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Introduction: Reports have shown that the onset of diabetes mellitus (DM) in patients

previously diagnosed with asthma decreases asthmatic symptoms, whereas insulin

aggravates asthma. The present study evaluated the modulatory effect of insulin on the

development of allergic airway inflammation in diabetic mice.

Materials and Methods: To evaluate the effects of relative insulin deficiency, an

experimental model of diabetes was induced by a single dose of alloxan (50 mg/kg,

i.v.). After 10 days, the mice were sensitized with ovalbumin [OVA, 20 µg and 2mg of

Al(OH)3, i.p.]. A booster immunization was performed 6 days after the first sensitization

[20µg of OVA and 2mg of Al(OH)3, i.p.]. The OVA challenge (1 mg/mL) was performed by

daily nebulization for 7 days. Diabetic animals were treated with multiple doses of neutral

protamine Hagedorn (NPH) before each challenge with OVA. The following parameters

were measured 24 h after the last challenge: (a) the levels of p38 MAP kinase, ERK 1/2

MAP kinases, JNK, STAT 3, and STAT 6 in lung homogenates; (b) the serum profiles

of immunoglobulins IgE and IgG1; (c) the concentrations of cytokines (IL-4, IL-5, IL-10,

IL-13, TNF-α, VEGF, TGF-β, and IFN-γ) in lung homogenates; (d) cells recovered from the

bronchoalveolar lavage fluid (BALF); (e) the profiles of immune cells in the bone marrow,

lung, thymus, and spleen; and (f) pulmonary mechanics using invasive (FlexiVent) and

non-invasive (BUXCO) methods.

Results: Compared to non-diabetic OVA-challenged mice, OVA-challenged diabetic

animals showed decreases in ERK 1 (2-fold), ERK 2 (7-fold), JNK (phosphor-54) (3-fold),

JNK/SAPK (9-fold), STAT3 (4-fold), the levels of immunoglobulins, including IgE (1-fold)

and IgG1 (3-fold), cytokines, including Th2 profile cytokines such as IL-4 (2-fold), IL-5

(2-fold), IL-13 (4-fold), TNF-α (2-fold), VEGF (2-fold), and TGF-β (2-fold), inflammatory

infiltrates (14-fold), T cells, NK cells, B cells and eosinophils in the bone marrow, lung,
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thymus and spleen, and airway hyperreactivity. STAT6 was absent, and no eosinophilia

was observed in BALF. Insulin treatment restored all parameters.

Conclusion: The data suggested that insulin modulates immune cell phenotypes and

bronchial hyperresponsiveness in the development of allergic airway inflammation in

diabetic mice.

Keywords: allergic inflammatory reaction, asthma, diabetes mellitus, insulin, immune cell phenotyping,

eosinophils, respiratory mechanics, cytokines

INTRODUCTION

Asthma affects ∼1–18% of the population depending on the
region. Global estimates show that these rates are increasing
in all age groups, although these trends are notably increasing
among children below 14 years of age (1). According to American
Academy of Allergy Asthma and Immunology, asthma is a
chronic inflammatory disease of the airways, and many factors
can trigger an asthma attack. One type of asthma can be caused
by allergens, such as pollen, moles and dust mites.

Severe Refractory Asthma (SRA) is the term used for severe
asthma, and this condition afflicts only a small percentage of
the asthma population (<5–10%) (2, 3). These patients suffer
from poorly controlled symptoms and frequent exacerbations
(4). Several environmental factors have roles in the pathogenesis
of asthma, but multiple genes that confer disease susceptibility
have also been described (5, 6), with evidence implicating genes
related to respiration, particularly those linked to limitations of
reversible or irreversible airflow (7).

Because of the extensive complexity of the pathophysiology
of this disease, identifying its basis is difficult, which indicates
that asthma should be further investigated. Data suggest that cells
of the immune system are related to asthma, such as Th2 cells
(8). Atopic individuals produce high levels of IgE in response
to environmental allergens unlike non-atopic individuals, who
synthesize other types of immunoglobulins, such as IgG and IgM,
but little IgE (9, 10). This multicellular response is primarily
characterized by eosinophil, neutrophil, CD4+ T lymphocyte, B
lymphocyte, and mast cell activation, among other cells (9, 11–
13). T lymphocytes and eosinophils are known to be critical in
the development of asthma (6), which can be treated (7).

The association between eosinophils and airway
hyperreactivity in asthma has been extensively investigated.
Initial studies have revealed an important association between
eosinophilic infiltrate and increased airway reactivity in
both humans and different experimental models of asthma.
Eosinophils release proteins that can damage the epithelial
barrier, causing enzymatic degradation of mediators or
impairing the bronchoprotective effect (14–16). Clinical (17, 18)
and experimental data (19, 20) suggest that the immune response
is impaired in type 1 diabetic individuals. Several aspects of this
association have already been described: the onset of diabetes
mellitus type 1 (DM1) in patients who have previously been
diagnosed with asthma improves the asthmatic condition,
but the treatment of diabetic patients with insulin, which is
commonly used to treat DM1, aggravates asthma (21, 22).

Inducing experimental diabetes in animals using chemicals,
which selectively destroy pancreatic beta cells, is effective and
simple (23). Alloxan is widely used to generate experimental
models of DM1 (24, 25). Alloxan is a diabetogenic agent and
has a selective toxic action on pancreatic beta cells, causing
pancreatic islet necrosis. This agent is a glucose analog that binds
to GLUT4 and accumulates in the beta cells of the pancreas, thus
causing irreversible damage to pancreatic beta cells (26, 27).

Asthma and diabetes appear to have an antagonistic
relationship (17, 21). In other studies, treatment with insulin
in diabetic rats restored mast cell degranulation and histamine
release as well as reactivity to ovalbumin (OVA). Relatively
prolonged (12 days) treatment of animals with insulin resulted
in gradual recovery of chemotaxis as evaluated in vivo
(pleurisy, intravital microscopy) and in vitro (Boyden’s chamber).
Acute treatments with insulin (3 days) were ineffective (28).
According to the results of a recent study of a model of late-
phase pulmonary allergic inflammation, insulin restores mucus
secretion and collagen deposition and increases cell migration,
mainly eosinophils, in the airways of diabetic and asthmatic
animals (29).

Further elucidation of the development of allergic airway
inflammation in diabetic individuals is important. Because the
role of insulin is not well-defined in chronic pulmonary allergic
inflammation, the present study was designed to investigate
the modulatory effect of insulin on the development of allergic
airway inflammation in diabetic mice.

MATERIALS AND METHODS

Animals
We used specific pathogen-free male BALB/c mice aged 8–12
weeks (20–25 g) at the beginning of the studies. The animals
were maintained at 22◦C under a 12 h light–dark cycle and
were allowed access to food and water ad libitum throughout
the observation period. This study was conducted in strict
accordance with the principles and guidelines adopted by
the Brazilian National Council for the Control of Animal
Experimentation (CONCEA) and was approved by the
Ethical Committee on Animal Use (CEUA) of the Faculty
of Pharmaceutical Sciences (FCF) of University São Paulo
(Permit Number: CEUA/FCF/490). All surgical procedures were
performed under ketamine/xylazine anesthesia (270 and 30
mg/kg, respectively, s.c.), and all appropriate measures were
employed to minimize suffering (Supplemental Figure 1).
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Assessment of the Levels of Signaling
Molecules in Lung Tissues From Allergic
Mice Using Immunoblotting
Protein concentrations were determined using a Pierce BCA
Protein Assay Kit (Thermo Fisher Scientific Inc., Rockford, IL).
Samples containing 20 µg of protein were separated using 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred to nitrocellulose membranes using the Amersham
TE 70 PWR Semi-Dry Transfer system (Amersham Biosciences
Corp., Piscataway, NJ, USA). For immunoblotting, nitrocellulose
membranes were incubated in Tris-buffered saline-Tween (TBS-
T) buffer (150mM NaCl, 20mM Tris, 1% Tween 20, pH
7.4) containing 5% non-fat dried milk for 1 h. Then, the
membranes were washed with TBS-T buffer 3 times for 5min
each. Next, the membranes were incubated overnight with
primary antibodies (1:1,000 dilution) against ERK 1/2 MAP
kinases (Thr183/Tyr185), p38 MAP kinase (Thr180/Tyr182),
JNK (phospho-54/SAPK-JNK), STAT-3 (124H6), and phospho-
STAT 6 (Tyr641) diluted in 5% bovine serum albumin in
TBST at 4◦C. The antibodies were purchased from Cell
Signaling Technology (Beverly, MA, USA). The membranes were
incubated with anti-rabbit secondary antibody (1:10,000) for
1 h (Abcam) and developed using enhanced chemiluminescence
detection of the nitrocellulose membrane. Band densities were
determined by densitometry analysis using Image Studio Lite
Version 5.2. The density of each band in each lane was
normalized to the density of β-actin, which weighs 42 kDa and
was a suitable choice of loading control for most of the proteins
in the studied signaling pathway except for ERK 1/2MAP kinases
(42/44 kDa, respectively); therefore, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), which weighs 36 kDa, was used for
ERK 1/2 MAP kinases (Sigma Chemical Co., St. Louis, Mo,
USA) (30).

Determination of Serum Levels of Insulin,
IgE, IgG1, and IgG2a
Blood samples were collected from the abdominal aorta of
mice into a dry tube, and serum samples were stored at
−70◦C until determination of the levels of insulin, IgE, IgG1,
and IgG2a according to the instructions of the Rat Insulin
Enzyme ImmunoAssay Kit (SPI Bio, Massy Cedex, France),
IgE Mouse Enzyme ImmunoAssay Kit (Abcam), IgG1 Mouse
Enzyme ImmunoAssay Kit (Abcam), and IgG2a Mouse Enzyme
ImmunoAssay kit (Abcam), respectively.

Quantification of Cytokines in the Lung
After euthanasia of the animals, lobectomy of the left lobe
of the lung was performed for cytokine analysis by enzyme-
linked immunosorbent assays (ELISAs). The pulmonary lobe was
macerated using 1mL of RIPA buffer and then centrifuged, and
the supernatant was collected for further analysis. The levels
of cytokines (IL-4, IL-5, IL-10, IL-13, TNF-α, VEGF, TGF-β,
and IFN-γ) were measured in lung homogenate supernatant
samples by ELISA using commercial kits (R&D Systems, Inc.,
Minneapolis,MN,USA). Assays were performed according to the
manufacturer’s manual.

Cells Recovered From the Bronchoalveolar
Lavage Fluid
Mice were euthanized by a lethal dose of ketamine hydrochloride
(360 mg/kg) and xylazine hydrochloride (36 mg/kg). The trachea
was cannulated with polyethylene tubing (24 G3/4). The lungs
were then lavaged by instillation of 1mL of phosphate-buffered
saline (PBS) (pH 7.4) three times for a total volume of 3mL.
The BALF was centrifuged at 1,500 rpm for 10min, and
the supernatant was frozen at −70◦C until use in cytokine
measurements. Pelleted cells were collected and resuspended
in 1mL of PBS. A single cell suspension was obtained after
erythrocyte depletion (lysing solution, BD Biosciences), filtering
and fixing for FACS. The total number of cells was quantified in
a standard hemocytometer (Neubauer chamber; Herka, Berlin,
Germany). Cytocentrifuge smears were stained using standard
May-Grunwald and Giemsa solutions (Sigma Chemical Co).
Differential cell counts were performed considering 100 cells
per slide.

Determination of Cellular Phenotypes in
Different Organs and BALF
Flow cytometry was used to determine the percentage of cells
that were positively labeled with antibodies [phycoerythrin (PE),
fluorescein isothiocyanate (FITC), and allophycocyanine (APC)
(eBioscience and ABCAM)] in different organs and BALF from
the animals. The following staining parameters were employed:
eosinophils were identified by SIGLEC-f (clone ESO-2440) and
CD11b (clone M1/70), T cells were identified by CD3 (clone
17A2), CD45 (clone 30-F17), CD4 (clone RM4-4), CD8 (clone
53-6.7), TCR (clone UC7-13D5), B cell CD19 (Ebio1D3), and
CD22 (clone ab25369), and NK cells (clone PK136). The isotype
controls were mouse immunoglobulin IgG2b l FITC, rat IgG2a
k PE, and mouse IgG1 k APC. Cells (106 cells/mL) were labeled
with 1mg of monoclonal antibody and incubated for 20min at
room temperature (RT), and erythrocytes were lysed by adding
2mL of 10% lysis solution (Lysing Solution, Becton Dickinson).
Next, tubes were centrifuged at 1,500 rpm for 10min, the
supernatant was discarded, and the cell pellet was washed twice
with PBS. After incubation, the cells were resuspended in 1%
PFA/PBS and analyzed using a FACSCanto flow cytometer, and
the data were analyzed with FlowJo software (Tree Star, Inc.,
USA). Positive controls and FMO were performed for each
tissue evaluated.

The Effect of Insulin on Airway
Responsiveness
Bronchial hyperreactivity studies were divided into two groups.
The first group was evaluated on 3 different days: the 2nd
day of the challenge and the days of the 4th challenge and
the 6th challenge (days of the experimental design: 29, 31,
and 33, respectively). The second group was evaluated only
on the 7th day of the challenge (day 36 of the experimental
design). Bronchial hyperreactivity was assessed using the Penh
(enhanced pause) values and the area under the curve (AUC)
as the indexes. The baseline measurements were recorded and
averaged for 3min after acclimatization of the animals to the
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full body plethysmograph flow (FWBP) (Buxco Electronics Inc.,
Wilmington, NC, USA). The mice were exposed to saline (SAL)
through a nebulizer for 2.5min and then exposed to increasing
concentrations of methacholine (MCh, Sigma-Aldrich, St. Louis,
USA), which was also administered by nebulization (12 and 25
mg/mL) with an ultrasonic nebulizer. After each nebulization
with MCh, data were recorded for 5min. The results represent
the area under the curve (AUC) obtained with increasing doses
of MCh. The Penh values were calculated with an average of
approximately 25 breaths, and the values were calculated and
presented for each concentration (31).

Study of Respiratory Mechanics
Twenty-four hours after the last challenge, the animals were
anesthetized with ketamine (120 mg/kg, i.p.) and xylazine (12
mg/kg, i.p.) and remained in this condition throughout the
procedure to evaluate respiratory mechanics. A tracheostomy
was performed, and the jugular vein was cannulated for a
subsequent injection of acetyl-β-methylcholine chloride (MCh,
Sigma-Aldrich, St. Louis, MO). The mice were artificially
ventilated (10 mL/kg tidal volume, 150 breaths/min, 3 cmH2O
PEEP) (FlexiVent, SCIREQ, Quebec, Canada). Neuromuscular
blockade was induced by an intraperitoneal injection of
pancuronium bromide (1mg/kg, Cristália, Brazil). Themice were
exposed to PBS and increasing concentrations of MCh (0.03,
0.1, and 0.3 mg/kg). Assessments of respiratory mechanics were
performed using a 3-s multifrequency volume perturbation. Raw
(airway resistance) and Gtis (tissue viscance) were evaluated. The

mean response after the PBS injection and the peak response
after the injection of MCh at 0.03, 0.1, and 0.3 mg/kg were
recorded (32).

Statistical Analyses
Statistical analyses were performed using GraphPad 6 software
(San Diego, CA, USA). Student’s t-test and analysis of variance
(ANOVA) followed by the Tukey–Kramer or Bonferroni test
were used to perform comparisons. P < 0.05 were considered
statistically significant.

RESULTS

Effects of Diabetes and Insulin Treatment
on the Levels of Signaling Molecules in
Lung Tissues From Allergic Mice
Compared to the control group, in the lungs of non-diabetic
allergic mice, the levels of JNK-phospho-54 (4-fold), JNK-
SAPK/JNK (1.4-fold), STAT3 (2.6-fold), and pSTAT6 (11.5-fold)
were significantly increased. In contrast, diabetic allergic mice
showed significant reductions in ERK 1 (1.9-fold), ERK 2 (7.4-
fold), JNK-phospho-54 (2.8-fold), JNK-SAPK/JNK (9.1-fold),
STAT3 (3.8-fold), and total pSTAT6 levels and increased levels
of p38 (4.5-fold) compared to non-diabetic allergic mice. Insulin
treatment effectively restored the levels of ERK1/2, JNK, and
STAT 3 in diabetic allergic mice but decreased the levels of p38
(4.4-fold) and did not affect pSTAT6 levels (Figure 1).

FIGURE 1 | Levels of signaling molecules in lung homogenates. After collection of the lung, a lung tissue homogenate was created with RIPA buffer. (A) p38 MAP

kinase (Thr180/Tyr182), ERK1/2 MAP kinase (Thr183/Tyr185), JNK (phospho-54/SAPK-JNK), STAT-3 (124H6), phospho-STAT 6 (Tyr641), β-actin protein and GAPDH

levels in lungs from diabetic and non-diabetic mice subjected to an OVA challenge were determined by Western blotting. Relative (B) p38 MAP kinase; (C) ERK 1 (p42

MAPK); (D) ERK2 (p44 MAPK); (E) JNK (phosphor-54); (F) JNK (SAPK/JNK); (G) STAT3; and (H) Phospho-STAT6. Values represent the mean ± SEM from three

independent experiments (n = 3 per group). *p < 0.05; ***p < 0.001. The groups were tested with two-way analysis of variance followed by Tukey-Kramer post-hoc

tests (GraphPad Prism version 6.0 for Windows, GraphPad Software, La Jolla, CA, USA).
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FIGURE 2 | Effects of insulin on the secretion of immunoglobulins and cytokines in serum and lung homogenates, respectively. After collecting whole blood via

cardiac puncture from animals in the different experimental groups, the serum was separated by centrifugation at 1,600 rpm for 20min to evaluate the serum levels of

(A) IgE, (B) IgG1, and (C) IgG2a. Lung tissues were collected and homogenized in RIPA buffer, and the supernatant was used in ELISAs to determine the levels of the

following cytokines: (D) IL-4, (E) IL-5, (F) IL-13, (G) VEGF, (H) TGF-β, (I) TNF-α, (J) IFN-γ, and (K) IL-10. Values represent the mean±SEM from three independent

experiments (n = 6 per group). *p < 0.05; **p < 0.01; ***p < 0.001. The groups were tested with two-way analysis of variance followed by Tukey–Kramer post-hoc

tests (GraphPad Prism version 6.0 for Windows, GraphPad Software, La Jolla, CA, USA).

Insulin Treatment Alters the Serum Levels
of IgE, IgG1, and IgG2a in Diabetic Allergic
Mice
As shown in Figure 2, the serum of non-diabetic allergic
mice showed significant increases in IgE (2-fold, Figure 2A),
IgG1 (7-fold, Figure 2B) and IgG2a levels (2-fold, Figure 2C)
compared to the control group. On the other hand, the serum of
diabetic allergic mice exhibited decreased levels of IgE (1.5-fold,
Figure 2A) and IgG1 (3.4-fold, Figure 2B) but increased levels
of IgG2a (3.8-fold, Figure 2C). Insulin-treated mice exhibited
increased serum levels of IgE (4-fold) and IgG1 (2.6-fold)
but decreased IgG2a levels (1.6-fold) compared with untreated
diabetic allergic mice (Figure 2).

Effects of Diabetes on Cytokine Generation
in the Lungs of Allergic Mice
As indicated in Figure 2, the lungs of non-diabetic allergic
mice displayed increased concentrations of IL-4 (3.4-fold), IL-5

(1.5-fold), IL-13 (3.8-fold), VEGF (1.8-fold), TGF-β (1.7-fold),
and TNF-α (2-fold). In contrast, the lungs of diabetic allergic
mice showed significantly reduced levels of IL-4 (3.3-fold), IL-
5 (1.8-fold), IL-13 (4-fold), VEGF (1.8-fold), TGF-β (2.2-fold),
and TNF-α (2-fold) and increased levels of IFN-γ (1.3-fold).
Treatment of diabetic mice with insulin restored the levels of the
cytokines quantified except for IFN-γ, the levels of which were
decreased by insulin treatment. IL-10 levels were not affected in
any of the studied groups (Figures 2D–K).

Effects of Insulin Treatment of the Number
of Cells Recovered From the BALF of
Diabetic Allergic Mice
Figure 3 shows significant increases in the numbers of total cells
(3.6-fold, Figure 3A) and eosinophils (4.2-fold, Figure 3B) in
the BALF of OVA-challenged non-diabetic mice. In contrast,
the BALF of diabetic allergic mice showed marked reductions
in the numbers of total cells (11.7-fold) and eosinophils
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FIGURE 3 | Characterization of leukocytes in BALF: the role of insulin. Animals were sensitized with OVA+Al(OH)3 (i.p.) 10 days after alloxan administration and 12

days after sensitization. Six days after the booster dose, the animals received 7 antigenic challenges daily with OVA or saline. NPH insulin treatment was performed

between the 2 IU challenges of NPH insulin at 7 p.m. and 1 IU of NPH insulin at 7 h. Twenty-four hours after the last challenge, the animals were euthanized, and BALF

was collected. (A) Total cells. (B) Eosinophils. (C) Siglec-f. (D) CD11b. Values represent the mean±SEM from three independent experiments. *p < 0.05; ***p <

0.001. The groups were tested with two-way analysis of variance followed by Tukey–Kramer post-hoc tests (GraphPad Prism version 6.0 for Windows, GraphPad

Software, La Jolla, CA, USA).

(4.43-fold). Insulin treatment of diabetic OVA-challenged
animals restored total cellularity and eosinophilic migration
compared to the group that did not receive insulin treatment.
The immunophenotypic analysis revealed increases in the
populations of Siglec-f-positive (5-fold) (Figure 3C) and CD11b-
positive (3.2-fold) cells (Figure 3D) after the OVA challenge. The
diabetic OVA challenge reduced CD11b-positive (5.3-fold) and
Siglec-f-positive (8.2-fold) cells. Insulin treatment restored the
migration of these populations.

Effects of Insulin on Cellular Phenotypes in
Selected Organs of Allergic Mice
The immunophenotypic analysis of cells in the bone marrow,
lung, thymus and spleen revealed similar phenotype profiles.
Among T cell populations and NK cells, the bone marrow of
non-diabetic allergic mice showed significant increases in the
populations of CD4-positive (6-fold), CD8-positive (4.8-fold),
and Tγδ-positive (3.3-fold) T cells and NK1.1-positive (5.5-
fold) NK cells (Figures 4A–D). Lung tissues from this group of
mice displayed increased numbers of CD4-positive (1.4-fold),
CD8-positive (4.6-fold), Tγδ-positive (10.7-fold), and NK1.1-
positive (2.3-fold) cells (Figures 4E–H). In the thymus, we
observed increased populations of CD4-positive (2.1-fold), CD8-
positive (2.8-fold), Tγδ-positive (10.7-fold), and NK1.1-positive
(3.3-fold) cells (Figures 4I–L). We also observed increased
populations of CD4-positive (1.5-fold), CD8-positive (3.6-fold),
Tγδ-positive (7.4-fold), and NK1.1-positive (7-fold) cells in
the spleen (Figures 4M–P). Increases in the proportions of
CD19-positive (5.2-fold) and CD22-positive B cells (12.1-
fold) were observed in the bone marrow (Figures 5A,B),

increases in the proportions of CD19-positive (9.1-fold) and
CD22-positive B cells (4.7-fold) were observed in the lung
(Figures 5C,D), increases in the proportions of CD19-positive
(21-fold) and CD22-positive B cells (4.3-fold) were observed
in the thymus (Figures 5E,F), and increases in the proportions
of CD19-positive (14.4-fold) and CD22-positive B cells (1.7-
fold) were observed in the spleen (Figures 5G,H). Increases
in the Siglec-f-positive and CD11b-positive populations were
observed in the bone marrow, lung, thymus, and spleen,
which exhibited 3.5- and 9.6-fold (Figures 6A,B), 4.8- and 2.9-
fold (Figures 6C,D), 6.6- and 5-fold (Figures 6E,F), and 8-
and 1.6-fold (Figures 6G,H) increases, respectively. Diabetic
animals treated with OVA showed a significant reduction in the
immune cell profiles. Insulin treatment restored the cell profiles
determined by flow cytometry (also see Supplemental Table 1

and Supplemental Figures 2, 3).

Effects of Multiple Challenges on the
Respiratory Function of Diabetic Allergic
Mice Assessed Using BUXCO
After 2 challenges with OVA, non-diabetic mice presented an
increase (1.5-fold) in airway responsiveness compared to the
SAL-challenged mice. Induction of diabetes did not change
this pattern, and diabetic animals could not respond to the
OVA challenge, resulting in no changes in lung responsiveness.
The initiation of insulin treatment induced a slight increase in
bronchial hyperreactivity, but the difference was not significant
(Figure 7B).

After 4 OVA challenges, airway responsiveness was similar to
the pattern observed after the second challenge (Figure 7C).
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FIGURE 4 | Profile analysis of recruited T lymphocytes and NK cells. Acquisitions were performed using an FACSCanto flow cytometer, and the data were analyzed

using FlowJo software (Tree Star, Inc., USA). We analyzed 20,000 events. Representative dot plots showing the gating strategy used to identify T cells and NK cells in

the bone marrow, (A) CD4, (B) CD8, (C) Tγδ, and (D) NK1.1; lung, (E) CD4, (F) CD8, (G) Tγδ, and (H) NK1.1; thymus, (I) CD4, (J) CD8, (K) Tγδ, and (L) NK1.1; and

spleen, (M) CD4, (N) CD8, (O) Tγδ, and (P) NK1.1. Values represent the mean ± SEM from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001. The

groups were tested with two-way analysis of variance followed by Tukey–Kramer post-hoc tests (GraphPad Prism version 6.0 for Windows, GraphPad Software, La

Jolla, CA, USA).

After 6 challenges, insulin treatment significantly increased
the hyperresponsiveness of diabetic OVA-challenged animals to
methacholine (2.2-fold) (Figure 7D).

After 7 challenges, non-diabetic OVA-challengedmice showed
increased airway responsiveness (1.8-fold) compared to the SAL-
challenged mice. The induction of diabetes did not alter basal
airway responsiveness compared to non-diabetic SAL-challenged
animals, and diabetic animals were unable to respond to the AO
challenge, showing unchanged airway responsiveness. Insulin
treatment restored airway responsiveness (Figure 7E).

Effects of Insulin on Airway Resistance and
Tissue Viscance
The respiratory mechanics of the animals were measured 24 h
after the last challenge (7 challenges). Non-diabetic OVA-
challenged mice exhibited increased Raw (2.2-fold) and Gtis

(4-fold) compared to the SAL-challenged mice. The induction
of diabetes did not alter these parameters compared to those
of non-diabetic animals. SAL-challenged and diabetic animals
were unable to respond to the AO challenge. Allergic diabetic
mice treated with insulin exhibited significant increases in Raw
(Figure 7F) and Gtis (Figure 7G) to values similar to those
observed in allergic non-diabetic mice.

DISCUSSION

The results presented in this study suggest that insulin modulates
the development of the late pulmonary allergic inflammatory
reaction in a diabetic murine model due to its ability to restore
(a) ERK 1/2 MAP kinases, JNK, and STAT 3 in the lung; (b) the
profile of immunoglobulins present in the serum (IgG1 and IgE);
(c) the concentrations of cytokines (IL-4, IL-5, IL-13, TNF-α,
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FIGURE 5 | Profile analysis of recruited B lymphocytes. Acquisitions were performed using an FACSCanto flow cytometer, and the data were analyzed using FlowJo

software (Tree Star, Inc., USA). We analyzed 20,000 events. Representative dot plots showing the gating strategy used to identify B cells in the bone marrow, (A)

CD19 and (B) CD22; lung, (C) CD19 and (D) CD22; thymus, (E) CD19 and (F) CD22; and spleen, (G) CD19 and (H) CD22. Values represent the mean ± SEM from

three independent experiments (n = 3 per group). **p < 0.01; ***p < 0.001. The groups were tested with two-way analysis of variance followed by Tukey–Kramer

post-hoc tests (GraphPad Prism version 6.0 for Windows, GraphPad Software, La Jolla, CA, USA).

VEGF, and TGF-β) in lung homogenates; (d) cell migration in
BALF; (e) the profile of immune cells (CD4, CD8, Tγδ, NK1.1,
CD19, CD22, SIGLE-f, and CD11b) in the bone marrow, lung,
thymus, and spleen; and (f) airway hyperreactivity.

Insulin was discovered in the 20’s, much research is still
needed to unravel its role in the body. The results shown here
suggest strongly believe that important undermined details were
highlighted. First of all, many physicians focus on controlling
hyperglycemia in diabetes, while insulin resistance and lack of
insulin production remain untouched. In this asthma model
we suggest that in diabetic mice, previously challenged with
OVA, reduced cytokines production and defective expression of
adhesion molecules, may partially explain defective neutrophils
migration and ineffective inflammation (33). More recently we
have also shown that insulin treatment might be involved with
airway remodeling since we obtained better collagen airway
deposition and mucus secretion when diabetic mice were insulin
treated (29). Our group also studied that lack of insulin may
cause permanent defect in bone marrow compartment (34),
since bone marrow derived macrophages from diabetic rats differ

phenotypically from control, healthy animals. We rescue this
previous study adding asthma to the system. Accordingly to
American academy of allergy asthma and immunology, asthma
patients are also more favorable to develop autoimmune diseases,
therefore, in these cases, bone marrow cells are strongly required
to be delivered in the blood stream as different sources of immune
and inflammatory cells. Clinical asthma appears to be less severe
when existing diabetes mellitus. Data from epidemiological
studies in children with type-1 diabetes mellitus (17, 35) are
consistent with data from previously published studies (21, 36),
suggesting an inverse relationship between atopy and diabetes
mellitus. It is possible to speculate that asthma is suppressed
in type I diabetic individuals because there is a relative lack
of insulin which, in turn, would allow asthma to manifest
itself clinically.

Insulin also regulates themetabolic activity, gene transcription
and growth of several cell types by modulating the activity of
several proteins involved in intracellular signaling during the
development of the inflammatory response (37, 38). Proteins of
the MAPK pathway have important roles in the activation and
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FIGURE 6 | Profile analysis of recruited eosinophils. Acquisitions were performed using an FACSCanto flow cytometer, and the data were analyzed using FlowJo

software (Tree Star, Inc., USA). We analyzed 20,000 events. Representative dot plots showing the gating strategy used to identify eosinophils in the bone marrow, (A)

Siglec-f and (B) CD11b; lung, (C) Siglec-f and (D) CD11b; thymus, (E) Siglec-f and (F) CD11b; and spleen, (G) Siglec-f and (H) CD11b. Values represent the mean ±

SEM from three independent experiments (n = 3 per group). *p < 0.05; **p < 0.01; ***p < 0.001. The groups were tested with two-way analysis of variance followed

by Tukey–Kramer post-hoc tests (GraphPad Prism version 6.0 for Windows, GraphPad Software, La Jolla, CA, USA).

differentiation of T cells (39, 40). Studies have suggested that
enhanced phosphorylation of ERKmay be related to polarization
of T cells to Th2 cells (40), while phosphorylation of p38 favors
polarization to the Th1 profile (41–43). In 2007, Viardot et al.
(44) showed that insulin promotes the differentiation of cells into
Th2 cells, reducing the proportion of Th1 cells and thus reducing
the IFN-γ/IL-4 ratio. These findings were related to increased
phosphorylation of ERK and reduced p-p38. We analyzed the
expression of other molecules important for the development of
allergic airway inflammation, such as STAT3 (45), pSTAT6 (46),
and JNK (40). We observed an increase in the expression of all
these molecules in macerated lung samples from non-diabetic
animals challenged with OVA. The induction of diabetes reduced
the expression of these molecules, and insulin re-established
their expression levels. We found similar results in our models
for cytokines and immunoglobulin Th2 and Th1 profiles. A
negative correlation between asthma and diabetes, which is
similar to the correlation between Th1 and Th2 responses, has
been suggested (47–49).

An increase in TGF-β levels is an early event in remodeling
that precedes measurable morphological changes. In sensitized
and challenged animals, TGF-β expression increases a few hours
after stimulation and reaches the maximum level after 7 days

depending on the stimulus (50). VEGF, the levels of which
are increased in patients with asthma (51), is a mediator of
vascular and extravascular remodeling and inflammation that
increases antigen sensitization and is required for adaptive Th2
inflammation (52). These two indicators suggest that our model
represents late pulmonary allergic inflammation because after
the OVA challenges, the animals showed increases in TGF-β
and VEGF. Inhaled TNF-α increases bronchial responsiveness
to methacholine in normal individuals and patients with
asthma (53).

Bendelac et al. demonstrated that several lymphocyte
populations are related to the pulmonary allergic inflammatory
response. To characterize the expression of surface molecules
during the onset and development of the asthmatic inflammatory
response, we studied several T lymphocytes (CD4+, CD8+,
and Tγδ), NK cells, B lymphocytes (CD22 and CD19) and
eosinophils (Siglec-f and CD11b) in different animal tissues.
The CD4+ T lymphocyte population showed an increase in all
the studied organs. Standard Th2 CD4+ T cells are required
for the allergic response in the lung, and elimination of
this population ameliorates the asthmatic phenotype (54, 55).
In addition, Gavett et al. (54) demonstrated that CD4+ T
lymphocytes can mediate surface membrane hyperreactivity, as
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FIGURE 7 | The role of insulin in respiratory mechanics. Methacholine capacity (MCh) was evaluated in mice. (A) Experimental protocols for BUXCO and FlexiVent. (B)

The 2nd challenge. (C) The 4th challenge. (D) The 6th challenge. (E) The 7th challenge. (F) Raw. (G) Gtis. Values represent the mean±SEM from three independent

experiments (n = 4–6 animals per group). *p < 0.05; **p < 0.01; ***p < 0.001. The groups were tested with two-way analysis of variance followed by Tukey–Kramer

post-hoc tests for the BUXCO condition and Bonferroni tests for the FlexiVent condition (GraphPad Prism version 6.0 for Windows, GraphPad Software, La Jolla, CA,

USA).

well as increased numbers of lymphocytes and eosinophils in
BALF, in mice subjected to an antigen challenge compared to
control mice. In addition, Hamelmann et al. (56) showed that
CD8+ T cells mediate the increase in IL-5 levels, leading to
eosinophil infiltration and airway hyperreactivity. These NK
lymphocytes were shown to function synergistically with Tαβ

lymphocytes in the pathogenesis of allergic asthma as animals
deficient in these cells display reduced pulmonary eosinophilia,
airway hyperreactivity and a decreased concentration of Th2-
type cytokines compared to controls (57). Similar results were
obtained for mice deficient in Tγδ cells, which also showed
decreased pulmonary eosinophilia in addition to reduced levels
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of IgG1, IgE, and IL-5. Evidence from animal models strongly
indicates the presence of NK cells in the development of allergic
diseases of the airways as these cells express a T-cell invariant
receptor (Tγδ) in mice (Vα14) and in humans (Vα24). Activation
of invariant Tγδ-positive NK cells leads to the rapid production
of a range of inflammatory cytokines, including IL-4. Studies
have shown that mice deficient in NK cells present decreased
eosinophilia and thus decreased bronchial hyperresponsiveness
(58). In addition, they also show a decrease in the concentration
of Th2-type cytokines compared to controls (59). A decrease in
pulmonary eosinophilia was also observed in mice deficient in
Tγδ in addition to reduced concentrations of IgG1, IgE and IL-
5 (60). In addition, the proportion of Tγδ cells in the BALF of
asthmatic patients is higher than that in non-asthmatic patients
(61). Studies in the literature suggest that Tγδ and NK cells can
regulate the differentiation of the Th1 and Th2 responses (62)
and thus modulate the development of allergic lung diseases.
Among the populations of CD4+ T cells, the Th2 phenotype
represents a fundamental population because elimination of this
subpopulation by antibodies reduces bronchial hyperreactivity
and pulmonary eosinophilic infiltration (53, 63). Several studies
have shown a crucial role of T lymphocytes and the production
of Th2 cytokines in the development of asthma (14, 29, 57,
63). However, the role of B cells in allergic asthma remains
undefined, with the exception of the well-known ability of B
lymphocytes to produce IgE-specific immunoglobulin after Th2
cell signaling (10, 11). To further clarify the role of B lymphocytes
in asthma, Voogth and colleagues (64) revealed a crucial role for
B lymphocytes in the development of asthma in rat models. The
transfer of sensitized B lymphocytes to naive animals resulted
in increases in hyperreactivity and inflammation of the airways
after an antigen challenge. These findings suggested that B
lymphocytes can induce an asthmatic response without the help
of T lymphocytes. These data provide new insight into the
mechanisms by which B cells promote asthma and suggest that an
increase in this population is linked not only to increased serum
IgE in animals but also to hyperreactivity and inflammation of
the airways. We found that the induction of diabetes reduced
the lymphocyte population. Diabetic animals did not respond
to the OVA challenge. Insulin treatment restored the different
lymphocyte populations in the various organs studied, suggesting
that insulin at adequate concentrations seems to be required for
normal cell migration during the course of the inflammatory
process (29, 33). These results may also suggest that there is
a relationship between insulin levels and the affected function
and numbers of the innate immune cell, although studies show
involvement of immunological system to the pathophysiological
development of metabolic abnormalities, mechanisms linking
immunity to metabolic disfunctions such as the ones involving
variations of levels of insulin are still needed to be elucidated
(65). Our results show increased T cells in the bone marrow of
diabetic allergic animals following insulin treatment, suggesting
a correlation with a possible effect on the number and function
of innate lymphoid cells.

Given that all parameters studied lead to increased lung
responsiveness, we evaluated the mechanics of the lung in two
different conditions: without anesthesia (BUXCO) and under

anesthesia (FlexiVent). We found that bronchial responsiveness
did not change with the use or absence of anesthesia. To evaluate
the effects of the antigenic challenges in the airways and insulin
treatment, we assessed insulin groups after 2, 4, and 6 challenges.
Another group was evaluated 24 h after the last challenge to assess
the cumulative effect of all antigenic challenges in the airways
and insulin treatment. Animals that were challenged only once
with methacholine had greater bronchial responsiveness than
animals that received this challenge three times. Notably, the
normal inflammatory process seems to depend on the availability
of insulin (33), and an impaired response to OVA in diabetic
subjects may be primarily linked to an ongoing insulin deficiency
rather than secondary hyperglycemia (29, 33). In fact, insulin
induced allergic airway inflammation and association between
insulin and pulmonary function worsening is still controversial.
Honiden and Gong (66) has suggested that insulin therapy in
ICU (intensive care unit) patients prevent development of acute
lung injury. However, we understand that this particular situation
may not embrace mice model used in our study. There are several
studies suggesting that insulin modulates pulmonary allergic
inflammation at all stages. Cavalher-Machado et al. (67) showed
that mast cell degranulation is modulated by insulin in rats
early in the antigen challenge. These results help to understand
the mechanisms of negative correlation of asthma in a diabetic
individual. It is important to emphasize the importance of the
mast cell in the pathophysiology of asthma, due to its secretory
activities that act on the initial response in allergic patients (68)
and animal models (69). It is known that inhaled insulin therapy
has been a failure over the years (70). Olek et al. suggests that
insulin may dec1line pulmonary functions in disease such as
asthma or chronic obstructive pulmonary disease, but raises that
there is still need long term studies to evaluate this information.
Cavaiola and Steven (71) described some years before that no
differences regarding pulmonary function decrease were shown
between patients that inhaled insulin and placebo (71). In fact,
there is still no clear understanding of insulin interference in
lungs air flow. Recently, insulin resistance has been related to
asthma like symptoms and this might enlighten our knowledge
about insulin effect in normal individuals compared to those who
develop diabetes. Indeed, since it is not possible to inject insulin
in healthy patients (since they can die with hypoglycemia),
insulin interference in healthy lungs remains still unraveled.
In here, the treatment with multiple doses of insulin restored
the parameters involved in the late inflammatory response,
even without normalizing glycemia. These findings suggest that
insulin plays an important modulatory role in the development
of allergic airway inflammation in diabetic mice. Although the
data presented here and in the literature suggest that asthma
symptoms are attenuated by DM1, the related mechanisms are
not fully understood, leading us to believe that more studies
are needed since other mechanisms may be involved in this
negative correlation. CTLs may attack insulin-producing cells,
and activation of CTLs requires type I cytokines, which would
decrease Th2-type immune responses. Thus, asthma resistance
in diabetic patients may be due to immune system dysfunction,
which also causes diabetes. Therefore, more in-depth studies are
required in our future work.
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The results presented here provide important information
about the modulatory effect of insulin on the allergic
inflammatory response induced experimentally by OVA in
diabetic mice.
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