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Pregnancy induces alterations in peripheral T-cell populations with both changes in

subset frequencies and anti-viral responses found to alter with gestation. In HIV-1

positive women anti-HIV-1 responses are associated with transmission risk, however

detailed investigation into both HIV-1-specific memory responses associated with

HIV-1 control and T-cell subset changes during pregnancy have not been undertaken.

In this study we aimed to define pregnancy and gestation related changes to

HIV-1-specific responses and T-cell phenotype in ART treated HIV-1 positive pregnant

women. Eleven non-pregnant and 24 pregnant HIV-1 positive women were recruited,

peripheral blood samples taken, fresh cells isolated, and compared using ELISpot

assays and flow cytometry analysis. Clinical data were collected as part of standard

care, and non-parametric statistics used. Alterations in induced IFNγ, IL-2, IL-10, and

granzyme B secretion by peripheral blood mononuclear cells in response to HIV-1

Gag and Nef peptide pools and changes in T-cell subsets between pregnant and

non-pregnant women were assessed, with data correlated with participant clinical

parameters and longitudinal analysis performed. Cross-sectional comparison identified

decreased IL-10 Nef response in HIV-1 positive pregnant women compared to

non-pregnant, while correlations exhibited reversed Gag and Nef cytokine and protease

response associations between groups. Longitudinal analysis of pregnant participants

demonstrated transient increases in Gag granzyme B response and in the central

memory CD4 T-cell subset frequency during their second trimester, with a decrease

in CD4 effector memory T cells from their second to third trimester. Gag and Nef

HIV-1-specific responses diverge with pregnancy time-point, coinciding with relevant

T-cell phenotype, and gestation associated immunological adaptations. Decreased IL-10

Nef and both increased granzyme B Gag response and central memory CD4T cells

implies that amplified antigen production is occurring, which suggests a period of

compromised HIV-1 control in pregnancy.
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INTRODUCTION

Following HIV-1 infection, seropositive individuals generate
specific immune responses against HIV-1 antigens that
contribute to virological control (1–3). Responses to Gag and Nef
have been found to dominate in early infection with increased
Nef dominance being observed with decreased CD4 T-cell
count, while in chronic infection the prevalence of Nef responses
decrease (2–4). Elite controllers have potent enough responses to
control HIV-1 viraemia, however the majority of HIV-1-infected
individuals’ responses are inadequate to fully suppress the
virus, demonstrating disrupted CD4 to CD8 T-cell ratios and
memory subset frequencies, and without antiretroviral therapy
(ART) progression ensues (2, 5–8). In addition, the absolute
number of Gag responding CD4T cells decreases without
ART, although the maintenance of responsive HIV-1-specific
memory T-cell subsets in chronic progressors is associated
with slower disease advancement, more gradual T-cell loss and
control of background viral replication (9–16). In pregnancy
these responses are linked to vertical transmission incidence,
with higher Nef responses and interleukin-10 (IL-10) plasma
concentrations associated with decreased transmission risk,
though few studies have explored these relationships (17, 18).

Pregnancy studies of HIV-1 negative women have
characterized gestational alterations in leukocyte populations
and immune function; natural killer (NK) cell, dendritic cell
(DC), granulocyte, monocyte, and T-cell subset counts change
with gestation week in the peripheral blood, and increased CD4
T-cell effector memory (EM) populations have been observed
(19, 20). Furthermore, peripheral anti-viral responses alter,
with in vitro Influenza A stimulation eliciting greater activation
of monocyte and DC populations from pregnant women and
Influenza vaccination promoting higher interferon-γ (IFNγ)
production by NK and T cells ex vivo, though clinical studies
show pregnancy status is associated with poorer outcomes in
true Influenza infection (21, 22). However, IFNγ and IL-10
responses to Cytomegalovirus, Epstein-Barr virus and other
viruses are reduced in the second trimester, suggesting pregnancy
immune response modulation is virus, and potentially antigen,
specific (20, 23, 24).

CD4 T-cell counts in HIV-1 positive women decrease in
pregnancy before restoration post-partum, and under ART
pregnancy is not associated with HIV-1 disease progression
(25, 26). In early HIV-1 infection IL-2 signaling is compromised
which impacts the development and maintenance of T-
cell memory populations, while other work suggests the
degranulation capacity of CD8 cytotoxic T-cells is disrupted, and
CD4 and CD8 T-cell subset frequencies are skewed even under
ART (8, 27–30). Memory CD4 T-cell frequency is increased in
HIV-1 positive pregnant and non-pregnant women compared
to their HIV-1 negative counterparts, although detailed changes
in T-cell memory subsets have not been explored between non-
pregnant and pregnant HIV-1 positive women under ART (31).

Through anti-CD3 stimulation of peripheral leukocytes
pregnant HIV-1 positive women have been shown to have higher
IL-10 and lower TNFα and IFNγ responses than non-pregnant
HIV-1 positive women (32). Physiological changes occurring

during pregnancy are also known to affect ART pharmacokinetics
(33). However, pregnancy’s effect on HIV-1-specific responses
is unknown, with work demonstrating higher acquisition of
HIV-1 and other pathogens during pregnancy signifying such
responses may be suppressed, suggesting control of HIV-1 and
risk of transmission could be affected by gestation (34, 35).
Here we sought to assess and compare Gag and Nef responses
and T-cell differentiation in HIV-1 positive non-pregnant and
pregnant women. Our aim was to define pregnancy’s impact on
the T-cell compartment and subsequent systemic HIV-1-specific
functional responses that are associated with virological control
of HIV-1.

METHODS

Study Design, Ethics, Setting, and
Participants
HIV-1 positive non-pregnant (PnP) and pregnant (PP) women
were recruited from Chelsea and Westminster Hospital and St.
Mary’s Hospital, with any participant who delivered preterm
excluded from analysis. Where possible blood was sampled at
each trimester and delivery; two first trimester (<13 weeks
gestation), 15 second trimester (13–27 weeks), 31 third trimester
(>28 weeks) and 9 delivery samples were collected (median
and range gestation were 8 (8), 22 (16–27), 30 (28–39), and
40 (37–40) respectively). Samples were processed within 6 h of
collection, with peripheral blood mononuclear cells (PBMC)
isolated in a containment level 3 laboratory. The NHS London-
Chelsea Research Ethics Committee provided study approval
(11/LO/0971 and 96.ND14) and clinical data collection occurred
as part of standard care.

PBMC Isolation and ELISpot Assays
Peripheral blood was collected in lithium-heparin Vacutainers
(Becton Dickinson, Oxford, UK) and PBMC separated by
density gradient centrifugation with Histopaque (Sigma-Aldrich,
Poole, UK). Freshly isolated PBMC were resuspended to 2.5
× 106 cells/ml in RPMI-1640 solution supplemented with
L-glutamine, penicillin/streptomycin and human AB serum
(final concentrations of 2mM, 100 IU/ml, 100µg/ml and

10% respectively; all Sigma-Aldrich). Polyvinylidene diflouride
backed 96-well plates (Millipore, Watford, UK) were prepared
with cytokine/protease specific monoclonal antibodies following
manufacturer’s instructions (IFNγ−3420-2A, IL-2−3445-2A, IL-
10−3430-2A, granzyme B−3485-2A; Mabtech, Nacka Strand,
Sweden), then 100 µl Gag, Nef (both overlapping 20 mer
peptide pools, ARP788 1-22 and ARP7074 1–20 respectively;
Centre for AIDS Reagents, NIBSC, UK), or PHA (Sigma) were
added into separate wells (all 5µg/ml final concentration). Non-
supplemented RPMI was used as a negative control. Stimulations
and controls were performed in duplicate. 2.5 × 105 PBMC
(100 µl) were added per well and incubated for 40 h at 37◦C,
5% CO2 before addition of biotinylated antibodies, streptavidin
and staining with AP conjugate (1706432; Bio-Rad Laboratories
Ltd., Hemel Hempstead, UK). Stained plates were read on
an AID automated plate reader (Oxford Biosystems Cadama,
Wheatley, UK). Duplicate well means were multiplied to obtain
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the frequency of spot forming cells per million PBMC (SFC/1 ×
106 PBMC) with negative control/background subtracted from
corresponding results and emerging negative values corrected
to zero. Participant responses under the upper 95% confidence
interval (CI) of the relevant unstimulated background were
defined as non-responders.

Flow Cytometry Methods
One to 2 × 106 freshly isolated PBMC were stained with a
fluorescently labeledmonoclonal antibody panel to explore T-cell
memory subsets. Antibodies specific to CD3, CD4, CD8, CD28,
CD31, CD45RA, and CCR7 were used in tandem with a dead
cell dye (Supplementary Table 1 and Supplementary Figure 1).
Stemmemory-like T cells (Tscm) were identified using antibodies
specific to CD3, CD4, CD8, CD27, CD45RA, CD45RO, CD62-L,
CD95, CD122, and CCR7, plus a dead cell dye, to stain 2–4× 106

freshly isolated PBMC (Supplementary Figure 2) (36). Isotype-
matched monoclonal antibodies and fluorescence minus one
(FMO) were used as controls, and a representative compensation
matrix as well as gating of memory subsets based on FMO
and CD62-L expression are included in Supplementary Figure 3

(37). PBMC were incubated with antibodies for 20min at RT
◦
C,

washed with PBS, fixed in 2% paraformaldehyde solution (Becton
Dickinson) and stored at 4◦C until acquisition within 24 h.
Samples were acquired on a BD LSR II using the FACSDiva v6.0
software (both Becton Dickinson) following both daily cytometer
setup and tracking performance checks and daily cytometer
setup following optimisation and longitudinal standardization
steps following the Perfetto et al. protocol (38). In brief, the
cytometer was calibrated to find the voltage range for stable
acquisition of each detector where positive and negative peaks
were well-separated, then identified a target MFI range for
each detector where primary detector signal was highest with
minimum spill-over into other detectors. These detector target
values were used for daily cytometer setup prior to acquisition.
Cytometric data analysis was undertaken on FlowJo v10.4.2
(FlowJo, Ashland, OR).

Statistical Methods
The primary study outcome was ELISpot responses with
secondary outcomes being clinical and phenotypic parameter
differences between HIV-1 positive pregnant and non-pregnant
women. Small group numbers (n < 20 participants) were
anticipated and non-parametric analyses were planned as
no distributional assumptions could be made. Being an
exploratory study no power calculations were performed (39).
Mann-Whitney U (two-tailed), Chi squared, and Spearman’s
correlation tests were used for inter-group demographic,
clinical, phenotypic, and functional comparison of data
collected at time of recruitment. Statistical analysis was carried
out using GraphPad Prism R© v7.0 (GraphPad Software Inc.,
California, USA), and Spearman’s correlation undertaken and
plotted using the psych and corrplot packages in R v3.5.2
(Supplementary Information 1) (40, 41). As correlation
analysis was exploratory no correction for multiplicity was
implemented to prevent increasing Type 2 error, and ELISpot
data was included without implementing the 95% CI positivity

threshold. Non-linear MIXED methods analysis was performed
on longitudinal data of the HIV-1 positive pregnant group using
SAS v9.4 (SAS Institute, Buckinghamshire, UK).

RESULTS

White Blood Cell Counts Are Expanded in
HIV-1 Positive Pregnancies Due to
Increased Monocyte and Neutrophil
Populations
Individuals were screened based on their sex, age, and HIV-
1 status, with 18–45 year old HIV-1 positive women, on
or commencing ART being eligible for recruitment. Women
on immunomodulators or with autoimmune disorders were
excluded. Eleven PnP and 24 PP women were recruited,
demographic, and clinical parameters from participants time of
recruitment analyzed (Table 1), with no significant difference
found between group age, ethnicity, ART regimen, plasma HIV-1
RNA copies at time of recruitment, years since HIV-1 diagnosis,
highest HIV-1 RNA count, days from last detectable viral load,
years on ART, lymphocyte count and frequency (CD3, CD4,
CD8, and CD56), nadir CD4 T-cell count, and CD4–CD8 T-cell
ratio. White blood cell (WBC) count demonstrated significantly
higher results in the PP women on ART, similar to those
seen in pregnant HIV-1 negative women, with lymphocyte,
eosinophil, and basophil absolute counts showing no change,
while monocyte and neutrophil counts were increased from the
PnP group (42). This partly agrees with the increased WBC
and neutrophil count, and reduced lymphocyte and unchanging
monocyte counts observed by Mandala et al. though the non-
pregnant group in their study were newly diagnosed and 35%
were 60+ years of age (43).

IL-10 Response to Nef Is Reduced in HIV-1
Positive Pregnant Women
Eleven PnP and 18 PP women had ELISpot data from time
of recruitment. No difference in positive responder frequencies
was observed (Table 2). Positive responder SFC/1 × 106

PBMC following stimulation with Gag or Nef peptide pools,

HIV-1 structural or regulatory antigens respectively, of PnP
and PP participants were compared, with IFNγ, IL-2, IL-10,
and granzyme B responses (pro-inflammatory, proliferative,
suppressive, and cytotoxic in function) to Gag found to be
similar between study groups, as were IFNγ, IL-2, and granzyme
B responses to Nef (Figures 1A,B). However, the PP women
demonstrated a significantly lower IL-10 response to Nef
than the PnP group, suggesting pregnancy may be depressing
this response.

No Significant Cross-Sectional Difference
Observed Between T-Cell Memory Subsets
T-cell memory subset data acquired through flow
cytometry were assessed; recent thymic emigrants
(RTE; CCR7+CD45RA+CD31+), naïve (Ni; CCR7+
CD45RA+CD31-), stem memory-like T cells (Tscm;
CCR7+CD45RA+CD45RO-CD27+CD62-L+CD95+), central
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TABLE 1 | Participant demographic and clinical parameters.

Participant data HIV-1 positive HIV-1 positive

Non-Pregnant Pregnant

Participants

(PnP)

Participants

(PP)

Number 11 24

Chi squared (P-value)

Ethnicity African 10 (91%) 17 (71%) 0.4052

European 1 (9%) 6 (25%)

Asian 0 (0%) 1 (4%)

ART regimen EFV 3 (27%) 6 (25%) 0.9548

TFV 8 (73%) 21 (88%)

PI 4 (36%) 9 (38%)

Integrase 4 (36%) 7 (29%)

Mann-Whitney

(P-value)

Age (years) 36 (28–41) 31 (25–41) 0.0730

Gestation (weeks) N/A 24 (8–39) N/A

HIV-1 RNA (copies/ml plasma) <20 (<20–103) <20 (<20–780) 0.6232

Years since HIV-1 diagnosis 14 (4–29) 9 (0–27) 0.0841

Highest HIV-1 RNA (copies/ml plasma) 33,713 (39–88,850) 30,219 (62–3,322,162) 0.3843

Days from last detectable HIV-1 RNA 2,395 (0–4,705) 1,204 (0–4,881) 0.2184

Years on ART 10 (0–17) 5 (0–26) 0.1162

CD3 count (cells/µl blood) 1,363 (914–1,944) 1,309 (813–2,023) 0.9437

CD3% 75.5 (60.3–88.7) 80.9 (67.2–88.6) 0.2122

CD4 count (cells/µl blood) 633 (100–962) 577 (109–1,107) 0.8781

CD4% 34.1 (6.6–52.5) 37.7 (9.8–50.0) 0.8967

CD8 count (cells/µl blood) 656.5 (390–1,066) 720 (337–1,304) 0.7956

CD8% 36.0 (22.7–69.9) 38.1 (26.4–70.1) 0.2807

CD56 count (cells/µl blood) 168(37–596) 128 (64–348) 0.2835

CD56% 8.8 (3.0–21.7) 8.2 (4.3–24.1) 0.6543

Nadir CD4 T-cell count (cells/µl blood) 301 (103–549) 275 (12–859) 0.8624

CD4:CD8 (CD4 count/CD8 count) 1.066 (0.094–1.779) 1.005 (0.140–1.630) 0.7239

x109 cells/Liter blood WBC count 5.1 (3.7–7.4) 7.6 (5.0–11.4) 0.0014**

Lymphocyte count 2.0 (1.3–3.3) 1.8 (0.9–2.8) 0.2570

Monocyte count 0.4 (0.2–0.5) 0.6 (0.4–1.1) 0.0016**

Neutrophil count 2.2 (1.3–4.2) 4.7 (3.0–6.3) 0.0004***

Eosinophil count 0.2 (0.1–0.3) 0.1 (0.1–0.7) 0.7780

Basophil count 0.0 (0.0–0.1) 0.0 (0.0–0.0) 0.3333

This table shows participant demographic and clinical data of non-pregnant and pregnant HIV-1 positive women and where appropriate the results of Chi squared or Mann-Whitney

analysis. Median values are shown with (range) given in parentheses. Pregnant clinical data is from time of consent/first sample time-point. Italics are to differentiate p-values from data,

underlined text is to highlight significantly higher result. Statistical significance was defined using p-values shown as: * when p < 0.05, ** when p ≤ 0.01, *** when p ≤ 0.001, and ****

when p ≤ 0.0001.

memory (CM; CCR7+CD45RA-), effector memory (EM; CCR7-
CD45RA-), and terminally differentiated CD45RA expressing
(Temra; CCR7-CD45RA+) T-cell subsets were identified and
group frequencies compared (Supplementary Figures 1, 2 and
Figures 1C,D). A non-significant increase in CD4 T-cell RTE
and CM subset frequencies was observed in the PP women
compared to PnP participants, indicating pregnancy may
promote T-cell production and differentiation, while group
frequencies of Ni, Tscm, EM, and Temra CD4 T-cell subsets

were similar. We differentiated RTE from Ni T cells using CD31
expression and the frequencies we observed are similar to those

of other recent studies exploring the RTE compartment (44–47).
In the CD8 T-cell compartment a non-significant decrease in Ni

subset frequency was observed in the PP group compared to PnP

women, whereas other T-cell subsets were similar in frequency.

IFNγ Negatively Correlated to Ni CD4 T-Cell
Subset Frequency in HIV-1 Positive
Pregnant Group Alone
To explore the relationships between HIV-1-specific responses
and both phenotypic and clinical parameters separate Spearman’s
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TABLE 2 | Participant ELISpot responder details.

Participant data HIV-1 positive HIV-1 positive

Non-pregnant Pregnant

Participants Participants

(PnP) (PP)

Number 11 18 Chi squared (P-value)

Gag Nef Gag Nef Gag Nef

ELISpot responses above positivity threshold IFNγ 10/11 (91%) 8/11 (73%) 15/18 (83%) 14/18 (78%) 0.5659 0.7578

IL-2 11/11 (100%) 6/11 (55%) 18/18 (100%) 13/18 (72%) 0.9999 0.3312

IL-10 5/11 (45%) 9/11 (82%) 13/18 (72%) 17/18 (94%) 0.1494 0.2787

Granzyme B 6/11 (55%) 7/11 (64%) 14/18 (78%) 10/18 (56%) 0.1895 0.6681

This table shows participant ELISpot responses that were above threshold for positivity of non-pregnant and pregnant HIV-1 positive women, with responder frequencies compared

using Chi squared analysis. Responder numbers are shown with (frequency) given in parentheses. ELISpot responder numbers are from time of consent/first sample time-point. Italics

are to differentiate p-values from data. Statistical significance was defined using p-values shown as: * when p < 0.05, ** when p ≤ 0.01, *** when p ≤ 0.001, and **** when p ≤ 0.0001.

correlation analyses were performed on PnP and PP group
data (Figures 1E,F). PnP women exhibited positive correlations
between Gag IFNγ and Gag IL-2, Nef IL-2, Gag IL-10,
lymphocyte absolute count, and nadir CD4 count (p = 0.0426,
p = 0.0326, p = 0.0442, p = 0.0152, and p = 0.0092), while a
negative association was demonstrated between Nef IFNγ and
CD4% (p = 0.0417). The PP participants demonstrated positive
IFNγ correlations between Gag IFNγ and Nef IFNγ (p= 0.0001),
which was not seen in PnP women implying individual control
of Gag and Nef IFNγ response is overridden during pregnancy,
between Gag IFNγ and Gag IL-2, Nef IL-2, and Gag granzyme B
responses (p= 0.0009, p= 0.0088, and p= 0.0031), and between
Nef IFNγ and Gag IL-2, CD4 Tscm and EM subsets, eosinophil
count and CD8 T-cell count (p = 0.0068, p = 0.0221, p =

0.0163, p= 0.0227, and p= 0.0059). Negative IFNγ relationships
were observed between Gag IFNγ and CD4 Ni, CD4% and days
from detectable HIV-1 RNA (p = 0.0392, p = 0.0260, and p =

0.0123), showing differentiated HIV-1 antigen associations from
the PnP women. Further negative correlations were observed
between Nef IFNγ and CD4 RTE and Ni subsets, CD8 RTE
subset, neutrophil count, CD4%, CD4–CD8 ratio, and days from
detectable HIV-1 RNA (p = 0.0089, p = 0.0303, p = 0.0497, p
= 0.0426, p = 0.0005, p = 0.0085, and p = 0.0005), suggesting
this response may have a disproportionate impact on the T-cell
compartment in pregnant women.

Positive Association Between IL-2
Response and CD4 T-Cell Count Missing in
HIV-1 Positive Pregnant Women
The PnP group exhibited positive relationships between Gag IL-2
and Nef IL-2, Gag IL-10, Gag granzyme B, and CD4 T-cell count
(p = 0.0041, p = 0.0101, p = 0.0010, and p = 0.0111), and
between Nef IL-2 and Gag IL-10, Nef IL-10, Gag granzyme B
and CD4 T-cell count (p = 0.0022, p = 0.0073, p = 0.0173, and
p = 0.0499), while a negative correlation was found between
Gag IL-2 and CD8% (p = 0.0425). Positive PP group IL-2
correlations were found between Gag IL-2 and Gag IL-10, Gag
granzyme B, and both CD4 and CD8 EM subsets (p = 0.0172, p

= 0.0448, p = 0.0139, and p = 0.0486), potentially suggesting an
increased Gag-responsive T-cell memory population compared
to the PnP women, and between Nef IL-2 and both Gag IL-10 and
granzyme B responses (p= 0.0226 and p= 0.0051). Negative IL-2
relationships were seen between Gag IL-2 and both CD4 RTE and
Ni subsets, as well as CD8 RTE subset (p = 0.0263, p = 0.0025,
and p= 0.0058), showing further discordance in both the antigen
response T-cell restoration.

Negative Relationships Between Nef IL-10
Response and Both Ni and CM CD8 T-Cell
Subsets Observed in HIV-1 Positive
Pregnant Cohort
Positive associations for PnP participants were found between
Gag IL-10 and both Nef IL-10 and Gag granzyme B responses
(p = 0.0003 and p = 0.0111), and between Nef IL-10 and both
years on ART and years since HIV-1 diagnosis (p = 0.0278
and p = 0.0326), whereas a negative relationship was observed
between Nef IL-10 and CD4 RTE subset frequency (p = 0.0260).
For the PP group positive correlations were observed between
Gag IL-10 and Gag granzyme B responses (p = 0.0001) and
between Nef IL-10 and eosinophil count (p = 0.0468), while
negative relationships were found between Nef IL-10 and CD8
Ni and CM T cells (p = 0.0227 and p = 0.0099), indicating the
impact of IL-10 action on CD4 and CD8 T-cell subsets may alter
during pregnancy.

Non-pregnant HIV-1 Positive Women Alone
Exhibited an Inverse Correlation Between
Granzyme B Responses and Highest
Recorded HIV-1 RNA
The PnP group showed positive correlations between Gag
granzyme B response and both Nef granzyme B and CD4 T-cell
count (p = 0.0019 and p = 0.0367), with negative associations
found between Gag granzyme B and both CD8 Tscm subset
and highest HIV-1 RNA (p = 0.0180 and p = 0.0345), and
between Nef granzyme B and highest HIV-1 RNA (p = 0.0031).
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FIGURE 1 | Comparison of HIV-1-specific responses and T-cell subsets of pregnant and non-pregnant HIV-1 positive women. (A,B) show comparison of PP and PnP

group IFNγ, IL-2, IL-10, and granzyme B ELISpot spot forming cells (SFC)/1 × 106 PBMC against Gag and Nef peptide pools (number per group corresponds to

positive responders detailed in Table 2). (C,D) illustrate the frequency of RTE, Ni, Tscm, CM, EM, and Temra subset frequencies within the CD4 and CD8 T-cell

compartments (for PP and PnP n = 18 and n = 11 respectively; for Tscm subset n = 19 and n = 10). Median and IQR are shown for (A–D), and inter-group

comparison was performed using Mann-Whitney analysis with significant differences shown as * when p < 0.05, ** when p ≤ 0.01, *** when p ≤ 0.001, and **** when

p ≤ 0.0001. (E,F) are heatmaps of Spearman’s correlation results, (E) showing PP group and (F) showing PnP group results. Circles represent significant correlations

where p < 0.05, with positive associations in red and negative in blue. No correction for multiplicity was used.
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In the PP women Nef granzyme B response correlated positively
with CD8 Tscm subset and negatively with CD8 EM population
(p = 0.0153 and p = 0.0188), suggesting the earlier CD8
memory T cells generated by antigenic stimulation are more
reactive during pregnancy. While two of the PnP group had
detectable plasma HIV-1 RNA (Supplementary Figure 4) no
correlation was observed between HIV-1 viral load and any
functional response.

Longitudinal Responses to Gag and Nef
Non-linear MIXED methods analysis was performed on PP
group longitudinal follow-up samples (n = 57, median 3
per participant) to describe parameter development with
gestation week. Point estimates significantly higher or lower
than their neighbors are defined as peaks or troughs. Those
that significantly differ from non-neighboring point estimates
describe a gestational increase or decrease (Figure 2). PnP cross-
sectional 95% CI ranges were included for comparison.

Longitudinal PPwomen’s Gag andNef IFNγ responses did not
deviate from the CI range of the PnP group and demonstrated
a peak at 23 and 17 weeks, respectively. Neither Gag nor
Nef IL-2 responses significantly changed compared to the PnP
participants, while IL-2 Gag responses exhibited peaks at 17
and 23 weeks. No variation in Gag or Nef IL-10 responses
from the PnP group range was observed in the PP cohort,
and a peak at 37 weeks was observed in IL-10 Gag responses.
While remaining within the PnP CI range, a significant increase
from 17 to 23 weeks and decrease from 23 to 40 weeks was
demonstrated by PP participants’ Gag granzyme B responses,
with PP Nef granzyme B responses exhibiting a decrease from
16 to 40 weeks and a lower response than PnP women at
39 weeks, implying gestation influences granzyme B secretion
against both antigens. Participants with detectable viral plasma
RNA during the Gag granzyme B 23 week peak all demonstrated

decreasing viral loads from earlier time-points suggesting
this transiently increased response was not directly linked
to peripheral HIV-1 RNA levels (Supplementary Figure 4).
Correlation analysis of viral load against either Gag or Nef
granzyme B responses from a combination of pregnant and non-
pregnant participants who demonstrated detectable plasma HIV-
1 RNA during the study found no association between these
parameters (Supplementary Figure 5).

Longitudinal Changes to the CD4 T-Cell
Compartment
Longitudinal changes in CD4 T-cell subsets were also explored
(Figure 3). The RTE T-cell subset frequency in PP women was
significantly higher than PnP participants at 18, 27, and 31 weeks
gestation, and demonstrated a trough at 34 weeks. No change
from PnP women was seen in either Ni or Tscm subsets, while
a peak was seen at 36 weeks in the PP Tscm population. The CM
subset frequency was higher in PP women than PnP participants
at 23 weeks and a significant increase from 16 to 23 weeks and
decrease from 23 to 39 weeks was observed, suggesting increased
proliferation of this subset peaking in the middle of pregnancy.
EM and Temra subset frequencies did not alter from the PnP
group range, while in PP women a peak at 17 weeks and a

significant decrease from 21 to 36 weeks was found in the EM
T-cell population, potentially indicating gestational restriction of
differentiation is occurring.

Longitudinal Changes to the CD8 T-Cell
Compartment
CD8 T-cell subset frequency changes with gestation were
assessed, with RTE T-cell frequency of PP participants unchanged
from the PnP group range, demonstrating a peak at 18 weeks,
a trough at 34 weeks, and a significant increase from 21 to
31 weeks gestation (Figure 4). Peaks at 25 and 39 weeks were
found in PP participants’ Ni T-cell subset, the former being above
the PnP cohort range, while the PP group’s Tscm population
showed higher frequencies than PnP women at 24, 31, and 36
weeks gestation with a trough observed at 34 weeks. The CM
T-cell subset in PP women at 25 and 34 weeks were higher
than the PnP range, and a significant increase from 21 to 25
weeks, decrease from 25 to 28 weeks, increase from 28 to
34 weeks, and decrease from 34 to 37 weeks were observed,
indicating gestation also impacts the differentiation of the CD8
compartment. PnP and PP group ranges overlapped for both
EM and Temra subsets, and in PP women a trough at 31 weeks
was found in the EM population, and in the Temra subset a
peak at 21 weeks and increase from 36 to 38 weeks gestation
was demonstrated.

DISCUSSION

With this work we aimed to define pregnancy and gestation
related changes to HIV-1 responses, and associated alterations in
T-cell subsets to determine if pregnancy impacts on the adaptive
control of HIV-1 infection. Here we address the question of
how pregnancy affects the control of HIV-1 infection and sought
to answer this in the context of ART treated women. Our
study demonstrates for the first time that pregnancy decreases
IL-10 response to Nef, transiently increases Gag granzyme B
response in tandem with CD4 T-cell CM frequency, as well
as decreasing CD4 EM T-cell population and altering CD8CM
T-cell frequencies of HIV-1 positive women.

Recent studies have highlighted the importance of the
functional control of HIV-1 and the relevance of memory T-
cell maintenance and reconstitution in disease progression (3,
30). Disrupted HIV-1-specific responses may impact HIV-1
control and potentially instigate periods of immune activation
that in HIV-1 negative pregnancies are associated with preterm
birth and fetal growth restriction (48). Through comparison of
peripheral bloodHIV-1-specific immune responses betweenART
treated pregnant and non-pregnant groups, we demonstrated
that the suppressive IL-10 response against Nef is significantly
reduced in the pregnant cohort. The magnitude of these IL-
10 responses and the difference between the groups were
similar to the difference in IFNγ Gag responses found
between HIV-1 controllers and chronic progressors (49).
No alteration in IFNγ or IL-2 secretion was observed,
indicating ability to initiate pro-inflammatory and proliferative
responses against HIV-1 are maintained in PP women on
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FIGURE 2 | Longitudinal assessment of HIV-1-specific responses of pregnant HIV-1 positive women. The left-hand side graphs show longitudinal changes in Gag

response and the right-hand side graphs illustrate changes in Nef response in HIV-1 positive pregnant women (n = 49, median 3 per participant). From top to bottom

IFNγ, IL-2, IL-10, and granzyme B ELISpot responses are shown. The straight dashed lines show the upper and lower 95% CI for the HIV-1 positive non-pregnant

group, which were assessed at a single time-point (n = 11). Longitudinal assessment of the HIV-1 positive pregnant participants was undertaken using non-linear

MIXED methods analysis, with point estimates and 95% CI bars shown.
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FIGURE 3 | Longitudinal analysis of subset frequencies within the CD4 T-cell compartment of pregnant HIV-1 positive women. The above graphs show the

longitudinal change in RTE, Ni, Tscm, CM, EM, and Temra CD4 T-cell frequencies in HIV-1 positive pregnant women (n = 52, median 3 samples per participant; for

Tscm n = 51, median 3 samples per participant). The straight dashed lines show the upper and lower 95% CI for the HIV-1 positive non-pregnant group, which were

assessed at a single time-point (n = 11; for Tscm n = 10). Longitudinal assessment of the HIV-1 positive pregnant participants was undertaken using non-linear

MIXED methods analysis, with point estimates and 95% CI bars shown.

ART. However, IL-10 response to Nef was decreased and
direct correlations of Gag and Nef IFNγ, IL-2, IL-10, and
granzyme B responses were reversed with pregnancy status,
suggesting the maintenance of Gag and Nef-specific T-cell
populations is affected by pregnancy. This could be caused by
changes in HIV-1-specific T-cell subset stimulation related to
changes in the proportion of antigen production suggesting
a potential switch from latent to activated HIV-1 reservoir
cells (50, 51). This antigenic load shift is reminiscent of the

changes observed in HIV-1 positive individuals during treatment
interruption (52).

Our exploration of gestational HIV-1 response changes
using non-linear MIXED methods analysis, uniquely suited
to describing longitudinal developments, which has not
been done previously implies that gestation alters HIV-1
control and suggests low level viraemia may be driving the
adaptations we have observed. The transient increase in
granzyme B response hints that priming of CD8T cells by
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FIGURE 4 | Longitudinal analysis of subset frequencies within the CD8 T-cell compartment of pregnant HIV-1 positive women. The above graphs show the

longitudinal change in RTE, Ni, Tscm, CM, EM, and Temra CD8 T-cell frequencies in HIV-1 positive pregnant women (n = 52, median 3 samples per participant; for

Tscm n = 51, median 3 samples per participant). The straight dashed lines show the upper and lower 95% CI for the HIV-1 positive non-pregnant group, which were

assessed at a single time-point (n = 11; for Tscm n = 10). Longitudinal assessment of the HIV-1 positive pregnant participants was undertaken using non-linear

MIXED methods analysis, with point estimates and 95% CI bars shown.

Gag presentation is occurring. This would mean more Gag is
present, therefore HIV-1 control is suboptimal during pregnancy
allowing increased HIV-1 peptide generation. In untreated
PP women of African ethnicity a non-significant increase
in HIV-1 RNA was observed with gestation, and numerous
pharmacokinetic studies indicate pregnancy negatively affects
ART levels (53–56). In an ART interruption study increases
in both Gag and Nef CD8 T-cell responses were found
with rebounding viraemia (52). Together these findings

suggest a low-level increase in HIV-1 activity has caused these
functional changes.

Following this we explored the phenotype of peripheral CD4
and CD8 T-cell populations, focussing on their differentiation
state to investigate if pregnancy preferentially drives the
proliferation of antigen naïve or experienced subsets, which
highlighted a potential increase in CD4CM T-cell frequency
in the pregnant group compared to the non-pregnant. The
temporary gestational increase in CM and decrease in EM T-cell
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subsets indicates a change in immunological homeostasis in
HIV-1 positive pregnancy. Transiently increased endogenous
STAT5 phosphorylation in Ni T cells, and separately decreased
IL-2 plasma concentrations from before to after 25 weeks
gestation, have been found in HIV-1 negative pregnancies,
suggesting IL-2 signaling plays a role in gestation associated
changes (57, 58). Low-level Gag presentation may be co-
opting the IL-2 pregnancy stimulation of the Ni T-cell subset
by changing the immunological environment, driving the
differentiation of CM cells (59). Lower plasma IL-2, IL-6 and
TNFα have been observed in PP women compared to an
HIV-1 negative pregnant group, and the gestational decrease
in CD4 EM subset frequency suggests stimulation is not
driving T-cell differentiation through peripheral inflammation,
implying the potential promotion, and/or priming of HIV-
1-specific cells is occurring in a immunologically privileged
site (60).

Our findings raise two primary concerns; whether during
the period of increased Gag-specific granzyme B response
ART treated PP women are at increased risk of disrupting
immunological balance supporting pregnancy if control of
HIV-1 is reduced, and if there is potential disruption on
HIV-1 control at immune privileged sites which may not
be identified through peripheral blood viral load testing.
While the first may affect pregnancy health, the latter could
impact on transmission risk. All participants were on ART,
which may mask potential pregnancy related fluctuations
in the functional control of HIV-1, and it is possible the
small number of women who became undetectable during
the study may have influenced the longitudinal changes we
found. ART commencement and decreasing viral RNA are
associated with reduced HIV-1-specific functional responses,
suggesting the transient increase observed in granzyme B
response to Gag was not due to these detectable women (61).
The incongruent timing of their longitudinal plasma HIV-1
RNA fluctuations and the lack of association between HIV-1
viral load and ELISpot responses further support this. However,
being a preliminary study we cannot rule out a potential
influence of plasma HIV-1 RNA on HIV-1-specific functional
changes; it is possible ART-induced decreasing viral loads
may promote recovery of Gag-specific CD8T cells, improving
their granzyme B response, while Nef-specific CD8 responses
may decrease with viral load. Positive associations observed
between PD-1 expressing HIV-1-specific CD8T cells and HIV-
1 viral load could suggest decreased viral load after ART
initiation reduces CD8 T-cell exhaustion, in turn benefitting
granzyme B responses which have been shown to be inversely
correlated to viral load and cellular pro-viral DNA (62, 63).
Either way, our results highlight an important aspect of HIV-
1 positive pregnancy that deserves further exploration in
larger cohorts.

While we have explored responses through ELISpot assays,
we were limited in the volume of blood we could take
longitudinally from pregnant women and so were unable to
assess if the changes observed correspond with proliferation
of antigen-specific T-cell subsets, although the relevance of
these responses alone have been demonstrated through the

comparison of HIV-1 controllers to chronic progressors, and
their correlation to both T-cell count and HIV-1 RNA (15,
16, 49). We have also assumed that the observed changes in
HIV-1 responses are antigen specific and driven by alteration
in the production and presentation of antigen, although it
is possible this could be caused by pregnancy induced shifts
in Th1, Th2, and Treg T-cell proportions which were not
measured. Future comparison of paired pre-pregnancy to
pregnancy samples, comparison of other anti-viral responses
in HIV-1 negative pregnant women as well as assessment of
helper T-cell subset changes may better define the influence
of pregnancy on immune function in PP women on ART.
Our study followed an exploratory design so follow up work
is required to confirm these findings. Nevertheless, our results
provide evidence that pregnancy associated immunological
developments differentially affect systemic HIV-1-specific T-
cell function that may impact on viral control, which is
especially relevant as these responses have been linked to vertical
transmission risk.
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