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Current therapies for myasthenia gravis (MG) are limited, and many investigations have

recently focused on target-specific therapies. B cell-targeting monoclonal antibody

(mAb) therapies for MG are increasingly attractive due to their specificity and efficacy.

The targeted B cell biomarkers are mainly the cluster of differentiation (CD) proteins

that mediate maturation, differentiation, or survival of pathogenic B cells. Additional

B cell-directed therapies include non-specific peptide inhibitors that preferentially

target specific B cell subsets. The primary goals of such therapies are to intercept

autoantibodies and prevent the generation of an inflammatory response that contributes

to the pathogenesis of MG. Treatment of patients with MG using B cell-directed mAbs,

antibody fragments, or selective inhibitors have exhibited moderate to high efficacy in

early studies, and some of these therapies appear to be highly promising for further

drug development. Numerous other biologics targeting various B cell surface molecules

have been approved for the treatment of other conditions or are either in clinical trials

or preclinical development stages. These approaches remain to be tested in patients

with MG or animal models of the disease. This review article provides an overview of

B cell-targeted treatments for MG, including those already available and those still in

preclinical and clinical development. We also discuss the potential benefits as well as the

shortcomings of these approaches to development of new therapies for MG and future

directions in the field.
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INTRODUCTION

Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder. Patients with
MG who are seropositive for autoantibodies to the acetylcholine receptor (AChR), muscle-
specific tyrosine kinase (MuSK), or low-density lipoprotein receptor-related protein 4 (LRP4)
present with voluntary muscle weakness due to dysfunctional neuromuscular junctions and
impaired neuromuscular transmission (1, 2). Traditional therapies for MG including thymectomy,
intravenous immunoglobulin (IVIg), plasmapheresis, and corticosteroid therapy can induce
remission, but do not cure the disease. Furthermore, 10–20% of patients remain refractory
to immunosuppressive therapies (3). Hence, there is an immense need for new and effective
treatments for MG, particularly refractory disease.

B cell-directed monoclonal antibody (mAb) therapies show great promise, and many are
currently under development. These approaches primarily intend to eliminate or reduce the
numbers of intact plasma B cells, or precursors of plasma cells, by blocking specific cell-surface
biomarkers or cluster of differentiation (CD) antigens (4, 5). B cells have also been targeted
indirectly, through inhibition of crucial molecules expressed by T-helper cells or other immune
cells, or by inhibition of cytokines and chemokines that mediate affinity-maturation of B cells
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into plasma cells. Important membrane or signaling proteins
that are exclusively or abundantly expressed in B cells or
that contribute to their growth, survival, or overactivity in
the context of autoantibody production and MG pathogenicity
are typically regarded as B cell-specific therapeutic targets or
biomarkers. To date, novel interventions designed to target
such biomarkers have mostly comprised monoclonal antibody-
based treatment approaches. Antibody fragment-based therapies
have also been investigated, while peptide- or RNA-based
therapies are less common, and many new potential therapies are
rapidly emerging.

Both preclinical animal models and clinical studies in
patients have provided abundant information on B cell-targeting
therapies. A rodent model of MG (experimental autoimmune
MG, EAMG), induced by immunization with Torpedo AChR,
typically mimics clinical aspects of generalized MG (6, 7).
Although in their early stages, the results from many preclinical
studies are of considerable importance for future translational
research and clinical application of new therapies. This review
describes recent advances in targeted therapeutic approaches
for MG, with a specific focus on B cell-targeted treatments for
this disease.

B CELLS AS A TARGET FOR MG THERAPY

Both B cells and T cells are central players in the adaptive
immune system. The signaling mechanisms that regulate B
cell differentiation and activation processes are incompletely
understood. Therefore, current B cell-directed therapies focus
primarily on targeting intermediary (e.g., mature B cell subsets
or plasmablasts) or terminally differentiated (e.g., plasma cells or
memory B cells) B cell subsets with pathogenic implications.

B Cell Biology and Subsets
B cell development begins in the bone marrow, the primary
lymphoid organ, with the expression of B cell receptors (BCRs)
in progenitor (Pro)-B cells (8, 9). Pro-B cells generate Pre-B cells,
with complete light chain rearrangement and IgM expression.
These Pre-B cells then leave the bone marrow to enter the
peripheral circulation as transitional or mature B cell subsets.
With the help of CD4+ T cells, mature B cells are activated
to undergo somatic hypermutation and clonal selection, which
generates follicular B cells in the secondary lymphoid organs,
preferentially the spleen. These cells form germinal centers
(GCs) and plasma cells that produce high-affinity class-switched
antibodies, and memory and surrounding marginal zone B
cells (Figure 1). Long-lived plasma cells stably maintain serum
antibody levels, whereas memory B cells are responsible for recall
responses upon antigen re-exposure (10). Most memory B cells
and some long-lived plasma cells migrate to the bone marrow
and replenish circulatory antibodies when needed. Although B
cells reside predominantly in secondary lymphoid tissues (spleen
and lymph nodes), during an infection or disease condition their
numbers increase in peripheral blood and non-lymphoid tissues
(11, 12). With the assistance of tissue-resident memory T cells,
tissue-resident B cells may induce rapid plasmablast responses.

FIGURE 1 | Schematic showing B cell subset differentiation. Pro-B cells

progress through a series of developmental steps to generate mature B cells,

which further differentiate into plasma and memory B cells.

Rationale for MG Therapies Targeting B
Cells
MG is caused by autoantibody produced exclusively from
autoantigen-specific plasma B cells (13). In approximately 80%
of MG patients, the autoantigen is AChR, and the pathogenic
autoantibodies are mainly IgG1 and IgG3 isotype anti-AChR
autoantibodies (IgG2b in the EAMG mouse model). Anti-
AChR antibodies cause generalized MG (affecting body muscles)
and ocular MG (afflicting extraocular or eye muscles), which
occur in ∼85 and 50% of patients, respectively. Around 40%
of patients seronegative for anti-AChR antibody, present with
IgG4 isotype (IgG1 in mouse) antibodies against MuSK. An
IgG2a autoantibody against the agrin receptor, LRP4, has also
been detected in patients with MG seronegative for both anti-
AChR and anti-MuSK antibodies (14). Themechanisms by which
autoantibodies cause muscle pathology in MG have been well-
described. Most anti-AChR autoantibodies recognize the main
immunogenic region present in the α subunit of AChR, which is a
four subunit protein. Binding of anti-AChR autoantibodies with
AChR in the membrane reduces the availability of the functional
receptor to ACh, either by blocking the receptor or leading to its
internalization. Subsequent activation of complement cascades
by the autoantibody leading to the formation of a “membrane
attack complex”, also lyses myocytes (15, 16). Both MuSK and
LRP autoantibodies can disperse postsynaptic AChR clusters
and thereby cause AChR deficiency and muscle fatigue (17).
Based on adequate evidence that autoantibodies cause MG
development and progression through depletion of molecules
critical for muscle function, as well as contributing to persistent
inflammation, the majority of recent B cell-targeted therapies
have focused on depleting B cells, thus reducing or removing
the source of autoantigen-specific autoantibodies in patients
with MG.

In addition to their main pathogenic role in autoantibody
generation, B cells also serve as antigen-presenting cells to
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directly bind antigen on the BCR and present intracellularly
processed antigenic peptides on their surface major
histocompatibility complex (MHC) class II molecules (18).
By upregulating costimulatory molecules, B cells then activate T
cells to regulate their proinflammatory effector functions through
secretion of a variety of cytokines, including tumor necrosis
factor (TNF)-α, lymphotoxin, and granulocyte macrophage-
colony-stimulating factor (19). In contrast, regulatory B cells
(B-regs) secrete the anti-inflammatory cytokine interleukin 10
(IL10) contributing to B cell tolerance. Given their pathogenic
roles associated with autoantibody and inflammatory mediator
production, B cells are considered a preferred target for
therapeutic intervention in MG.

CD Biomarkers for B Cell-Directed Therapy
Approaches
The CD antigens are immune cell biomarkers designated at
Human Leukocyte Differentiation Antigens Workshops, which
are held worldwide. B cells constitutively express a variety of CD
antigens on their surfaces, which define distinct B cell subsets,
in association with one or more specific biological functions
such as survival, adhesion, activation, or inhibition. Due to
their differential expression or activation in disease states, CD
molecules serve as valuable cell surface signatures for B cell-
targeted therapies in clinical trials.

To date, at least 58CD molecules are established as expressed
by B cells; these belong to the Ig superfamily (Ig-SF), tumor
necrosis factor receptor superfamily (TNFR-SF), and cytokine
receptor family. The Ig-SF includes five sub-families of CD
antigens: Fc receptor-like (FCR-L), FCR, signaling lymphocytic
activation molecule (SLAM), triggering receptors expressed on
myeloid cells (TREM), and nectin. The following are among
B cell-restricted CD antigens exclusively expressed (bolded) on
B cells, and expressed either as a receptor or a ligand on B
cells: CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD27,
CD37 to CD39, CD40, CD72 to CD78, CD79a, CD79b, CD80
to CD86, CD138, CD139, CD179a, CD179b, CD180, CD252,
CD254, CD267 to CD269, CD275, CD307e, CD315 to CD317,
CD307a to CD307d, and CD351 to CD363 (20, 21). Some
therapeutically relevant B cell subtypes associated with exclusive
expression of specific CD surface markers include plasma cells,
which express CD269 and CD138 (Syndecan-1); mature B cells,
expressing CD19, CD268, and CD79b; and memory B cells, with
CD27. Many other B cell-specific CD antigens have been targeted
(Figure 2), and those yet to be explored or targeted have potential
for development as new diagnostic markers for MG therapy in
the near future.

Major Mechanisms Associated With B
Cell-Targeted mAb Therapy
The mechanisms by which CD antigen-specific mAbs mediate
B cell depletion can be direct apoptosis of B cells, but
often antibody-dependent cell-mediated cytotoxicity (ADCC)
or antibody-dependent cellular phagocytosis (ADCP), while
complement-dependent cytotoxicity (CDC) or cellular toxicity
(CDCC) are also used (22) (Figures 3A–D). In ADCC, mAb

binding to the B cell epitope is immediately followed by
crosslinking of the fragment crystallizable (Fc) region of the
mAb with the Fc receptor (FcγR) of effector cells (usually
macrophages). The effector cells then polarize and release
cytotoxic granules by perforin- or granzyme-mediated apoptotic
pathways to destroy target B cells. During ADCP, once a mAb
is bound to the target B cell, Fc-FcγR crosslinking activates
effector cells, and the target cell is phagocytosed by the effector
cell for intracellular destruction. In CDC/CDCC, binding of
the Fc portion of B cell-bound mAb with C1q (a complement
component) initiates activation of the complement cascade. C3b
and C4b act as opsonins and subsequently form membrane-
attack complexes (MACs) on target cells, to perforate the cell for
lysis. Engineering the Fc arm of a mAb (e.g., glycoengineering
and site mutagenesis) may further increase its effector function
and serum stability (23).

CLINICAL APPROACHES TO B
CELL-TARGETED THERAPY FOR MG

The first therapeutic mAb for targeted therapy in patients was
a mouse anti-CD3 mAb, muromonab, used to prevent tissue
rejection (24). Subsequently, mAbs have been engineered to
incorporate both human and mouse sequences (humanized),
followed by production of fully human recombinant mAbs.
Chimeric (xi) antibodies consist of human amino acid sequences
in the constant region, while humanized (zu) mAbs contain
human sequences in the variable region. mAbs with partial
chimeric and humanized sequences (xizu) or fully human (u)
sequences have also been produced. The abbreviation “-ci (r)”
is used to describe mAbs that target a circulatory system
component, while li(m) denotes targeting of the immune system
(e.g., -limumab) (25) (Figure 4).ManymAbs have been produced
against different epitopes of the same CD molecule; however,
their therapeutic potential has only been tested in one or a few
specific diseases. Bi- or multi-specific mAbs that recognize two or
multiple epitopes of the same antigen have also been developed.
Single-chain variable fragment (scFv) molecules, consisting of
fusions of variable regions of heavy and light chains connected
by a short peptide linker, have also been used. Currently, the
only additional non-mAb biologicals applied for targeted therapy
are peptide inhibitors and recently generated antibody (Ab)-
mimetics, which are ligand-specific, small synthetic proteins.

Biologicals That Directly Target B Cells
in MG
mAbs

CD20-targeting mAbs
Rituximab or RTX (also known as Rituxan, Rixathon, or
Truxima [Genentech, San Francisco, CA, USA]) is a chimeric
murine-human IgG1k mAb that targets CD20, a 33-kDa protein
expressed on pro-B cells and all mature B cells, but not long-
lived plasma or plasmablast cells. CD20 has an important role in
the growth and differentiation of B cells into plasma cells, and
rituximab can efficiently deplete CD20-positive B cells in MG
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FIGURE 2 | B cell-targeting therapies using CD surface biomarkers. Schematic representation of representative CD antigens expressed on the human B cell surface

and targeted for B cell-specific therapy in autoimmune diseases. Those with asterisks (red) have been targeted for potential treatment of MG and are either approved

for treatment or under investigation. For direct targeting, biologics (e.g., mAb or mAb fragments) directly bind cell surface CD molecules or receptors. Indirect

treatments involve targeting soluble ligands of receptors.

FIGURE 3 | Mechanisms for therapeutic depletion of B cells. Therapeutic antibodies mediate their cytotoxic effects by four possible mechanisms. Cross-linking of

mAb to B cell surface antigen (A) blocks ligand binding of essential receptors that mediate B cell survival (direct apoptosis), (B) triggers engagement of effector cells

through recognition of its Fc sequence, and subsequent phagocytosis by effector cells (ADCP), (C) lysis by granzymes secreted from effector cells (ADCC), or

(D) activates the complement cascade and lysis by C3 deposits and MAC formation on the cell surface.

patients; however, it is ineffective in reducing pathogenic AChR-
Ab levels (26). Long-lived plasma cells are the major producers of
autoAb and lack CD20, hence rituximab targets only short-lived
plasma cells and CD20+, IL10-producing B-regs, or B10 cells,

and reduction of autoAb is generally short term and insufficient,
resulting in only transient clinical improvement (27). Thus,
rituximab-treated AChR-MG andMuSK-MG patients often have
disease relapse or recurrence after an initial phase of disease
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FIGURE 4 | Diagram showing mAb characterization and naming for

therapeutic use.

remission (28). Nevertheless, some studies have reported the
efficacy of rituximab for treatment of MG, particularly MuSK-
MG (29, 30). RTX was approved by USA FDA for treating
refractory RA through intravenous infusion (31). It is also an off-
label prescription for the treatment of refractory SLE, and has
shown 51% complete remission, and 34% partial remission in SLE
and Lupus nephritis (LN) patients (32).

CD40-targeting mAbs
Iscalimab or CFZ533 (Novartis Pharmaceuticals, Basel,
Switzerland) is a fully human, Fc-silenced, IgG1 mAb that
blocks the CD40 signaling pathway, thus preventing activation,
but not causing depletion, of B cells and other CD40-positive
cells. CD40 is expressed on B cells, T cells, and antigen-
presenting cells, and its ligand, CD154, is primarily expressed on
activated T cells (33). The CD40-CD154 interaction is important
for isotype switching, GC formation, memory B cell generation,
and Ab production (34). CFZ533 was evaluated as an add-on
therapy for patients with generalized MG. A multi-center,
randomized, double-blind, placebo-controlled clinical trial that
measured quantitative MG muscle function scores has been
completed, and the results are pending on Clinical Trials.gov.

FcRn-targeting mAbs
Beyond CDs, fragment crystallizable neonatal receptor (FcRn),
an MHC class I-related receptor, was recently recognized as
an important target in MG. This receptor is present on the
cell surface and intracellular vesicles in many cells, including B
cells, but not T cells. FcRn targeting has gained momentum in
current therapies that aim to reduce pathogenic autoantibodies,
as the receptor can inhibit cellular IgG degradation pathways that
recycle IgG to maintain or elevate serum IgG levels (35). The
receptor is also known to be involved in antigen presentation of

peptides from the IgG immune complexes. Inhibition of FcRn
with mAb or a mAb-fragment has shown promising results
in reducing serum levels of pathogenic autoantibody in some
autoimmune diseases, including MG; several trials are ongoing
with the aim of establishing FcRn antagonists as a potent therapy
for MG.

Efgartigimod (ARGX-113; Argenx, Breda, the Netherlands)
is an FcRn antagonist investigational antibody fragment
undergoing phase 3 ADAPT clinical trial for MG treatment.
The therapeutic potential of ARGX-113 against immune
thrombocytopenia and skin blistering diseases is also being
evaluated. ARGX-113 is an Fc fragment of a CD70-specific
recombinant Ab on a human IgG1 background (FR70-hIgG1)
carrying mutations at residues specific for high-affinity binding
to FcRn in B cells. The molecule blocks binding of circulating IgG
to FcRn, thereby preventing IgG recycling and accelerating the
removal of pathogenic IgG from the circulation and other cells. A
single intravenous dose of ARGX-113 inhibited FcRn and caused
a rapid and significant decrease in serum levels of IgG1, IgG2,
and IgG3, but not IgD, IgE, IgM, or serum albumin, in patients
with MG, relative to placebo (36, 37). In another phase 2MG
study involving 15 centers, three doses of ARGX-113 treatment
in 1 month met both primary and secondary endpoints of
tolerability, safety, and efficacy. This treatment rapidly decreased
total IgG, anti-AChR Ab, and improved disease in 15% of
patients (38).

Rozanolixizumab (UCB7665) is another lead candidate,
humanized FcRn mAb. In a phase 2 trial completed in 2018,
subcutaneous infusion of rozanolixizumab in patients with
generalized MG significantly reduced anti-AChR autoantibody
by at least 68% from baseline. Further development and
recruitment of patients withMG for the phase 3 trial was initiated
in 2019. Rozanolixizumab is also being evaluated for use in the
treatment of immune thrombocytopenia (39).

Nipocalimab (M281), manufactured by Momenta
Pharmaceuticals (Cambridge, MA, USA), is a fully human,
recombinant anti-FcRn, glycosylated, IgG1 mAb. M281 received
U.S. FDA-approved Fast Track designation for the treatment of
warm autoimmune hemolytic anemia (phase 2/3) in the USA.
It is also being evaluated in a phase 2 clinical trial (VIVACITY)
which is a randomized, double-blinded, placebo-controlled,
multi-dose trial including 60 patients with generalized MG; and
the results are expected by mid-2020.

Ab-mimetics are ligand-specific small peptides of 3–20 kDa.
They are analogous to the Fab arms of antibodies that lack Fc
and are neither glycosylated nor immunogenic (40). ABY-039
(Alexion, New Haven, CT, USA) is a bivalent Ab-mimetic with
a prolonged half-life form that exhibits high-affinity binding
with FcRn. This therapeutic is currently under consideration for
clinical trials.

Biologicals That Indirectly Target B Cells in
MG
mAbs

B cell-activating factor (BAFF)-targeting mAb
Belimumab (Human Genome Sciences Inc., Rockville, MD,
USA; GlaxoSmithKline, Brentford, UK) is a human IgG1λ
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recombinant mAb that neutralizes the biologically active soluble
form of BAFF, also known as B lymphocyte-stimulating factor,
or BLyS, zTNF4, TNFSF13B, THANK, and TALL-1. Both
membrane-bound and soluble forms of BAFF are produced
by non-B cells; for example, monocytic and dendritic cells.
BAFF binds with three different receptors: (1) Blys receptor
3 or BAFF receptor, which is predominantly expressed on
mature B cells; (2) B cell maturation antigen (BCMA), which
is exclusively found on plasma and memory plasma B cells;
and (3) transmembrane activator and calcium modulator and
cyclophilin ligand interactor (TACI), which is present on
marginal zone and class-switched memory B cells. Based on
preclinical experiments demonstrating that BAFF overexpression
under autoimmune conditions induces autoreactive B cells that
correlate with increased autoantibody levels, belimumab was
developed to inhibit binding of BAFF to its receptor. BAFF also
has a role in MG development and progression (41). Although
belimumab treatment in patients with SLE had moderate efficacy
in a multicenter phase 3 trials, treatment in an FDA-approved
randomized MG study did not produce significant effects in
patients with either AChR-MG or MuSK-MG (42).

Inhibitors

Proteasome-targeting inhibitors
Bortezomib (Velcade; Millennium Pharmaceuticals, Cambridge,
MA, USA) is an FDA-approved proteasome inhibitor for
treatment of cancer that has also exhibited clinical efficacy in MG
(43). Further, bortezomib has can induce clinical improvement in
SLE and has shown promising results in the treatment of MuSK-
MG (43, 44). In the EAMG rat model, bortezomib reduced
anti-AChR-antibody levels, prevented motor endplate damage,
and induced clinical improvement (45). The inhibitor has also
been shown to deplete plasma cells and specific autoantibody
production in primary thymic cell cultures from patients with
early-onset MG (46). Bortezomib allows cellular accumulation
of misfolded or unfolded damaged protein, or unprocessed
protein, that cannot be degraded or recycled or form a processed
protein via proteasome pathway. Excessive build-up of such non-
functional proteins leads to cell death (47). As plasma cells are
actively engaged in producing autoantibodies in MG, significant
accumulation of damaged and unprocessed proteins occurs, due
to their rapid transcription and translation activities. Bortezomib
can also hinder nuclear factor kappa-light-chain-enhancer of
activated B cells (NFκB) activation through inhibition of IκB
proteolysis, thereby suppressing transcription of NFκB-regulated
genes (e.g., IL6, BAFF-R, etc.) (48). This drug has been assessed
in a phase IIa trial on patients with therapy-refractory MG
with significant disease activity, and the study result is currently
awaited (49).

B Cell-Targeting MG Therapies That Act via
Blockade of Cytokines and Chemokines
Proinflammatory cytokines and chemokines (ILs) have major
roles in MG pathogenesis. Inflammatory cytokines prime
and activate dendritic cells, antigen-specific T-helper cells,
and B cells, and induce pathogenic differentiation and
development of plasma cells. Therefore, drugs designed to

inhibit cytokine/chemokine activity also represent valid potential
treatment strategies.

Tocilizumab (TCZ; RoActemra R© or Actemra R©; Roche, Basel,
Switzerland), also known as atlizumab, is a recombinant
humanized mAb against the IL6 receptor (IL6-R). Of various
cytokines that mediate Th1 and Th2 responses, IL6 plays a
prominent damaging role in MG (50). Mice with an acquired
or inborn deficiency of IL6 are resistant to MG, and anti-IL6
antibody reduces autoantibody levels and suppresses disease in a
rat model of EAMG (50, 51). Although monocytes/macrophages
are the main producers of IL6, it is also generated by
numerous other cells, including muscle, epithelial, and B cells
themselves. IL6 binds to IL6-R, CD126, or soluble IL6-R,
and the ligand-receptor complex binds to CD136 (GP136),
which dimerizes and subsequently activates intracellular kinases.
Tocilizumab binds both cell-surface-bound and soluble IL6-R
and prevents the proinflammatory effects of IL6. A published
case report described two patients with MG refractory to
rituximab treatment who showed clinical improvement after
tocilizumab treatment, without any effect on autoantibody titer
(52). Tocilizumab treatment has also demonstrated clinical
effectiveness against RA, juvenile idiopathic arthritis, Castleman’s
disease, and Crohn’s disease.

TNF is also produced at low levels by B cells. Conflicting
results have been reported regarding the use of the TNF-
α-inhibiting molecule, Enbrel R© (etanercept, Benepali, Erelzi;
Amgen, Thousand Oaks, CA, USA), and anti-TNF-α mAb
treatment in MG and preclinical models. While etanercept (a
fusion molecule containing the ligand-binding domain of human
TNF receptor 2 and IgG1 Fc) was beneficial for patients with low
plasma levels of IL6 and interferon (IFN)γ (53, 54), this TNF-α
antagonist decoy receptor originally developed for treatment of
RA, reportedly exacerbated MG in a patient with RA (55) and
also reactivated tuberculosis in some patients (56, 57).

B Cell-Targeting Potential Biologicals in
Trial for Non-MG Autoimmune Diseases
This section describes some B cell-targeted potential therapeutics
that have not yet been clinically tested for use in patients with
MG. These drugs have shown promising results in early stage
clinical studies for non-MG autoimmune diseases and therefore
are potential pipeline drugs for future testing in MG.

Anti-CD19 mAb
Inebilizumab (MEDI-551) is a humanized high-affinity anti-
CD19, IgG1κ mAb. Although plasma cells lack CD19 expression,
this mAb induces effective ADCC to deplete almost all other
B cells, including precursor-plasma cells. In phase 3, double-
masked, randomized, placebo-controlled “N-Momentum” trial,
inebilizumab demonstrated increased efficacy for the treatment
of neuromyelitis optica spectrum disorder (NMOSD). In April
2019, the company Viela Bio received FDA Breakthrough
Therapy Designation (BTD) approval for inebilizumab. BTD
approval permits expedited development and fast regulatory
review of drugs for life-threatening conditions, and those that
achieve a minimum of one clinically significant endpoint.
Inebilizumab has also receivedOrphanDrugDesignation by both
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the FDA and the European Medicines Agency for treatment of
NMO or NMOSD. This mAb has not yet been investigated for
MG treatment.

Anti-CD20 mAb
Ocrelizumab (Ocrevus; Genentech), another CD20-binding
humanized mAb, is FDA-approved for treatment of relapsing-
remitting multiple sclerosis (RRMS) and primary progressive
multiple sclerosis. Ublituximab (TG-1101; TG Therapeutics,
New York, NY, USA) is a glycoengineered, B cell-depleting
effective anti-CD20 mAb that has entered a phase 3 trial
for treatment of MS. Veltuzumab (Immunomedics, Morris
Plains, NJ, USA), a fully human anti-CD20 mAb, is currently
under development for treatment of non-Hodgkin lymphoma
and autoimmune diseases. TRU-015 (Trubion Pharmaceuticals
Inc., Seattle, WA, USA: Pfizer Inc., New York, NY, USA),
a fully human, anti-CD20 IgG fusion protein, is currently
being evaluated for RA therapy. Anti-CD20 mAbs, such as:
obinutuzumab (Gazyva; GlycArt Biotechnology AG, Schlieren,
Switzerland; Roche), ofatumumab (Arzerra R©), and tositumomab
have been used in combination with chemo- or radiotherapy for
the treatment of cancer.

Anti-IL6 mAb
Antibodies such as sarilumab, sirukumab, and siltuximab were
developed to target IL6 for the treatment of RA or other diseases
(58); however, these drugs have not yet been considered for use
in the treatment of MG.

Anti-IFN mAb
Rontalizumab was developed by Genentech for treatment of
SLE. It is a humanized IgG1 anti-IFNα mAb that neutralizes all
IFNα subtypes and inhibits signaling through the type I IFN
receptor (IFNAR). Primary and secondary endpoints were not
met in the phase 2 trial. In a separate study, SLE patients with
low IFN signature metrics who were treated with rontalizumab
showed improvements in disease activity, reduced flares, and low
steroid requirements (59). Sifalimumab, also a human anti-IFNα

mAb, was developed by Medimmune (Gaithersburg, MD, USA).
Recently, its trial was terminated by the company and replaced
with a competing product, anifrolumab, for phase 3 trials. There
are contradicting reports of the beneficial and adverse effects of
IFN treatment in isolated case studies of patients with MG or
EAMG experiment (60–62). As yet, IFN-I has not been targeted
for MG clinical trial.

Anti-α4β1 Integrin mAb
Natalizumab (Biogen, Cambridge, MA, USA) is a recombinant
humanized mAb that targets α4β1-integrin expressed by
B cells. Natalizumab prevents binding of B cells to the
endothelial adhesion molecule, VCAM, and consequently
inhibits transmigration of B cells from the blood into tissues.
Clinical trials revealed significant improvement and clinical
efficacy in patients with RRMS treated with natalizumab.

BAFF and TACI Inhibitors
Anthera Pharmaceuticals (Hayward, CA, USA) developed
another BAFF specific inhibitor, blisibimod, with high avidity

against both soluble and membrane residing BAFF. In phase 2
clinical trial, blisibimod generated a response in SLE patients
with disease severity (4). Further, in phase 3 trials of responder
patients, the secondary endpoint was not met, although
this treatment was associated with successful steroid-sparing
and reductions in SLE autoantibodies and B cells. Atacicept
(developed by ZymoGenetics, Seattle, WA, USA; handled by
Merck Serono, Darmstadt, Germany) is a recombinant fusion
protein that blocks the activation of TACI by APRIL and BAFF.

PRECLINICAL STUDIES OF POTENTIAL B
CELL INHIBITION USING THE EAMG
MODEL

Many promising results of the use of B cell-targeted therapies for
MG in mice models have been reported. These preclinical studies
demonstrate the potential to target B cells for future translation in
the clinic for MG therapy. The following section describes some
preclinical studies that targeted B cells alone or in combination
with other immune cells involved in MG pathogenesis.

Proteasome Inhibitors
ONX-0914, a selective inhibitor of the immunoproteasome, has
been reported to ameliorate EAMG severity by reducing the
frequency of T follicular helper cells, antigen-presenting cells,
and Th17 cells, as well as decreasing the affinity of B cell-
generated autoantibodies (63).

Chemokine Antagonists
Although MG is a B cell-mediated disease, B cell/T cell
interaction plays a critical role in MG pathology. New
therapies may also consider targeting factors involved in these
specific interactions, particularly proteins belonging to the
CC and CXC family of chemokine ligands and receptors,
which are produced by peripheral blood mononuclear cells,
lymph node cells, macrophages, and thymic GCs. Based on
in silico analyses, potential therapeutic chemokine targets
include: CXCR2, CXCR3, CXCL1, CXCL3, CCL, CCL19, and
CCL20 (64–67).

MicroRNA Inhibitors
MicroRNAs (miRNAs) are important immune regulators of
numerous soluble inflammatory mediators and are potential
targets for future intervention in MG. Differential levels of
miRNAs in activated B cells (e.g., miR-146a) or serum have
also been reported in an EAMG mouse model (68), and
inhibition of these molecules reduced B cell activation and
AChR-specific antibody levels. miR-150-5p and miR-21-5p are
found at higher levels in patients seropositive for AChR, and
their levels decrease following immunosuppressive therapy and
thymectomy. Increased levels of the Let-7 family of miRNAs in
MuSK-positive MG are also of great interest (69).

Humanized scFv Against a DQB1 Allele
Associated With Susceptibility to MG
In a preclinical study, a humanized scFv was developed from
the mouse mAb, LG11, which targets MG-susceptible-specific
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human leukocyte antigen (HLA) alleles. The scFv was shown to
block the proliferation of T cells cultured from peripheral blood
lymphocytes from patients withMG carrying DQB1∗0601, which
is associated with susceptibility to MG (70).

Recombinant AChR Fragment
Induction of tolerance by adoptive transfer of autologous
regulatory T cells (T-regs) or mucosal delivery of AChR is
effective for treatment of EAMG (71); however, the usefulness
of these treatments has yet to be fully evaluated clinically.
Consonni et al. recently reported that repeated intranasal
administration of microgram quantities of a fusion protein that
carries the immunodominant peptide from AChR, mCTA1-
T146, suppressed both induction of EAMG, as well as ongoing
disease in mice. Treated mice showed increased preservation of
muscle AChR and low levels of anti-AChR serum antibodies.
Tolerance was induced by increased T-reg cell activation
and upregulated expression of Tgfβ , Il10, Il27, and Foxp3
mRNAs in the spleens and lymph nodes of mice (72).
Similar induction of tolerance in EAMG has been described
in response to nasal or oral delivery of recombinant AChR
fragment, presumably by skewing Th1 to Th2/Th3 immune
responses (73).

BAFF Receptor-Specific mAb-siRNA
Conjugates
In a different approach to targeting specific B cells, a fusion mAb-
siRNA conjugate was constructed using a small <7-kDa protein
(protamine), that covalently binds with B cell-targeting mAbs
through hetero-bifunctional linkers and forms stable electrostatic
bonds with B cell-specific siRNAs. The mAb in the conjugate
binds to the B cell receptor and, upon internalization by receptor-
mediated endocytosis, releases siRNA from the complex into
the cell for degradation of B cell-specific pathogenic mRNAs.
Treatment of EAMG mice with these conjugates can markedly
reduce B cell frequencies (74). In an ongoing study, conjugates
consisting of innate immune-resistant, modified siRNAs are
being evaluated for therapeutic efficacy.

PERSPECTIVES: ADVANTAGES,
LIMITATIONS, AND FUTURE CHALLENGES
FOR B CELL-TARGETING THERAPIES FOR
MG

There is an immediate but unmet need for effective MG
therapy, particularly for patients with refractory disease. The high
specificity, less off-target effects, and long-lasting, robust effects
of B cell-specific mAb therapy make it attractive and especially
useful for inhibiting proteins that do not have binding pockets
available for an inhibitor.With the advent of humanized and fully
human mAbs, mAb therapy is currently used as a first-line or
standard treatment among targeted therapy approaches for many
autoimmune diseases. The introduction of novel engineered
mAbs is further evidence of the important progress occurring in
the field.

Although mAbs can produce long-term cell-specific effects,
stand-alone mAb therapy has some limitations, including
inadequate understanding of its in vivo mechanism of action,
adverse effects, and non-sensitivity to therapy (e.g., unaltered
autoantibody levels or clinical pathology) despite significant
depletion of target cells, which have been observed in many
patients with MG following various B cell-directed mAb
therapies. Currently, a major challenge for mAb therapy for
autoimmune disease is inefficient reduction of pathogenic
antibody, which is usually the primary goal of therapy. Tissue-
trafficking of pathogenic plasma cells or precursor plasma cells
to distant sites following targeted therapy is likely one cause of
resistance to complete elimination of those cells, autoantibody
reduction, and disease activity. Another highly probable cause
is therapy-induced expression of molecules such as type I IFNs,
which stimulate antigen presentation and affinity maturation
of antibody-producing cells (74). High-dose mAbs may impart
some therapeutic benefits to patients, but they also cause severe
side effects, and patients are at risk of contracting infections and
may generate innate-immune or interferonogenic effects (74).
Hence, determination of the optimal dose for each therapeutic
mAb is critical.

An approach using a combination of potent mAbs for targeted
therapy may be effective. Targeting more than one subset of
B cells, multiple targets, or specific B cells alongside B cell-
interacting T cells and B cell-activating soluble mediators in
the microenvironment, may result in synergistic reduction of
autoantibody levels and therapeutic benefits. Treatment with
mAb alone (or mAb-based therapy) is often inconvenient for
both preclinical and clinical assessment due to their prolonged
manufacturing times and high-cost relative to small molecule
peptide inhibitors or therapeutic nucleic acids. However, most
inhibitors have non-specific modes of action, risking induction
of peptide-specific humoral responses or loss of activity over
time. Nucleic acid therapy using modified RNA should be
considered to prevent interferonogenic innate immune responses
or immunogenicity of the therapeutic itself. Combining or
conjugatingmore than one therapeutic molecule may also greatly
enhance the therapeutic potential of B cell-specific therapy.

Changes in specific saccharide or sugar residues (fucosylation
and galactosylation) can significantly modulate mAb effector
function. Enzymatic removal of fucose and addition of galactose
moieties to IgG1 mAbs can markedly increase their ADCC
activity (75). The mechanism involves preferential binding of Fc
to activating-FcγRIIIa (relative to inhibitory-FcγR) on effector
cells, as determined by in vitro natural killer cell-based assays.
Site-selective glycoengineering of both the Fc and Fab domains of
a chimeric anti-epidermal growth factor receptor (EGFR) mAb
has recently been shown to lead to increased ADCC activity
(76). Future strategies for targeted B cell therapies may further
exploit these technological advances by producing engineered
mAbs that can potentially enhance B cell killing function and
therapeutic efficacy.

Development of promising therapies largely depends on
success in preclinical studies. The EAMG mouse model is
valuable for therapeutic evaluation and redesign of promising
B cell-targeted MG therapies. The classical EAMG model,

Frontiers in Immunology | www.frontiersin.org 8 February 2020 | Volume 11 | Article 240

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Huda B Cell Therapy for MG

generated by Torpedo-AChR immunizations, is preferable
to systems using passive autoantibody transfer and thymic
engraftment models (77–80) due to its chronic nature and
mimicry of human MG. However, disadvantages of this model
are the delay and lack of homogeneity in the incidence and
clinical grades of immunized mice, despite comparable levels of
high-affinity anti-AChR antibody. Hence, in individual studies
researchers may choose to immunize an excess of animals to
bolster statistical power. Another drawback of the EAMG model
is the rapid progression of symptoms following disease onset,
leading to mortality in some mice and reducing the number
of experimental animals and durability of long-term assessment
of therapeutic agents. The traditional tedious and inefficient
method of immunogen purification from Torpedo tissue is also
inconvenient and can be improved by utilizing new technologies
and biomolecules such as UltraLink Biosupport (ThrmoFisher,
CA, USA), a high-performance resin for the neurotoxin coupling
reaction. Improving this animal model for more effective
exploitation in preclinical therapy development will be essential
for successful intervention in the clinic and effective MG therapy.
Regarding therapeutic evaluation in clinical settings, recruitment
of patients with similar disease profiles and their subsequent
retention, as well as the fluctuating nature of the disease, are often
challenging for proper evaluation of therapy. Other factors that
potentially affect the successful outcome of clinical trials include
study length, cost burden, and regulatory aspects.

It is important to be vigilant for occurrence of adverse effects
of immunotherapy for cancer in patients with MG or underlying
mild or latent MG (81–83). For example, treatment of patients
withMGwith ipilimumab (anti-CTLA4mAb) for melanoma and
lung cancer had fatal consequences (84). Further, combination
therapy using mAb or inhibitors against checkpoint proteins
(PD-1, PD-L1, and anti-CTLA-4) to treat cancers can induce or
exacerbate MG, or even cause patient death (85, 86). It is likely
that the robust immune activation and inflammatory response
triggered by checkpoint protein-specific mAbs, although critical
for cancer therapy, is detrimental to patients with MG, due
to rapid development of myasthenic crisis; however, patients
with MG and associated conditions other than cancer, such
as thyroiditis due to anti-thyroid antibodies, lupus with anti-
nuclear antibodies, and neuro-myelitis spectrum disorder with
anti-aquaporin-4 antibodies (5), do not show adverse reactions
following B cell-directed therapy.

CONCLUSIONS

Developing strategies to find or develop an effective therapy
for MG and many other debilitating and potentially life-

threatening autoimmune diseases is an important research
priority. Many potent candidate B cell-targeted therapies
for MG are less effective or unsuccessful at the preclinical
and clinical phases of development. These failures are
primarily caused by weak immunosuppressive responses,
non-specific immunogenicity, or safety concerns. Furthermore,
targeted therapies currently licensed for use are effective
but have drawbacks. Therefore, identifying and developing
safe and effective means to improve the efficacy of these
crucial therapies are urgently required. More preclinical
studies of MG are needed to validate both new therapeutics
and those that have already been proven effective for
related neuromuscular autoimmune diseases. Additionally,
identification of new and validated target(s), repurposing other
targeted therapies, administration of combination therapies
directed at multiple targets, and targeting antigen-specific
B cells rather than a pan-B cell approach, may help to turn
these targeted-therapy approaches into effective methods for
ameliorating MG.

Overall, recent advances in targeted-therapy approaches have
contributed significantly to our knowledge that has subsequently
led to a multitude of new therapeutic modulations and emerging
therapy approaches. For example, the development of highly
potent, non-immunogenic, engineered mAbs and synthetic
alternatives to mAbs, such as Ab-mimetics (e.g., monobodies and
nanobodies), and even small RNA therapeutics, is encouraging
and offers hope. These approaches may soon lead to the
production of additional next-generation targeted therapeutics
and long-awaited effective interventions against MG.
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