exerts anti-inflammatory, anti-apoptotic
and anti-proliferative actions in various cell types, including
endothelial cells and macrophages (38, 39). This provides a
basis for how the heme catabolic pathway may be necessary
for preventing tissue injuries in several disease states, from
endotoxic shock to ischemia/reperfusion injury, vascular injury,
and hepatitis (40–46). Similarly, BLVR are also critical enzymes
in the heme catabolic pathway by removing BV. Although
BV is a non-toxic molecule, mammalians evolved to remove
it within minutes as shown using exogenous administration
of BV. Among the reasons why BV is removed is the need
for the strong antioxidant BR and/or the necessity to act
as a ligand for BLVR-A triggering signaling through PI3K-
Akt (47). Functional ligands, as BV, have a short half-life
to prevent chronic signaling. Importantly, BLVR-A has been
found on the cell surface (BLVRsurf) where it initiates signaling
cascades within the cytoplasm upon extracellular BV-binding
(47). BV initiates the activation of tyrosine kinase domain
of BLVR-A. Interestingly, BLVR-A possesses dual specificity
protein kinase activity (48–50) that plays important roles not
only in response to BV (47) but also in the insulin/insulin-
like growth factor 1 (IGF1)-signaling pathways, with effects on
insulin action, glucose uptake, signal transduction and gene
expression (48, 51). Additionally, BLVR-A kinase activity is
responsible for the production of IL-10 via PI3K/Akt activation
upon binding of BV to BLVR-A in the membrane (29, 47).
Through its kinase activity domain, BLVR-A inhibits total
glycogen synthase kinase 3β (GSK3β) activity downstream of
Akt activation, which supports a role for it in many cellular
functions including the modulation of immune response or
inflammation regulated by nuclear factor (NF)-κB (NF-κB)
(52–54). A recent study by Sharma and colleagues showed
that loss of BLVR-A impairs a neuroprotective Akt-mediated
inhibition of GSK-3β in response to oxidative stress, thus
contributing to early stage Alzheimer’s disease (55). However,
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BLVR kinase activity is dispensable for BLVR-dependent PKC
activation. In this settings, BLVR acts as a scaffold to stabilize
the active conformation of the PKC (56). This scaffolding
role of BLVR may promote the assembly of elaborate signal
transduction complexes that facilitate the phosphorylation and
subsequent activation of MAPK Erk1/2, either viaMEK1/2 or via
PKC (56–58).

BLVR-A possesses additional activities and distinct signaling
capabilities, which makes it a highly pleiotropic and multifaceted
protein (47, 48, 59, 60) (Figure 2). BLVR-A has a direct
transcriptional control activity due to a bZip DNA binding
domain in its C-terminal domain (61) (Figure 2). Thus, both
HO-1 and BLVR act as oxidative stress and inflammatory
response enzymes, but also key signaling molecules and are
considered to play important roles in response to and protection
against cellular stress (62–67). Therefore, understanding the
biology of bile pigments and the mechanism of action of BLVR is
central to a full comprehension of tissue homeostasis and many
immune-associated pathologies.

HO-1 AND BLVR ENZYMES: EXPRESSION
AND MODES OF ACTION

HO-1 is a ubiquitous and evolutionary conserved protein that
in mammalian cells localizes mainly to the smooth endoplasmic
reticulum (ER) and cytosol, where it primarily degrades heme
(68). However, recent evidence suggests an association of HO-
1 with other intracellular membranes, including the inner
mitochondrial membrane and plasma membrane caveolae (69).
HO-1 expression is detected at basal levels in the liver and spleen,
which are major sites of iron recycling from hemoglobin (Hb) of
senescent erythrocytes phagocyted by macrophages (70). For this
reason, liver and spleen tissue macrophages exhibit constitutively
high levels of activity and gene expression of HMOX1 under
physiological conditions (71–73). However, HMOX1 can be
induced at the transcriptional level in various other tissues
by multiple stimuli, including ROS, heavy metals and its own
substrate, heme (74).

In silico analysis of the expression of HMOX1, HMOX2,
BLVR-A, and BLVR-B across the ImmGen expression data
(http://rstats.immgen.org/MyGeneSet) demonstrated that while
BLVR-B is generally expressed at highest levels during fetal
development, both isoforms of BLVR and HMOX1 are expressed
by immune cells, primarily within the myeloid compartment in
the adult (Figure 3). HMOX2 showed less distinct pattern of
expression (Figure 3). We and others have reported high levels
of BLVR-A expression within the reticulo-endothelial system
and phagocytic mononuclear populations in the spleen and
liver (47, 60, 75). Our previous findings demonstrated that
BLVR-A expression is also responsive to both LPS and BV
treatment in macrophages (29, 76). Additionally, analysis of
data obtained from www.immuneprofiling.org in whole blood
cells showed that BLVRA, BLVR-A is increased in human blood
cells following stimulation with various cytokines, DAMPs and
pathogen-associated molecular patterns (PAMPs) (Figure 4).
The highest induction of BLVR-A was observed after treatment
with E. coli, Flagellin (TLR5 ligand), PolyI:C (TLR7 ligand),
R837, influenza virus, IFNα2b or IFNβ. These data suggest a role
for BLVR-A in infection with bacteria or viruses. Interestingly,
BV seems to interfere with the replication of hepatitis C virus
(HCV) by inducing the expression of interferon alpha2 and
alpha17, thus triggering an antiviral interferon response (77).
A similar antiviral effect has been demonstrated for BR against
human herpes simplex virus type 1 (HSV-1) and the enterovirus
EV71, indicating that bile pigments and BLVR enzymes can
have an important antiviral effect and might improve antiviral
therapy (78).

The heme degradation pathway operates in the cytoplasm,
where both HO-1 and BLVR are located as either free proteins
or associated with endoplasmic reticulum (ER) membranes
(79). However, the conversion of BV to BR has been shown to
occur in various cellular compartments in response to cellular
stress (29, 47, 80). BLVR-A is also found in the nucleus (57, 61),
mitochondria (81) and several reports show that its translocation
between different cellular compartments is controlled by
post-translational modifications such as nitrosylation or
phosphorylation (47, 60, 82).

FIGURE 2 | Domain structures of human BLVR-A and BLVR-B. A schematic comparison of the structure of human BLVR-A and BLVR-B shows a similar kinase and

catalytic domain for both enzymes. The two isoforms differ in the C-terminus, where BLVR-A contains a bZip DNA binding domain, a nuclear localization sequence

and a nuclear export sequence that are not present within BLVR-B.
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FIGURE 3 | Expression pattern of HMOX1, HMOX2, BLVR-A, and BLVR-B mRNA in immune cells as reported in the ImmGen expression data software (http://rstats.

immgen.org/MyGeneSet).

FIGURE 4 | Expression of BLVR-A in human leukocytes. qPCR analysis of

BLVR-A in peripheral blood mononuclear cells after stimulation with toll-like

receptor ligands and cytokines. Results represent the mean ± s.d.

BLVR-A possesses a bZip DNA binding sequence, a nuclear
export sequence (NES) and a nuclear localization sequence (NLS)
that together enable its bidirectional nuclear transport (Figure 2)
(57, 61, 83). BLVR-A is a member of the “leucine zipper” family of
transcription factors driving activator protein 1 (AP-1)-regulated
genes, such as HMOX1 (3, 28, 82, 84). BLVR-A can also regulate
the expression of genes involved in cell growth, differentiation
and survival, which suggests that perturbation of its functionmay
play a role in various disorders and pathologies (48, 84–86).

Since BLVR-B lacks these functions, it is unlikely to possess
significant signaling properties or transcription factor activity,
representing a major functional difference between the two
isoforms (Figure 2) (87, 88). Using a combination of proteomic
and transcriptomic approaches, BLVR-B was recently discovered
as a novel marker of intraplaque hemorrhage and carotid
atherosclerosis, indicating a possible role for its involvement in
cardiovascular physiology and disease (89). Interestingly,BLVR-B
expression was detected in CD163+CD68+ myeloid cells at both
themRNA and protein levels, but not in lymphocytes, endothelial

or smooth muscle cells, which suggests that it somehow
controls inflammation in this pathology (89). Thus, both BLVR
isoforms play unique roles in the host homeostasis and as
such their abnormal expression may lead to pathologies such as
autoimmune disease, excessive immune response or cancer.

HO-1 AND BLVR IN INFLAMMATORY
RESPONSES

HO-1 was initially recognized primarily for its role in
heme catabolism and iron recycling, but it has also been
described as an enzyme with important anti-inflammatory,
anti-oxidant and cytoprotective properties (90). Increased HO-
1 expression in tissue is commonly associated with increased
inflammation or oxidative stress, as seen in models of
acute lung injury or ischemia-reperfusion (91). These anti-
inflammatory effects are largely exerted by heme by-products
like CO, which exhibits a broad range of immunomodulatory
properties in in vivo models of endotoxemia, microbial sepsis
and organ injury, among others (92, 93). Similarly, HO-
1 modulation or application of low concentrations of CO
(250 ppm) to cultured macrophages challenged with LPS
were shown to reduce the expression of pro-inflammatory
cytokines (TNF-α, IL-1β) and simultaneously stimulate the
production of the anti-inflammatory cytokine IL-10 through the
stimulation of p38 MAPK activity (69, 92, 94). Additionally,
previous work demonstrated that macrophage-generated CO
can increase ATP release by bacteria, driving the activation
of the Nacht, LRR, and PYD domains-containing protein 3
(NALP3) inflammasome in macrophages, thus promoting their
bactericidal effector functions (95). Nevertheless, HO-1 up-
regulation in macrophages may not always be beneficial: while
HO-1 derived CO promotes bacterial clearance by increasing
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macrophage activity and phagocytosis (96, 97), HO-1 induction
has been linked to the intracellular survival of specific pathogens
due to reduced inflammatory cytokine production or increased
iron availability (98–100). For example, a dual role of heme-
derived metabolic signals has been shown in malaria: HO-1
induction amplifies malaria-infection associated liver damage
(101), but it also promotes disease tolerance during “the blood
stage of the disease” (102). Furthermore, HO-1 induction is
known to polarize macrophages into an anti-inflammatory M2
phenotype, which could also be detrimental in infections with
pathogens that favor an M2 environment (103). Thus, this
duality underlines the complexity of heme catabolism and the
role of HO-1 as a critical mediator of innate immune response,
indicating that the therapeutic potential of HO-1 may depend
on both its expression, its enzymatic activity and the stage of the
inflammatory response or disease (104–106).

The role of BLVR-A in inflammation has been primarily
described in myeloid cells including macrophages, where
this enzyme is expressed as a cell surface protein (47).
Both macrophage BLVR-A expression and phosphorylation are
increased upon LPS-treatment which leads to anti-inflammatory
responses by stimulating PI3K-Akt-driven IL-10 production
(47). In the presence of endotoxic stress and induction of NO,
macrophage expressed-BLVR-A can also become S-nitrosylated
by eNOS (endothelial nitric oxide synthase)-derived NO. This
modification leads to its translocation to the nucleus, where
it binds directly to the TLR4 gene promoter and represses its
expression (60). These mechanisms have been shown to be
important in promoting hepatic diseases such as non-alcoholic
fatty liver disease (NAFLD) or non-alcoholic steatohepatitis
(NASH), where LPS- and TLR4-associated inflammation plays
a significant role (107). NAFLD is characterized by excessive
accumulation of fatty acids in the form of microdeposits and its
pathophysiology is not fully understood, but insulin resistance
and oxidative stress are thought to factor significantly in its
progression toward NASH (108). Recent work suggests the
regulation of hepatic metabolism by the BLVR-A-GSKβ-PPARα

axis where BLVR-A inhibits the phosphorylation of GSK3β
resulting in the decreased activation of its substrate, PPARα

(109). In this study, mice lacking BLVR-A in hepatocytes showed
increased GSK3β activity and PPARα levels, with higher levels
of plasma glucose and insulin and reduced glycogen storage
(109). Interestingly, BR binds directly to PPARα and elevated
total serum BR levels have been reported to negatively correlate
with onset of the disease in NAFLD and NASH patients (110–
113). These data indicate a major role of BLVR-A in hepatic
lipid metabolism and associated inflammation, also supporting
an additional role for BR as a protective factor against the
progression and development of chronic liver disease. Of note,
therapies directed at increasing the activity of BLVR-A or at
regulating BR metabolism may prove useful for the treatment
of NAFLD (107, 114). A role for BLVR-A in inflammation
has also been described in other diseases, such as in germinal
matrix hemorrhage (GMH), a neurologic event with high
morbidity and mortality in pre-term infants (115). In this
model Zhang and colleagues revealed that by suppressing TLR4
expression, BLVR-A induces the phosphorylation of eNOS in the

spleen, modulating the inflammatory response and decreasing
neutrophil infiltration into the brain after GMH (115). More
recently, a BV/BLVR-A regulatory mechanism that controls
TLR4 activation by direct/indirect interaction has been also
identified in human leukocytes, suggesting that a fully functional
signaling of BLVR could counter undesired TLR4 signaling and
related inflammation (116).

BLVR-A has been shown to play a critical role in M2
macrophage polarization both in vitro and in response to
renal ischemia-reperfusion injury in vivo (117). In addition,
we have recently shown that BV reduces pro-inflammatory
cytokine release and inhibits LPS-mediated C5aR expression
in macrophages through the mTOR signaling pathway, further
supporting a role for BV as an endogenous anti-inflammatory
modulator (75). Moreover, using a mouse mutant for conditional
BLVR-A deletion in macrophages, we identified a specific set
of genes whose expression is altered in the absence of BLVR-
A. Among these, the expression of C-X-C motif chemokine 10
(CXCL10 also known as IP-10) and chemokine C-C motif ligand
5 (CCL5, also known as RANTES) was elevated in BLVR-A
deficient macrophages in response to LPS and this was associated
with an increase in C5aR expression and chemotaxis toward C5a
(76). Altogether, these studies point to a pivotal role of BLVR-
A in controlling the inflammatory response in endotoxemia and
beyond, withmacrophages and T cells likely participatingmost in
such a mechanism. Interestingly, BR is implicated in the control
of T cell function by increasing number of T regulatory cells (26).

HO-1 AND BLVR IN CANCER

HO-1 is normally expressed in the spleen and liver, but it can
also be induced in many other organs/tissues by a variety of
stimuli, including heme, ROS levels or hypoxia (118). In cancer,
HO-1-overexpression has been reported in leukemia and in
several solid tumors, including glioblastoma, melanoma, and
hepatocellular carcinoma (119–121). Interestingly, both renal
clear cell carcinoma and sarcoma patients with high HMOX1
expression exhibited better survival rates than those with low
HMOX1 expression, while the opposite is true for thymoma
patients, indicating the complexity of HO-1 biology in cancer
[Figure 5, data based on kmplot.com; (122)] In many tumors
HO-1 is suggested to act as a survival molecule, promoting
cancer cell growth, metastasis, angiogenesis and resistance to
chemotherapy (123, 124). However, HO-1 expression was found
to be decreased in patients with early-stage non-small cell lung
cancer (125) and its induction increased cell death and inhibited
the migratory ability of hepatocellular carcinoma (HCC) cells
(126, 127), suggesting tumor type specific effects. Specifically,
HO-1 seems to hinder HCC progression via downregulation of
miR-30d/miR-107 expression, a mechanism that also involves
PI3K/AKT and MAPK/ERK pathways (128). HO-1 activity may
help to mitigate DNA damage, gene mutation and carcinogenesis
resulting from excessive ROS levels; we have previously showed
that HO-1/CO facilitate DNA damage repair via ATM-γH2AX
mechanism in normal cells (129). However, HO-1 was also
shown to promote chemotherapy-induced cell death in cancer
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FIGURE 5 | Kaplan-Meier survival plots for patients stratified by HMOX1 expression. Kaplan-Meier plots were obtained by using the Kaplan-Meyer plotter online

database tool (122). Patients were stratified for high and low expression of HMOX1 in renal clear cell carcinoma, sarcoma, and thymoma patients.

cells (130). There is also evidence that HO-1 activity can
result in iron accumulation, which several epidemiological and
experimental studies associate with increased cancer incidence
and risk, tumor initiation, growth and metastasis (131, 132).
Since iron is highly reactive and it continuously exchanges
between its different oxidized forms, excess iron induces free
radical formation, lipid peroxidation, DNA and protein damages,
with important consequences in carcinogenesis (133). Emerging
evidence has also revealed that HO-1-induced iron levels can
impact ferroptosis, a form of oxidative cell death that plays
a critical role in the pathogenesis of diseases involving iron
overload, such as cancer (134). Recent data indicated a crucial
role of tumor-associated macrophages (TAMs)-derived iron
within the tumor microenvironment in disease progression,
implying that HO-1 expressed in these cells plays profound
roles in modulating tumor microenvironment and promoting
metastasis (135). Of note, we showed that HO-1 in TAMs is
critical for regulating epithelial-mesenchymal transition (EMT)
and metastatic outgrowth in prostate cancer (136).

Although HO-1 is normally resident on the endoplasmic
reticulum, it has been detected in the nuclei of prostate,
lung, and oral cancer tumor cells, where it is correlated with
tumor progression (137–139). However, the pathophysiological
relevance of this finding and any specific mechanisms involved
are not yet fully understood. It is well-known that HO-
1 undergoes proteolytic cleavage with subsequent nuclear
translocation under stress conditions in vitro, and this promotes
tumor growth and invasion independently of its enzymatic
activity (138, 140). Nevertheless, HO-1 lacks a DNA binding
domain and whether it can interact with transcriptional control
factors or chromatin proteins to impact the expression of specific
genes related to cancer progression is still a matter of debate and
deserves further investigation (141).

Importantly, HO-1 can also impact cancer progression by
participating in both innate and adaptive immune responses
in the tumor microenvironment. By suppressing the expression
of proinflammatory cytokines (i.e., TNF-α) and promoting the
expression of immunosuppressive cytokines (i.e., IL-10), HO-
1 significantly modulates the immune regulatory functions of
myeloid cells that control TME maintenance, for example by
promoting inflammation-associated angiogenesis through up-
regulation of VEGF expression in macrophages (141, 142).

A more recent study showed that IL-6-driven expression
of HO-1 in TAMs facilitated transendothelial migration and
metastatic spread of breast cancer cells, suggesting that HO-1+

macrophages can significantly influence TAMs phenotype and
cancer progression (143).

Since various BLVR functions are related to signaling and
gene expression that regulates cell growth, differentiation and
survival, BLVR-A and BLVR-B may be directly involved in
the development and progression of cancer (83). Supporting
this, high levels of BLVR-A expression have been reported in
malignancies including skin, breast, lung, and liver cancers
(51, 144, 145), while BLVR-B is highly expressed in esophageal
carcinoma, leukemia, and hepatocellular carcinoma (146–150).
Importantly, BLVR-B was found to be most highly expressed at
the tumor invasive margin in endometrial carcinoma, suggesting
a role for this protein in cancer invasion (151). Indeed,
BLVR-A has also been reported to affect the cell morphology
and processes involved in EMT, a common characteristic of
metastatic cancers (49, 51, 152). Additionally, a few studies
have identified both BLVR-A and BLVR-B levels as potential
biomarkers for the diagnosis, prognosis or treatment of prostate,
pancreas, and vaginal carcinomas (153–155). Our analyses based
on available gene expression data (kmplot.com) suggests that
similar to HO-1 (above), there may be a role for BLVR
in patient survival dependent on cancer type. High BLVR-A
expression confers survival benefits in patients with cervical
squamous cell carcinoma or endometrial carcinoma, while low
expression levels are more beneficial for patients with liver
hepatocellular carcinoma (Figure 6). High levels of BLVR-B
expression in cervical squamous cell carcinoma and sarcoma
patients is also correlated with better survival than those with
lower BLVR-B expression. However, the opposite appears true for
lung adenocarcinoma patients (Figure 6). Elevation of BLVR-A
expression in tumor cells has been linked to cancer-associated
hypoxia (83). Gibbs et al. showed that BLVR-A expression is
driven by HIF1-α induction (156) and a similar mechanisms
for regulation of BLVR-A levels in hypoxic conditions was seen
in pulmonary arterial smooth muscle cell (PASMC) and human
glioblastoma cells (157, 158). The role of BLVR in cancer is
closely related to oxidative stress: the knockdown of BLVR-A
resulted in a significant increase in intracellular ROS levels in
glioblastoma cells and resulted in increased HMOX-1 expression
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FIGURE 6 | Kaplan-Meier survival plots for patients stratified by BLVR-A and BLVR-B expression. Kaplan-Meier plots were obtained by using the Kaplan-Meyer plotter

online database tool (122). Patients were stratified for high and low expression of BLVR-A in cervical squamous cell carcinoma, endometrial carcinoma and liver

hepatocellular carcinoma; and for high and low expression of BLVR-B in cervical squamous cell carcinoma, sarcoma, and lung adenocarcinoma.

(50, 158, 159). In addition, nuclear BLVR-A acts as a transcription
factor and binds directly to ARE/AP1 and ATF2/CRE DNA
sequences or in complex with Erk1/2/Elk or Nrf2/ARE,
affecting multiple signaling pathways involved in cancer
progression (160). Finally, BLVR-A overexpression enhanced
drug resistance and protection against chemotherapeutics
(cisplatin and doxorubicin) (50, 158). Therefore, due to their
regulatory effects on signaling and transcription, BLVR and its
related bile pigments may impact both the development and
progression of cancer.

While direct evidence for a role of BLVR in the TME has
not been shown, there is indirect evidence for its influence on
immunosenescence, polarization of macrophages and function of
T cells in ways that are known to contribute to carcinogenesis.
Several reports have demonstrated that elevated BR is toxic
(161–163) and may damage erythrocytes and neurons and can
induce cell death (164–167). BR can activate astrocytes and
neurons to release soluble factors through MAPKs and NF-
κB that ultimately reduce the production of tumor necrosis
factor (TNF)-α, interleukin (IL)-1β, and IL-6 by microglia,
which is important for the regulation of immunology within
the central nervous system (168, 169). Furthermore, our recent
data suggest that BV stimulates removal of cellular debris
by macrophages and is required for the HMOX1-mediated
protection against immunosenescence in myeloid cells (170). BR
also has immuno-modulatory and anti-inflammatory properties
through the induction of necrosis and apoptosis in mature
immune cells (9, 171–173). In T helper type 17 (Th17) cells,

BR exerts its immunomodulatory properties through AhR-
dependent upregulation of CD39, with beneficial effects for
patients with inflammatory bowel disease (IBD) (26). Moreover,
mildly elevated BR levels modulate intracellular signaling
pathways involved in immunosuppression and protect against
diseases associated with increased oxidative stress (86, 160, 174–
176). For example, exogenous BR supplementation suppressed
DAMP release and altered cytokine profiles in a model of
pancreatic islet transplantation, showing overall cytoprotective
and antioxidant effects and suggesting that this method could be
used to improve outcomes after allograft transplantation (8). In
the same model, BR treatment of donors is known to lower the
levels of iNOS and IL-1β and to increase islet quality, resulting
in lower inflammatory response in the recipients, which also
improves transplantation outcomes (177, 178). This suggests that
targeting BR metabolism and/or BLVR enzymatic activity could
have important consequences in the tissue microenvironment
and could be a potential therapeutic approach for metabolic,
cardiovascular, oncogenic and neurological disorders as well.

TARGETING BLVR IN CANCER AND
IMMUNE DISEASES

Since BLVR plays a major role in cellular signaling and gene
expression by promoting oxidative and immune homeostasis
it is therefore considered a potential therapeutic target for a
variety of diseases (66). Recent studies employed BLVR-based
peptides to inhibit BLVR-A kinase activity or its interaction with
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growth-promoting kinases (83). Two human BLVR-A-derived
peptides (FGFPAFSG and KKRILHCLGL) have been shown to
inhibit the activity of Erk1/2 by blocking the formation of the
complexes that include BLVR, MEK1 and Erk1/2 or BLVR,
PKCδ and Erk1/2 (57, 58, 179, 180). Regulating the activity of
BLVR and its ability to form such complexes may block the
activation of Erk1/2 upstream, offering a novel approach to slow
the growth of tumor cells with hyper-activated Erk1/2 or to
treat any other inflammatory disease related to its activation
(83, 181). Another BLVR-derived peptide (SFHFKSGSL) was
described as a potent PKCδ inhibitor, with the ability to induce
apoptosis by disrupting the cell membrane integrity (182). This
further supports a potential therapeutic application of BLVR-
based peptides in tumors showing excessive PKCδ activation,
such as non-small cell lung cancer or breast cancer (58, 182–
184). Two BLVR-derived peptides have been demonstrated
to bind to the insulin receptor kinase (IRK) and alter its
secondary structure, with important effects on glucose and
insulinmetabolism (185). Specifically, the KYCCSRK peptide was
able to stimulate glucose uptake and to increase insulin function,
while the KEDQYMKMTV peptide inhibited IRK activity and
glucose uptake (185). BLVR is a substrate for IRK and it shares
regulatory motifs and sequences with proteins that function
in insulin and insulin-like growth factor-1 (IGF-1) pathways
(48, 58, 82, 186). BLVR-A protein levels and activation are
significantly reduced in peripheral blood mononuclear cells from
obese patients and are associated with impaired insulin signaling,
obesity, metabolic syndrome, NASH and visceral adipose tissue
inflammation, indicating that BLVR-A modulation could be a
therapeutic approach to obesity prevention and care (187). These
peptides have been delivered successfully both in vitro and in
vivo, supporting their potential as a novel therapeutic approach
to control abnormal glucose metabolism and insulin resistance
(185, 188–190). A major limitation of a peptide-based therapy
is the short half-life of peptides in the circulation, which can
result in a lower delivery compared to antibody-drug conjugates
(191, 192). Hence, more effort needs to bemade on improving the
pharmacokinetics as well as the therapeutic efficacy of peptides
or their derivatives in vivo. Alternative administration routes
such as respiratory, local (intra-tumor injection) and site-specific
delivery should also be considered (193). The use of enhancers
or nano/micro particulate carriers also represents a promising
approach for peptide-targeted delivery (194, 195). Interestingly,
a recent report showed that bilirubin-based nanoparticles may
represent a valid carrier option for many small peptides whose
therapeutic efficacy is limited by their short circulation half-
life (196) and this method could therefore be used for a more
efficient delivery of BLVR-based peptides in vivo. Furthermore,
BR-based nanoparticles have been tested in several diseases and
conditions for their efficacy in tumor targeting and drug release
(197–202). A second limitation of a peptide-based therapy is that
BLVR kinase activities cannot be completely separated from its
reductase activity and the use of BLVR-based peptides can affect
both pathways simultaneously. Thus, the possible side effects
that will likely compromise BLVR reductase activity in healthy

cells need to be addressed. These effects might be more evident
in macrophages or vascular endothelial cells, where BLVR has
a significant reductase activity but also mediates homeostatic
signaling regulating immune responses (47, 203). Such an issue
highlights the importance of using peptide delivery systems
capable of targeting specific cellular compartments to reduce the
potential for systemic side effects.

In addition to peptides, BLVR-A modulation can also
be achieved by using small molecules. In a recent study,
several FDA-approved compounds were screened and tested
for their effects on BLVR-A activity in the context of
hyperbilirubinemia (204). After the initial characterization of
safety profile and oral absorption, only two compounds were
selected for further studies. However, one of them failed to
reduce bilirubin levels, while the other proved to be hepatotoxic
in rats (204). More BLVR-A inhibitors could be evaluated
for their structure-activity relation to produce even more
potent inhibitors. Moreover, the availability of the BLVR-A
conditional and total knockout mice will further help dissect
the role of this pathway in various diseases. The manipulation
of BLVR can also be an attractive strategy to overcome
treatment-related multidrug resistance, a serious concern in
patients treated with chemotherapy, in whom the tumor cells
develop resistance to multiple classes of chemotherapeutic
agents (205). A few studies showed that overexpression of
BLVR-A can enhance multidrug resistance, while its inhibition
can overcome multidrug resistance and re-establish drug
sensitivity (50, 158, 206).

CONCLUDING REMARKS

In conclusion, heme catabolism and its resulting products exert
significant control of both homeostatic and pathophysiologic
processes. BLVR-A and BLVR-B are multifunctional proteins
with activities ranging from enzymatic activity to signaling
kinases and regulators of transcription. In conjunction with
HO-1 and heme metabolites, BLVR provides a cytoprotective
and immunomodulatory mechanism for the cell and the host.
Therefore, it is pivotal to understand the molecular mechanisms
regulating heme metabolism for the maintenance of homeostasis
and the impact of these proteins as drivers in various immune
pathologies. Similarly, increased awareness of the role heme
metabolites play and their modes of regulation in response to
various stressors will likely prove to be extremely useful in the
treatment of several pathologies.
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