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Background: Primary immunodeficiencies (PIDs) are a heterogeneous group of

disorders. The lack of comprehensive disease-specific mutation databases may hinder

or delay classification of the genetic variants found in samples from these patients. This

is especially true for familial hemophagocytic lymphohistiocytosis (FHL), a life-threatening

PID classically considered an autosomal recessive condition, but with increasingly

demonstrated genetic heterogeneity.

Objective: The aim of this study was to build an open-access repository to collect

detailed information on the known genetic variants reported in FHL.

Methods: We manually reviewed more than 120 articles to identify all reported variants

related to FHL. We retrieved relevant information about the allelic status, the number of

patients with the same variant, and whether functional assays were done. We stored all

the data retrieved in a PostgreSQL database and then built a website on top of it, using

the Django framework.

Results: The database designed (FHLdb) (https://www.biotoclin.org/FHLdb) contains

comprehensive information on reported variants in the 4 genes related to FHL (PRF1,

UNC13D, STXBP2, STX11). It comprises 240 missense, 69 frameshift, 51 nonsense, 51

splicing, 10 in-frame indel, 7 deep intronic, and 5 large rearrangement variants together

with their allelic status, carrier(s) information, and functional evidence. All genetic variants

have been classified as pathogenic, likely pathogenic, uncertain significance, likely

benign or benign, according to the American College of Medical Genetics guidelines.

Additionally, it integrates information from other relevant databases: clinical evidence

from ClinVar and UniProt, population allele frequency from ExAC and gnomAD, and

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00107
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00107&domain=pdf&date_stamp=2020-01-31
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rcolobran@vhebron.net
https://doi.org/10.3389/fimmu.2020.00107
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00107/full
http://loop.frontiersin.org/people/852981/overview
http://loop.frontiersin.org/people/853130/overview
http://loop.frontiersin.org/people/828948/overview
http://loop.frontiersin.org/people/504555/overview
http://loop.frontiersin.org/people/861582/overview
http://loop.frontiersin.org/people/506902/overview
http://loop.frontiersin.org/people/522312/overview
https://www.biotoclin.org/FHLdb


Viñas-Giménez et al. FHLdb: Familial Hemophagocytic Lymphohistiocytosis Database

pathogenicity predictions from well-recognized tools (e.g., PolyPhen-2, SIFT). Finally,

a diagram depicts the location of the variant relative to the gene exon and protein

domain structures.

Conclusion: FHLdb includes a broad range of data on the reported genetic variants

in familial HLH genes. It is a free-access and easy-to-use resource that will facilitate the

interpretation of molecular results of FHL patients, and it illustrates the potential value of

disease-specific databases for other PIDs.

Keywords: primary immunodeficiency, hemophagocytic lymphohistiocytosis, database, genetics, mutation,

genetic variant

INTRODUCTION

Primary immunodeficiencies (PIDs) are a heterogeneous group
of disorders affecting the immune system. Most PIDs are
considered to have a monogenic cause, but incomplete
penetrance, variable expressivity, and interactions between
genetic and environmental factors can contribute to their
phenotypic diversity. The diagnostic workup for PIDs is based
on the patients’ clinical manifestations and the results of complex
laboratory techniques to guide selection of the candidate gene
or genes to be tested (1). However, because of the diverse
nature of these conditions, candidate gene selection is not
usually straightforward. Hence, the development of massive
parallel sequencing or next-generation sequencing (NGS) is
rapidly replacing direct sequencing (Sanger method) as the first-
choice method for genetic diagnosis of PIDs (2). Several NGS-
based approaches, from whole-genome sequencing to specific
PID panels, are currently in use, and they have led to major
breakthroughs in the diagnosis of these disorders (3–6).

Nonetheless, the huge amount of data obtained by NGS
technologies makes analysis and interpretation of the results
a cumbersome process compared with conventional genetic
testing. The clinical significance of a potentially relevant variant
may be difficult to ascertain if there is no easily accessible
information to consult. Review of the literature is an option, but
it can be time-consuming and sometimes, exhausting. The lack
of uniform criteria across studies to establish the pathogenicity of
genetic variants further complicates this task.

Disease-specific databases, mainly known as locus-specific
databases (LSDBs), may be the best tool to help professionals
involved in genetic analysis. LSDBs must be comprehensive in

collecting genetic variants relevant for a disease and must be

rigorous in providing evidence that supports the role of the
variants. Ideally, LSDBs should interact with other established

databases and computational tools to depict an overall view of
each variant. Unfortunately, LSDBs for PIDs are scarce, often

outdated, and not user-friendly. This study was developed when

we realized that there was no LSDB for familial hemophagocytic
lymphohistiocytosis (FHL), an interesting and complex PID,
whose genetic basis is currently under discussion (evolving from
classical autosomal recessive inheritance to other models).

Hemophagocytic lymphohistiocytosis (HLH) comprises a
group of rare disorders characterized by a highly stimulated but

ineffective immune response that typically produces a massive
proinflammatory cytokine storm resulting in fever, pancytopenia,
hemophagocytosis, central nervous system (CNS) dysfunction,
and multiorgan failure (7). It most frequently affects infants at
early ages, but the disease is also observed in children and adults
of all ages. If left untreated, the disease may rapidly progress
and lead to death in a few weeks. Treatment for this condition
includes immunosuppressive and immune-modulating therapy
to control the inflammation and organ damage, but in the most
severe cases, hematopoietic stem cell transplantation (HSCT) is
the definite cure (8).

HLH presents in a wide spectrum of clinical contexts,
including fever of unknown origin, acute liver failure, sepsis-
like, Kawasaki-like, and neurologic abnormalities (8). Although
a distinctive constellation of clinical and laboratory features
has been described for HLH, diagnosis remains challenging
as patients may have very different clinical manifestations
associated with a variety of triggers (9). Atypical presentations
involving mainly CNS or chronic pathologic inflammation
manifestations are examples of such complexity (10–12).

HLH patients are often categorized as having either
primary/familial or secondary/sporadic HLH. Familial HLH
(FHL) is caused by biallelic mutations in genes involved in the
granule-dependent exocytosis pathway, which lead to impaired
natural killer (NK) and T-cell cytotoxic activity. To date, 4
genes (PRF1, UNC13D, STXBP2, and STX11) and 1 genomic
region (9q21.3–22) have been identified as candidate causes
of FHL2 (13), FHL3 (14), FHL4 (15), FHL5 (16), and FHL1
(17), respectively (18). Other monogenic diseases that produce
HLH are Chédiak-Higashi syndrome (LYST), Griscelli syndrome
type 2 (RAB27A), Hermansky-Pudlak syndrome (AP3B1), X-
linked lymphoproliferative syndrome (XLP)-1 (SH2D1A), and
XLP-2 (XIAP) (19). HLH can also develop in the absence of
familial recurrence and without biallelic mutations in the causal
genes, usually in the context of infections, malignancies, and
autoinflammatory or metabolic diseases. These are considered
“secondary” or “sporadic” HLH (sHLH) (20). In recent years
and coinciding with the rapid evolution of NGS technology,
the number of studies reporting new HLH-related variants has
significantly increased (21, 22), and these have elucidated that
a proportion of sHLH patients with or without a functional
defect harbor monoallelic variants in one of the FHL-related
genes (23, 24). In addition, novel types of inheritance have

Frontiers in Immunology | www.frontiersin.org 2 January 2020 | Volume 11 | Article 107

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Viñas-Giménez et al. FHLdb: Familial Hemophagocytic Lymphohistiocytosis Database

been proposed for HLH, including polygenic and dominant
transmission models (25–28).

A percentage of the reported HLH variants can be found in
generalist databases such as ClinVar, OMIM (Online Mendelian
Inheritance in Man), LOVD (Leiden Open Variation Database),
and HGMD (Human Gene Mutation Database). However, these
databases may be incomplete, outdated, or not manually curated.
As was mentioned, there is no dedicated LSDB for FHL genes,
and this may lead to delays in classifying the genetic variants
found in FHL patients and, consequently, in their diagnosis
and treatment.

Here, we present FHLdb, a comprehensive database on the
molecular basis of familial HLH. FHLdb is a web-based open-
access repository of reported variants in the PRF1, UNC13D,
STXBP2, and STX11 genes. FHLdb provides detailed information
on each variant, including functional evidence of pathogenicity
when available, and enables links with other widely used
databases (e.g., ClinVar, dbSNP, ExAC, gnomAD) to provide
users with the most easily accessible and complete genetic
information related to this condition.

METHODS

Bibliographic Data
A systematic search in the medical literature retrieved more
than 120 related articles, which were manually reviewed to
collect all reported variants in FHL patients. Literature search
was mainly performed using the Medline database from the
National Library of Medicine through the PubMed search
engine. PubMed is a free resource supporting the search and
retrieval of peer-reviewed scientific literature. Combinations
of the following keywords have been used for the search
procedure: HLH, FHL, hemophagocytic lymphohistiocytosis,
familial hemophagocytic lymphohistiocytosis, hemophagocytic
syndrome, PRF1, UNC13D, STXBP2, STX11, mutation,
variant, genetic variant, biallelic, monoallelic, heterozygous,
homozygous, etc.

From these studies, we also collected other relevant
information to include in FHLdb, such as the reported status of
the variant (biallelic and/or monoallelic), whether the variant
was found in more than one patient, and whether a functional
assay had been carried out to determine the consequences of
the variant.

Database Set-Up
At the technical level, to guarantee user-friendly access to the
data, we stored all information in a PostgreSQL database and
then built a website on top of that, using the Django framework.
Finally, we completed the information on each variant by
providing links to other databases of interest.

RESULTS

FHLdb (https://www.biotoclin.org/FHLdb) is a comprehensive
collection of reported variants in the 4 genes known to cause
FHL: PRF1, UNC13D, STXBP2, and STX11. The literature search
yielded 433 different variants in these genes, distributed as

FIGURE 1 | Distribution of genetic variants according to their effect at the

protein level. Histograms show the distribution of STX11, STXBP2, PRF1, and

UNC13D variants included in FHLdb. The total number of variants reported in

each gene is indicated within parentheses.

follows: 240 missense, 69 frameshift, 51 nonsense, 51 splicing,
10 in-frame indel, 7 deep intronic, and 5 large rearrangements
(Figure 1). UNC13D showed the largest number of variants
(189), followed by PRF1 (157), STXBP2 (66), and STX11 (21)
(Figure 2).

Each variant was manually curated, and we followed the
Human Genome Variation Society (HGVS) guidelines for
variant nomenclature (http://varnomen.hgvs.org) to obtain a
harmonized, interchangeable, clear dataset. We found that the
nomenclature of 29% of the variants was incomplete or did
not follow these guidelines in their original description; hence,
these variants were renamed (Supplementary Table 1). In this
manuscript, both “mutation” and “variant” terms have been used.
While both terms indicate a change in the nucleotide sequence,
in medicine “mutation” is used to indicate a sequence variant
associated with a disease phenotype. On the other hand, the
current guidelines of authoritative organizations recommend
using neutral terms like “variant” followed by a classification term
like pathogenic, benign, etc. (see HGVS website for extended
discussion about terminology). Therefore, we preferably used
“variant” and restricted the use of “mutation” in some specific
cases to indicate disease-causing variants.

The allelic status of each variant is reported in the following
terms: biallelic, when it was reported in homozygous or
compound heterozygous state, and monoallelic. Thus, a variant
can be reported as biallelic, monoallelic, or both. Although most
variants are found in biallelic state, because of the recessive
inheritance of these 4 genes, a significant percentage (ranging
from 12 to 36%) were reported as monoallelic (Figure 3), which
indicates the increasingly recognized role of monoallelic variants
in FHL (22, 23, 25, 28). However, caution must be exercised in
evaluating the role of monoallelic variants: FHL is essentially
an autosomal recessive disease and there is only one well-
described example of monoallelic variants as disease causing
mutations through a dominant-negative mechanism (28). The
other reported monoallelic variants in FHL are not proven to
be disease causing by itself but may represent susceptibility/risk
factors in genetic predisposition to FHL (23, 30).
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FIGURE 2 | FHLdb genetic variants in the UNC13D, PRF1, STXBP2, and STX11 genes. Linear representation of UNC13D, PRF1, STXBP2, and STX11 at the protein

level. The diagram shows the distribution and location of all variants reported in FHLdb, except for large genomic rearrangements. Dotted lines delimitate each exon.

Functional domains are indicated above each gray-scale colored square. MHD1 and MHD2, Munc13 homology domains 1 and 2; SP, signal peptide; MACPF, perforin

membrane attack complex; EGF, epidermal growth factor-like; C2, calcium binding domain. The figure was designed using the Protein Paint free software included in

the St. Jude PeCan Data Portal (https://pecan.stjude.cloud) (29).

We also reviewed whether functional assays had been carried
out to decipher the functional consequences of the variant.
This is one of the main challenges in the interpretation of
genetic variants, especially those that are not clearly related to
loss of function (e.g., missense variants). Variants with reported
functional studies are indicated and the corresponding reference
is provided.

To help the interpretation, we manually classified all genetic
variants according to the American College of Medical Genetics
(ACMG) guidelines. ACMG recommends a five-tier system of
classification using a specific standard terminology: pathogenic,
likely pathogenic, uncertain significance, likely benign and
benign (31).

FHLdb integrates information from other widely used
databases, such as clinical evidence from ClinVar and UniProt,
and population allele frequency from ExAC and gnomAD,
and it provides computational pathogenicity predictions

from PolyPhen-2, CADD, PON-P2, and SIFT. We found
that 91% of the missense variants were predicted to be
pathogenic by at least one in silico predictor, and 96% of
the variants had an allele frequency below 1% in the ExAC
database. Remarkably, only 20% of variants were included
in the ClinVar database, the largest resource to support
clinical variant interpretation. This finding indicates that
there is still little available information in ClinVar about
FHL genetic variants, and it underscores the need for
disease-specific databases.

All the information obtained was compiled in an open, user-
friendly website (https://www.biotoclin.org/FHLdb), divided
into three main parts. First, there is a welcome page presenting
the database, where the user finds the 4 genes typically associated
with FHL (PRF1, UNC13D, STXBP2, STX11), a description of
the information available for each variant, and other general
information. Second, after selecting the gene of interest, the user
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is transferred to the gene view page where all variants are listed
and the main characteristics are shown (Figure 4). Third, a link
to more detailed information located in the last column allows
the user to access a section about the specific variant, which
includes the following: (1) a summary of the references (at least
the first) describing the variant, whether the variant has been
reported as biallelic and/or monoallelic, whether it was found
in more than 1 patient, and whether a functional assay was
carried out; (2) the in silico pathogenicity predictions (CADD,
PolyPhen-2, PON-P2, and SIFT); (3) links to other databases
of interest regarding the specific variant (ClinVar, UniProt,
dbSNP, Ensembl, ExAC, Gnomad) and databases containing
general knowledge about the disease, the gene, and the protein
(e.g., Decipher, GeneReviews, OMIM, GeneCards, NCBI); and
(4) a diagram showing the location of the variant in the
protein (Figure 5).

FIGURE 3 | Distribution of genetic variants according their allelic status.

Histograms show the distribution of variants in the STX11, STXBP2, PRF1,

and UNC13D genes included in FHLdb. The total number of variants reported

in each gene is indicated within parentheses.

CONCLUDING REMARKS

To our knowledge, this is the first LSDB for FHL syndrome.
A prototypical definition of LSDB is “a collection of sequence
variants in a specific gene(s) that causes a Mendelian disorder
or change in phenotype” (32). FHLdb is intended to collect all
known variants in the 4 genes typically associated with familial
HLH published in peer-reviewed literature. Beyond simply listing
all reported variants in the PRF1, UNC13D, STXBP2, and STX11
genes, FHLdb includes other relevant data, such as the variant
frequency in the general population, computational prediction of
pathogenicity, and functional evidence. Additionally, it provided
links to external reference databases to enable users to easily
access all available related resources.

To build FHLdb, we followed general consensus
recommendations to enable broad and easy to manage use
(32, 33). FHLdb is an open-access resource, licensed under the
Creative Commons Attribution-ShareAlike (4.0) International
License, which allows users to adapt, remix, transform, and
build upon the material for any purpose, even commercial
intents, under the terms specified in the full-text license (https://
creativecommons.org/licenses/by-sa/4.0/legalcode). All existing
data in FHLdb can be downloaded in a user-friendly format
(txt) and in other programming languages (e.g., Python, Curl,
or Wget).

Curation is one of the greatest strengths of LSDBs and is likely
the aspect that most differentiates them from general databases
(34). Each variant in FHLdb was manually curated and almost
one third of entries were renamed to adapt the nomenclature to
theHGVS.We decided to include only genetic variants supported
by peer-reviewed, indexed articles. Therefore, each variant has
at least one associated article where the user can find further
information beyond that included in FHLdb.

It is important that LSDB creators accept a long commitment
and continued updating of the database. In our case, FHL/HLH

FIGURE 4 | Example of the gene view page where all variants are listed and their main characteristics described. The PRF1 gene view page is shown. The variant

indicated by the pointer is highlighted in gray (in this example, c.445G>A).
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FIGURE 5 | Example of the detailed information page, containing specific information about a variant. A missense variant in the PRF1 gene is shown.
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is a strategic research field in our laboratory. We are currently
working on two research projects focused on HLH, funded by
Instituto de Salud Carlos III in Spain (see funding section), and
we are determined to keep FHLdb updated in the future. To
accomplish that, we will be alert to new publications on the
genetic basis of HLH and we encourage users to report on a new
variant by sending us the article describing it.

In this first version of FHLdb, we focused on genes involved
in the cytotoxic pathway. Other genes causing congenital
immunodeficiency syndromes that are associated with HLH
(e.g., NLRC4, LYST, RAB27A, SH2D1A, XIAP) have not as yet
been reported but it is planned to include them in FHLdb in
the near future, expanding the data base to a compilation of
genetic variants associated to HLH. The increasing use of NGS
is rapidly expanding the number of genetic variants found in
HLH patients. Implementation of FHLdb aims to help scientists
and clinicians working in the field in their search for FHL-
related genetic variants to support their research and daily
clinical practice.
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