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The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range

of biological processes, including inflammation, cell proliferation, differentiation, and

apoptosis. The past three decades have witnessed a great progress in understanding the

impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders.

In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis,

a typical inflammatory demyelinating disease of the central nervous system, and its

involvement in developing potential therapeutic targets.
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INTRODUCTION

Nuclear factor κB (NF-κB) comprises a family of transcription factors that coordinate hundreds of
genes expression by forming homodimers or heterodimers (http://www.bu.edu/NF-$\upkappa$B/
gene-resources/targetgenes/). In mammals, there are five members of NF-κB family: RelA (p65),
RelB, c-Rel, p105 (NF-κB1), and p100 (NF-κB2). In most resting cells, NF-κB is sequestered in
the cytoplasm through interacting with any of a family of inhibitors of κB (IκB) proteins, such as
IκBα, IκBβ, and p100. Upon stimulated signals, IκB kinase (IKK) rapidly phosphorylates IκB and
facilitates its ubiquitination and proteasomal degradation, which ultimately enables the entrance of
NF-κB into the nucleus and elicits its transcriptional activity (1).

The general NF-κB signaling cascade can be categorized as canonical (classical) and non-
canonical (alternative) pathways (Figure 1). The canonical NK-κB signaling pathway can be
induced by extensive numbers of stimuli including Toll-like receptor ligands, proinflammatory
cytokines [e.g., tumor necrosis factor α (TNF-α)], and antigens, leading to the activation of IKK
complex, which comprises IKKα (IKK1), IKKβ (IKK2), and NF-κB essential modulator (NEMO,
also known as IKKγ). The IKK complex then phosphorylates IκB proteins, allowing the cytoplasmic
NF-κB dimers (usually p50–p65) to be released from the degraded IκB. The activation of canonical
pathway has been shown to mediate a wide range of biological functions within minutes (2, 3). In
contrast, the non-canonical NK-κB signaling pathway responds to only a specific set of stimuli such
as B cell-activation factor (BAFF), lymphotoxin β, CD40 ligand (CD40L), and receptor activator of
nuclear factor kappa-B ligand (4–6). Once stimulated, NF-κB–inducing kinase specifically activates
IKKα, which in turn processes the p52 precursor, p100, into p52, and mature p52 subsequently
translocates to the nucleus via its dimerization with RelB. Unlike the canonical pathway, this
process can be slow and is involved in a limited number of cellular responses (7).

Given that NF-κB affects almost the entire arsenal of immune guardians and immune cells
(1), special concern has gradually been focused on the pivotal role of NF-κB dysregulation
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FIGURE 1 | NF-κB signaling cascade. Nuclear factor-κB (NF-κB) activity is stimulated by canonical (classical) and noncanonical (alternative) pathways. The canonical

pathway can be activated by extensive numbers of stimuli, such as lipopolysaccharide (LPS), antigens, and tumor-necrosis factor (TNF). The inhibitor of NF-κB (IκB)

kinase (IKK) complex that comprises IKKα (IKK1), IKKβ (IKK2), and NF-κB essential modulator (NEMO, also known as IKKγ) is a point of convergence for the canonical

pathway, which phosphorylates IκB proteins, allowing the cytoplasmic NF-κB to be released and to enter into the nucleus to elicit transcriptional activity. The

noncanonical pathway responds to a different set of ligands, including CD40 ligand (CD40L) and B cell-activation factor (BAFF). Upon binding of these ligands to their

cognate receptors, NF-κB-inducing kinase (NIK) specifically phosphorylates IKKα, which processes the p100 into mature p52. The p52 then translocates to the

nucleus via its dimerization with RelB to activate noncanonical NF-κB target genes.

in many autoimmune inflammatory diseases including
multiple sclerosis (MS), systemic lupus erythematosus, and
type 1 diabetes.

MS AND ITS ANIMAL MODELS

Multiple sclerosis is a multifactorial inflammatory demyelinating
disease of the central nervous system (CNS) marked by
repeated demyelination and disabling outcomes (5, 8). Although
the exact etiology of MS remains unclear, the interaction
between predisposing genes and environment triggers MS at
a preclinical phase, primarily through affecting the immune
system (8). As aberrant peripheral immune cells invade
the CNS through disrupted blood–brain barrier (BBB) and
induce further inflammation, oligodendrocytes, and neurons
are preferentially injured, thereby leading to demyelination

and neurodegeneration. Analysis of active human MS lesions
demonstrates a complicated immune repertoire that includes but
is not limited to lymphocytes, antibodies, cytokines/chemokines,
macrophages, microglia, and complement (Figure 2) (9, 10).

Among this intrinsic network, autoreactive T cells against
myelin antigens are believed to initiate and augment disease
once they migrate into the CNS, where they are reactivated
(11). This idea has been reinforced by several lines of indirect
evidence: first, myelin-reactive T cells were isolated from
both the blood and cerebrospinal fluid of MS patients (12,
13); second, an exacerbated outcome was reported in MS
patients treated with a myelin basic protein–derived altered
peptide ligand (14); finally, some MS risk variants (e.g., HLA-
DRB1∗1501) were associated with antigen presenting process
(15). Despite the fact that myelin-reactive T cells are present
in healthy individuals and absent in some MS patients (16,
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FIGURE 2 | The impact of NF-κB on MS animal models. The effects of nuclear factor-κB (NF-κB) on experimental autoimmune encephalomyelitis (EAE) and cuprizone

models are summarized as follows. c-Rel and IKKβ in macrophages/microglia might influence the production of pro-inflammatory cytokines/chemokines, M1

macrophage/microglia phenotype polarization, and T cell immune responses. The deficiency of IKKβ in oligodendrocytes does not alter myelin formation,

demyelination, and remyelination; however, blocking RelB and the canonical pathway results in a decreased number of mature oligodendrocytes. NF-κB1 and the

canonical pathway are required to augment local inflammation through driving the production of pro-inflammatory mediators and suppressing the levels of

neuroprotective molecule adhesion molecules and CD8+ CD122+ regulatory T cells (Tregs). Neuronal IKKβ has been suggested to suppress CNS inflammation. By

contrast, conditional deletion of the neuronal NF-κB pathway by the transgenic expression of an IκBα super-repressor did not influence the EAE course. c-Rel is

essential in Treg, T helper 1 (Th1), and Th17 differentiation. In addition to c-Rel, Th1 differentiation is also regulated by RelB, whereas NF-κB1 is essential in mediating

Th2 responses.

17), studies have identified several features, such as cytokine
secreting profile, activation requirement, and the level of
interleukin 2 (IL-2) receptor, which can help distinguish between
MS and healthy subjects (18, 19). Further investigations are
clearly needed to determine whether self-reactive T cells play
a pathogenic role in MS pathogenesis. In this article, we
discuss below the prevailing concept that T helper 1 (TH1),
TH17, and CD8+ T cells are the major drivers of MS,
whereas regulatory T cells (Tregs), perhaps plus TH2, confer
protective properties.

Most of our understanding on how the immune system
regulates MS has originated from experiments performed
in experimental autoimmune encephalomyelitis (EAE), a
widely used animal model induced by immunizing rodents
with myelin proteins/peptides or passively transferring the
myelin-reactive T cells to elicit a T cell–mediated autoimmunity

(20–22). Experimental autoimmune encephalomyelitis, despite
its limitations, mimics many clinical and immunopathological
features of human MS. Other models for MS include viral-
induced (e.g., Theiler’s virus) and toxic-induced (e.g., cuprizone
and lysolecithin) demyelinating disorders. Current work
exploring the role of NF-κB in MS is based on EAE and the
cuprizone model, which is applied to study demyelination and
remyelination mechanisms independent of antigen-specific T
cells and share some resemblance to those of pattern III MS
lesions (23). Demyelination of cuprizone model is characterized
by pronounced accumulation of microglia and astrocytes,
whereas the contributions of blood-derived immune cells and
BBB are minimal (24, 25). Therefore, the role of NF-κB cascade
in MS will be discussed, in both humans and animal model
(EAE and cuprizone model) with much attention paid to the T
cell functioning.
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THE EVIDENCE OF NF-κB INVOLVEMENT
IN HUMAN MS

With the advent of genome-wide association studies and other
genetic technologies, a large set of MS susceptibility variants has
recently been reported, some of which fall in or near genes that
regulate the NF-κB pathway, such as NFKBIZ and RELA (25–
31). Subsequent studies have noted increased levels of NF-κB in
total peripheral blood mononuclear cells (PBMCs), CD3+/CD4+

T cells, and monocytes from patients with MS (32, 33). In
addition, CD4+ T cells from donors carrying rs228614-G, an
MS risk variant proximal to NF-κB1, exhibited increased IκBα

degradation and NF-κB p65 nuclear translocation after TNF-α
stimulation (34). The altered NF-κB responses were due to the
enhanced expression of NF-κB itself, with the rs228614-G variant
inducing a 20-fold increase in NF-κB p50 and decrease in several
negative regulators of NF-κB (34). Some studies have shown a
link between increased NF-κB–related genes in T cells and MS
relapse (35, 36). More recently, anotherMS risk allele, rs7665090-
G, was shown to upregulate NF-κB signaling and target genes
in astrocytes that increased lymphocytic infiltration and MS
lesion size. These findings help to explain how NF-κB may
contribute to MS progression in various respects (30). Combined
with pathological studies that detected activated NF-κB subunits
in macrophages, microglia, oligodendrocytes, astrocytes, and
perivascular lymphocytes near or in active MS plaques (37, 38),
studies to explore the impact of dysfunctional NF-κB on different
cell types on MS would be of interest (Table 1).

THE IMPACT OF NF-κB ON DIFFERENT
CELL TYPES

Macrophages/Microglia
Notably, brain residentmicroglia, which are developmentally and
functionally distinct from blood-borne myeloid cells, are now
known to originate from embryonic yolk sac precursors. Because
of the phenotypic similarities between microglia, CNS-resident
macrophages, and circulating monocyte-derived macrophages,
surface markers such as CD11b and F4/80 used by most
studies actually stain all these populations (39). Thus, unless
otherwise specified, the effects of macrophages/microglia in MS
are discussed together.

Prominent macrophage and microglial activation at the
site of actively demyelinating plaques is believed to play a
central role in MS development (23). Consistent with this,
increased nuclear expression of RelA, c-Rel, and NF-κB p50
in macrophages, as well as RelA in microglia, was found to
correlate with MS lesion activity (38). Moreover, recent studies
have suggested that M1 phenotype macrophages/microglia are
crucial in driving EAE progression by secreting large amounts
of proinflammatory cytokines and chemokines and reactivating
encephalitogenic T cells as antigen-presenting cells (APCs),
whereas M2 phenotype macrophages/microglia protect against
disease and have a potent ability to release anti-inflammatory
molecules and growth factors (40). Researchers found that mice
in which Ikkβ was conditionally knocked out in myeloid cells,

which targeted the majority of macrophages and microglia,
exhibited ameliorated EAE progression accompanied by reduced
levels of macrophage/microglia infiltration, M1 polarization,
and CD4+ T cell responses (41). Similarly, the silencing
of c-Rel in macrophages alleviated EAE symptoms through
suppressing proinflammatory cytokines and T cell accumulation
(42). Depletion of microglial transforming growth factor β-
activated kinase 1 (TAK1), a molecule that modulates NF-κB,
was shown to inhibit the NF-κB canonical pathway and attenuate
EAE pathology (43). By contrast, knocking out NF-κB regulatory
protein A20 in microglia was associated with massive microglia
activation, neuroinflammation, and increased EAE pathology
(44). And knocking out IκBα inmousemyeloid cells led to similar
findings. These mutant mice displayed constitutively active NF-
κB, which led to a prominent increase in macrophages/microglia,
T cells, and key proinflammatory mediators (45).

Notably, because the mechanism of NF-κB regulation is
not entirely clear, changing certain molecules may result in
opposing outcomes. For instance, in contrast to the findings in
IKKβ-deficient macrophages, blocking IKKα was shown to elicit
aberrant NF-κB activation that mademacrophages hyperactive to
various stimuli (46).

Oligodendrocytes
By immunohistochemistry, strong immunoreactivity for NF-κB
p65 was observed in approximately half of the oligodendrocytes
in active, but not chronic silent, MS lesions (38). To assess
the impact of NF-κB on normal oligodendrocyte maturation,
demyelination, and remyelination in an MS background,
Raasch et al. depleted IKKβ in CNS cells (IKKβCNS-KO)
and oligodendrocytes alone (IKKβOligo−KO) (47). As a result,
structurally intact myelin sheaths with similar numbers of
oligodendrocyte progenitor cells and mature oligodendrocytes
were observed in IKKβCNS-KO and IKKβOligo−KO mice compared
with their wild-type littermates (47). Further studies revealed
comparable degrees of demyelination and remyelination between
IKKβOligo−KO and control in both EAE and cuprizone models,
suggesting that NF-κB in oligodendrocytes is dispensable for
myelin loss in patients with MS. However, because IKKβ

modulates signaling pathways other than that of NF-κB, such
as the extracellular signal–regulated kinase (ERK)-1/2 pathway
(48, 49), NF-κB–independent effects on oligodendrocytes cannot
be completely ruled out. Similar to mice in which IKKβ had
been deleted, mice in which c-Rel, RelB, NF-κB p52, NEMO,
or IKKα had been deleted were shown in previous reports to
display proper brain myelination under normal conditions (50–
52). Notably, NF-κB activity is crucial in orchestrating Schwann
cell differentiation and myelination in the peripheral nervous
system (PNS), which is in sharp contrast to its role in the
CNS; NF-κB activity is crucial in orchestrating Schwann cell
differentiation and myelination in the PNS (53).

Furthermore, opinions on the role of NF-κB differ. In
a recent study, researchers generated a mouse model that
specifically expressed IκBα1N, a super-suppressor of NF-κB,
in oligodendrocytes and documented identical demyelination
and remyelination in cuprizone model between IκBα1N+ and
IκBα1N− mice. However, IκBα1N mice exhibited markedly
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TABLE 1 | Summary of NF-κB expression in different types of multiple sclerosis.

References Participants Methods Samples Main conclusions

Yan et al. (33) 34 RR-MS, 20

SP-MS, 13 PP-MS,

39 HC

WB, Immunocytochemistry,

DNA-binding assay

PBMC Compared to HC, nuclear NF-κB p65 was increased in patients with

SP-MS and PP-MS; T cells from all MS subgroups and monocytes

from PP-MS showed a higher nuclear p65 proportion than those from

HC; the p65 DNA-binding activity in unstimulated PBMC was greater in

SP-MS and PP-MS compared to HC.

Eggert et al. (32) 5 RR-MS, 5 PP-MS,

10 SP-MS, 24 HC

DNA-binding assay PBMC The level of DNA-binding p50 in 20MS was significantly higher than in

HC but remained unchanged after therapy; the mean level of

DNA-binding p65 in 20MS was proportionate to that of HC, which

decreased directly after therapy.

Satoh et al. (35) 6 RR-MS Microarray analysis CD3+ T

cells

Molecular network analysis suggested a key role of NF-κB in aberrant

gene expression in T cells during MS relapse.

Housley et al. (34) unclear WB, qPCR,

Immunocytochemistry,

Luminex

PBMC,

plasma

Naïve CD4+ cells from MS patients had higher NF-κB phospho-p65

than those from HC; MS risk variant rs228614 near NF-κB1 was

associated with increased NF-κB signaling; rs1800693 in TNFR1 was

associated with enhanced NF-κB responses to TNF-α and plasma

cytokines.

Chen et al. (74) 12 RR-MS, 7 SP-MS,

5 NMO, 9 HC

WB, Flow cytometry PBMC,

CD19+ B

cells

B cells from patients with RR-MS and SP-MS exhibited a higher level of

NF-κB phospho-p65 after CD40L stimulation compared with HC; after

CD40L incubation, no differences in phospho-p65 were found between

NMO and HC, but its basal level was much higher in NMO.

Hussman et al. (88) 772MS, 17376 HC GWAS Blood, cell

lines, or

saliva*

A large subset of MS candidate genes was found to interact in a

tractable pathway regulating the NF-κB pathway, Th1/Th17 T cell

infiltration, and maintenance of regulatory T cells.

Gveric et al. (38) 17MS, 6 HC Immunocytochemistry CNS tissue In HC white matter, activated NF-κB p65 was found in microglial nuclei,

while the c-Rel and p50 subunits and IκBα were restricted to the

cytoplasm; in MS active lesions, p65, p50, and IκBα were all present in

macrophage nuclei; some hypertrophic astrocytes exhibited nuclear

NF-κB p65; perivascular lymphocytes showed nuclear localization of

c-Rel.

Bonetti et al. (37) 11MS, 3 HC Immunocytochemistry CNS tissue In HC white matter and silent MS lesions, the active form of the NF-κB

p65 was negligible; up-regulated nuclear NF-κB p65 was observed in

active MS lesions on a large proportion of oligodendrocytes and

microglia/macrophages.

MS, multiple sclerosis; RR-MS, relapsing-remitting MS; SP-MS, secondary progressive MS; PP-MS, primary progressive MS; NMO, neuromyelitis optica; HC, healthy controls; WB,

Western Blot; PBMC, peripheral blood mononuclear cells; CNS, central nervous system.
*DNA from most samples were extracted from venous blood, and some were extracted from cell lines or from saliva.

impaired oligodendrocyte regeneration and remyelination
compared to control mice in the presence of interferon γ

(IFN-γ) (54). Consistently, IκBα1N+ mice developed much
more severe EAE because oligodendrocytes from these mice
were more vulnerable to inflammation than those from control
mice (54). These data indicate that NF-κB activation may, at
least in some circumstances, promote oligodendrocyte survival
during inflammation. In contrast, mice in which RelB was
absent specifically in oligodendrocytes (RelB1Oligo) showed
a decrease in the loss of mature oligodendrocytes, which in
turn prevented demyelination upon EAE challenge (55). This
protective phenotype was proposed to be the consequence of
increased NF-κB p65 activity that protected oligodendrocytes
against inflammation. Interestingly, the altered course of EAE
in IκBα1N and RelB1Oligo mice was more dependent on
controlling oligodendrocytes themselves, while the change
in inflammation was not significant. Additionally, there was
evidence that patients with additional copies of IKBKG, the gene
encoding NEMO, experience defective CNS myelination due
to NF-κB inactivation (52). To date, the effects of NF-κB on

oligodendrocytes in normal myelin formation and MS remain
ambiguous, and as oligodendrocytes are the main target of
MS, further efforts are required to provide clues for future
therapeutic approaches.

Astrocytes
In addition to their role in forming the BBB and supporting
neurons, astrocytes are crucial in regulating CNS inflammation
(56). Previous reports found nuclear NF-κB p65 in hypertrophic
astrocytes in the parenchyma of active MS lesions (38). Recently,
Ponath et al. demonstrated that the MS risk variant rs7665090G,
which is located near NFKB1, is associated with upregulated NF-
κB and target gene expression (e.g., IFN-γ and TNF-α) in human
astrocytes (30). Further characterization revealed stronger
immunofluorescent staining for activated NF-κB, chemokines
(e.g., CXCL10 and CCL5), and C3d located within the
hypertrophic astrocytes and greater perivascular T lymphocyte
infiltration in MS lesions with the rs7665090 risk than those
with a protective genotype (30). In addition, MS-approved agent
fingolimod (FTY720) has exhibited strong anti-inflammatory
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properties through inhibiting NF-κB activity in astrocytes (57,
58). Therefore, by modulating astroglial NF-κB and thereby
relieving the inflamed CNS microenvironment, it is possible to
reduce tissue injury and promote later recovery. Consistently,
glial fibrillary acidic protein (GFAP)–IκBα-dominant-negative
(dn) mice, in which NF-κB was inactivated specifically in
astrocytes, manifested alleviated symptoms and steady functional
improvement following EAE induction compared to those in
wild-type control mice (59). Central nervous system of these
mutant animals were characterized by the reduced expression
of several proinflammatory cytokines/chemokines and increased
levels of CD8+ CD122+ Tregs, neuroprotective molecules, and
unexpectedly, CD45+ leukocytes and IL-6 (59). Another study
provided similar results based on cuprizone model that the
inactivation of astroglial NF-κB dramatically prevented axonal
loss through inhibiting proinflammatory cytokines and gliosis in
GFAP-IκBα-dn mice (47). Blocking astroglial RelB, however, had
a very limited impact on the course of EAE and mainly delayed
disease onset with a mild or no effect on CNS inflammation (47).
Finally, several adhesion molecules required for BBB integrity,
including intercellular cell adhesion molecule 1 and vascular cell
adhesionmolecule 1, were found to be reduced in GFAP-IκBα-dn
EAEmice, further supporting the therapeutic value of interfering
with NF-κB in astrocytes.

Although current studies consistently recognize that the
activation of astroglial NF-κB exerts detrimental effects on
EAE and MS, blocking NF-κB activation may also bring
unfavorable outcomes. Many neurotrophic factors released by
astrocytes, including nerve growth factor, glial cell line–derived
neurotrophic factor, and brain-derived neurotrophic factor, are
dependent on the NF-κB pathway (60, 61). Furthermore, IL-6
and leukocytes of GFAP-IκBα-dn EAE mice were significantly
upregulated in the CNS (59). Later research conducted by
the same group showed, however, a robust reduction in most
immune cell populations in the CNS of GFAP-IκBα-dn mice at
chronic EAE phase compared with controls (62).

Neurons
Although neurons generally do not express major
histocompatibility complex class I and II molecules and
therefore fail to participate in antigen presentation, a growing
amount of evidence now suggests that neurons may suppress
microglial/microphage activation through the CD220-CD220R
interaction, act with T cells to control their survival, and induce
the conversion of encephalitogenic T cells to Tregs (63, 64).

Constitutively high basal levels of NF-κB in neurons are
essential for regulating cell morphology and plasticity and
involved in behavior, learning, and memory (65). Neuronal
IKKβ-deficient mice developed a severe, non-resolving form
of EAE accompanied by the enhanced accumulation of TH1
and NK1.1+ cells and proinflammatory cytokines in the CNS
(66). In contrast, conditional deletion of the neuronal NF-κB
pathway by the transgenic expression of an IκBα super-repressor
did not alter the course of EAE (67). One possible explanation
for this finding is that IKK ablation, as mentioned above,
simultaneously influences other signaling pathways in addition
to NF-κB signaling (48). Therefore, other molecules triggered

by IKKβ, such as tumor progression locus 2, an important
element involved in ERK-1/2 pathways (63), might confer
neuroprotection owing to the ability of ERK-1/2 to promote
remyelination and decelerate EAE (68, 69). Additionally, the
super-repressor was grossly absent in the hindbrain, brainstem,
and spinal cord (67), which to some extent restricted the
magnitude of neuronal NF-κB deficiency.

B Cells
Multiple sclerosis has historically been considered a T cell–
mediated autoimmune demyelinating disorder. However, an
increasing amount of data from neuropathological studies and
anti-CD20–directed B cell therapy have made it clear that B
lymphocytes also play a critical role in driving inflammation
and MS progression (10). B cells have a strong capacity to
secrete cytokines and antibodies and reactivate T cells, thereby
enhancing immune responses. Further observations indicated
that B cells, like T cells, have both pathogenic (effector B
cells) and protective (regulatory B cells) effects in the setting of
inflammation (70–73).

At present, no in vivo studies in an NF-κB–deficient MS
model have been performed. It has been reported that a
proportion of NF-κB p65 translocated to the nucleus was similar
between progressive MS, relapsing MS, and healthy controls
(33). By contrast, a recent study revealed that B cells from MS
patients exhibited an increased level of activated NF-κB p65
following CD40 stimulation compared with healthy controls
(74). The interaction between CD40 and CD40L is a pivotal
step in mediating B cell activities (e.g., survival, proliferation,
and differentiation) (75). Given the close relationship between
aberrant CD40 and autoimmunity (76–78), downregulating the
B cell NF-κB pathway, which is a major signaling cascade,
by CD40 stimulation may reverse the hyperresponsiveness
of B cells induced by CD40 in MS patients. Furthermore,
blocking BAFF, a member of the TNF ligand superfamily that
specifically regulates B cell functions, was found to promote
T cell apoptosis in EAE mice through reducing osteopontin
release in an NF-κB–dependent manner (79). The causal MS
variant SP140 (rs28445040-T), which induces decreased SP140
expression, was recently suggested to exerts its function in B cells
through upregulatingNF-κB activity (80). Finally, the therapeutic
mechanism of dimethyl fumarate, which is approved for MS
management, has been shown to correlate with a dramatic
reduction in proinflammatory B cell subsets in vitro partially due
to the inhibition of NF-κB activation (81).

In addition, some indirect evidence also points to the
benefit of downregulating B cell NF-κB to control excess
inflammation. Studies in NF-κB knockout mice have identified
distinct functions of different NF-κB proteins. B cells lacking
RelB exhibited a proliferation deficit but normal maturation, Ig
secretion, and Ig class switching (82). The c-Rel deficiency in
B cells was associated with germinal center (GC) collapse and
impaired cell growth, whereas RelA deficiency was associated
with the weakened development of plasma cells (83). In addition,
NF-κB2 deletion mice presented with deficits in antibody
secretion, GC reactions, and splenic microarchitecture (84),
and NF-κB1 blockade resulted in diminished T cell–dependent
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antibody responses (85). B cell NF-κB is also essential in
preventing autoimmunity, as suggested by de Valle et al., who
observed a multiorgan autoimmune disease in NF-κB1 knockout
mice that was largely attributable to the dysregulated activity of B
cells, which released aberrant levels of IL-6 (86). Overall, because
it is difficult to predict whether these immune dysfunctions
induced by B cell NF-κB blockade occur in EAE or MS and
affect their pathophysiology, further investigations are needed to
explore this unidentified issue.

T Cells
CD3+ T lymphocytes are predominant in the demyelinating
tissues of patients with MS. However, as CD4+ T cells are
the major mediators of CNS injury during the course of EAE,
in studies of human MS, in which conspicuous CD8+ T cells
are infiltrated throughout lesions at all stages, whereas CD4+

T cells are sparse or even absent, an added challenge for
determining the precise role of CD4+ T cells is ascertaining
whether these effectors are more critical in disease initiation than
in established MS (11). And so far, no approved clinical trial
that selectively eliminates CD4+ T cells has provided definitive
evidence of clinical efficacy (87). The significance of T cells
and key differences in the inflammatory response between MS
patients and EAE animals has recently been reviewed in detail,
and caution must therefore be taken when extrapolating animal
findings to humans.

There are data, but no direct proof as of yet, associating T
cell NF-κB signaling with the risk and maintenance of MS. First,
the level of lymphocytic DNA-binding NF-κB p50 was found
to be higher in MS patients than in their healthy counterparts,
and NF-κB p65, despite its normal level of expression, decreased
significantly during therapy (32). In another study, naive CD4+

T cells from MS patients were reported to exhibit enhanced
activation of NF-κB p65 (34). Moreover, the team identified
that the presence of MS risk variant rs228614 proximal to NF-
κB1 resulted in increased degradation of IκBα and NF-κB p65
phosphorylation in both TNF-α-stimulated or PMA (phorbol 12-
myristate 13-acetate)–stimulated CD4+ T cells (34). Similarly,
Yan et al. observed that the amount of nuclear NF-κB p65
in CD3+ T cells of all MS subgroups was significantly higher
compared with healthy controls (33). Second, a large number of
MS candidate genes were found to interact in a tractable pathway
regulating TH1/TH17 inflammation, Treg tolerance, and NF-κB
induction (88). The imbalance between Treg and TH1/TH17
cells critically involves in the pathogenesis of EAE and other
autoimmune and inflammatory diseases (89, 90). Finally, the
data from a network analysis of the CD3+ T cell transcriptome
implicate aberrant regulation of gene expression by NF-κB as a
biomarker of acute MS relapse (35).

In T cells, the mediation of NF-κB subunits by the
downstream of T cell receptor mainly requires p50-p50, p50-p65,
or p50-c-Rel dimers (91). The importance of NF-κB1 (p50/p105)
functioning can be seen inmousemodels; NF-κB1–deficientmice
develop normally and acquire a structurally normal immune
system but are resistant to EAE. Further investigation suggested
that this protection was due to the hindered activation and
differentiation of MOG-specific TH1 and TH2 cells in these

mutant EAE mice (92). Notably, as NF-κB p105 also belongs to
the IκB protein family, previous studies have noted a remarkable
increase in the activation of CD4+ T cells and a higher frequency
of memory/effector T cells in mice specifically deficient for p105
compared to wild-type mice (93). Nuclear factor κB1, however,
may also have beneficial effects because NF-κB1–deficient EAE
mice showed more infiltrated inflammatory cells in the CNS than
control mice. Consistently, p50-deficient mice exhibit augmented
microglial proinflammatory responses after peripheral injection
with lipopolysaccharide (94).

Although c-Rel knockout mice do not suffer from
development defects, studies have clarified that T cells
from these mice are impaired in their ability to activate
and generate cytokines such as IL-2, IL-3, and granulocyte–
macrophage colony-stimulating factor and differentiate into
effector populations (95–97). Similar to mice lacking NF-κB1,
mice lacking c-Rel were shown to be protected from EAE
(98). In contrast to NF-κB1–deficient mice, in which TH2 cell
differentiation was preferentially compromised (99), splenocytes
derived from c-Rel–deficient mice produced undetectable IFN-γ
and increased levels of IL-4 (98), denoting their non-overlapping
capacities for different NF-κB molecules. Later in vitro studies
led to the conclusion that c-Rel–deficient CD4+ T cells are
intrinsically unable to generate IFN-γ under both TH0- and
TH1-polarizing conditions (98). Moreover, c-Rel–deficient APCs
displayed a substantially reduced level of IL-12 p40, an essential
cytokine for TH1 cell differentiation, which further aggravated
TH1 cell deficiency (98). In addition to promoting TH1 cells,
c-Rel is involved in the development of TH17 cells through
directly controlling expression of the Rorc gene, which encodes
the TH17 cell–specific transcription factor retinoic acid–related
orphan receptor γt, and indirectly facilitating APCs to generate
IL-23, a critical molecule known to enhance IL-17 expression
by CD4+ T cells (97, 100, 101). Consistent with these findings,
the inability to provoke optimal TH1 and TH17 cell immune
responses occurred in parallel with an ameliorated phenotype in
c-Rel knockout mice after EAE induction (98, 100). Moreover,
c-Rel may additionally influence cytotoxic T lymphocytes
because cell survival was dramatically impaired in c-Rel-deficient
CD8+ T cells that could be reversed with IL-2 addition (102);
however, the capacity of c-Rel-deficient CD8+ T cells to clear
viral infection was not affected (103). Although c-Rel deficiency
confers resistance to several T cell–dependent autoimmune
disorders such as EAE and collagen-induced arthritis (100, 104),
novel data have demonstrated the anti-inflammatory effect
of c-Rel in promoting the Treg cell lineage, as revealed in
c-Rel–deficient mice, in which thymic and peripheral CD4+

Foxp3+ T cells were vastly reduced in number compared to
wild-type counterparts (105, 106). Defects in Treg cells are now
thought to be partially due to the direct regulation of Foxp3
enhanceosomes by c-Rel (107). Furthermore, as the addition
of exogenous IL-2 was sufficient to rescue Foxp3 deficiency,
decreased IL-2 generation in c-Rel deletion mice may amplify
the lack of Treg cell expansion (106). Notably, despite their
decreased frequency, c-Rel-deficient Tregs were indicated by in
vitro and in vivo findings as capable of suppressing effector T
cells at normal ranges (105).
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There are no data exploring the changes in EAE under
NF-κB p65-deficient conditions because of embryonic lethality
and liver degeneration (108). Lymphocytes derived from SCID
(severe combined immunodeficient) mice transplanted with p65-
deficient fetal liver cells displayed normal development and IL-
2 expression but were defective in their proliferative response
to various mitogens (108). Moreover, p65 deficiency in T cells
largely blocked TH17 cell differentiation in a manner similar
to that of c-Rel deficiency, which was caused by reduced Rorg
activity in the TH17 cell lineage (101). In contrast, studies
utilizing T cell–specific p65 mutant mice have indicated that
p65 is dispensable in TH17 cell differentiation but required for
another important source of IL-17, γδ T cells (109). On the
other hand, p65 might prevent EAE with its potent capacity
to modulate Treg cell homeostasis. In recent years, mounting
evidence has identified p65 as an essential component in mature
Treg cell identity formation, tolerogenic function, and egress
from the thymus (110–112). Finally, in addition to c-Rel, TH1
differentiation is also regulated by RelB. The absence of RelB in T
cells led to a dramatic decrease in TH1 differentiation and IFN-γ
production, but the conventional TH17 polarization was normal.

THERAPEUTIC POTENTIAL FOR MS

The therapeutic efficacies of many approved treatments for
MS are now thought to be attributed, at least in part, to
blockade of NF-κB pathway of the peripheral nervous system
and CNS immune response. Dimethyl fumarate, for instance,
was shown to effectively inhibit the generation of IL-6, TNF,
nitric oxide (NO), and NF-κB activation in stimulated microglia,
and its active metabolite, monomethyl fumarate, was found
to suppress myeloid dendritic cell (DC) maturation partially
via NF-κB signaling, hence reducing proinflammatory activities
in cocultured T cells (113–115). The effects of FTY720 and
phosphorylated FTY720 were observed to decrease NF-κB
activity in cultured astrocytes (57, 58). And the most widely
used glucocorticoids were found to downregulate NF-κB through
both directly inhibiting p65-dependent gene activation and
indirectly enhancing IκBα synthesis (116, 117). Responsiveness
to laquinimod, a novel immunomodulatory compound for
relapsing-remitting MS, was linked to its ability to impair
DC maturation and function through NF-κB interference
(118). Moreover, laquinimod was reported to ameliorate CNS
inflammation and myelin loss in a cuprizone model by
attenuating astrocytic NF-κB activation (119).

Although no NF-κB inhibitors have been approved to the
clinical treatment for MS, the beneficial effects of NF-κB
interference by a considerable number of natural components
(e.g., piperlongumine and denanthin) have been suggested in
basic animal studies (120, 121). Moreover, the selective NF-
κB inhibitor pyrrolidine dithiocarbamate markedly alleviated
the incidence and severity of EAE in rats (122). The IKK1/2
inhibitor reduced plasma IL-17 and IFN-γ levels and reduced
EAE symptoms (123). Administration of PS-1145, a compound
that inhibits IKK2- and NEMO-dependent canonical NF-
κB signaling but maintains the alternative NF-κB signaling
pathway, effectively improved EAE, which was characterized
by decreased lymphocytic proliferation and cytokine (IL-2 and

IL-17) production (124). Similarly, peptides corresponding to
the NEMO-binding domain displayed a potent propensity to
suppress encephalitogenic T cell generation and activation and
TH1 cell responses, thus significantly protecting against EAE
(125). Finally, a novel peptide from glucocorticoid-induced
leucine zipper (GILZ), a molecule that binds and inhibits NF-κB
p65, was shown to increase the level of IL-10 and reduce IFN-γ,
IL-12, and IL-17 levels in GILZ-treated EAE mice (126).

As discussed above, excessive and persistent immune
reactions primarily contribute to MS tissue injury. This context
gives rise to uncontrolled NF-κB activity, which further drives
ongoing inflammation in a self-amplifying cycle. Several lines
of evidence have highlighted the beneficial effects of NF-κB
pathway inhibition based on clinical and basic data. However,
because basal NF-κB is crucial to normal cellular physiology
and pathogen clearance, the non-selective blockade of NF-
κB may therefore lead to many unwanted side effects, as we
recently reported that the blockade of TNFR1 or TNFRII had
a completely difference consequence on TH17 and Treg cells
(127). Furthermore, as NF-κB exerts diverse effects depending
on the isoform member, type of activated cells, and strength
of the triggering event, it would be difficult to predict the
therapeutic outcome. Another hurdle lies in the differences
between the EAE model and human MS, as well as the
heterogeneous pathogenesis in patients with relapsing and
progressive MS (11). As such, great effort has been made to
increase the safety of NF-κB interference, including selectively
diminishing NF-κB activity by targeting the IKK complex,
IκB proteins, and the ubiquitin–proteasome system (124, 125).
Organ-specific NF-κB interference has raised much attention
owing to its potential effect to avoid systemic side events. Local
administration of NF-κB decoy oligodeoxynucleotides (ODNs)
encapsulated in a viral vesicle was shown to treat various
models of inflammatory colitis without impairing extraintestinal
NF-κB activation (128). Further study on the delivery of a
naked NF-κB decoy ODN to inflamed tissue also indicated
success in improving murine bowel disease and restoring colon
homeostasis (129).

CONCLUSION

Multiple sclerosis is an autoimmune inflammatory disease
driven by the complex interaction between environment and
predisposing genes. Compelling data support the critical role
of aberrant NF-κB activation, which triggers proinflammatory
activities via multiple aspects, in the pathogenesis of MS and
EAE. As NF-κB has both beneficial and detrimental effects,
promising agents have been explored to retain essential NF-κB
activity. In this regard, a better understanding of the molecular
events that determine the point at which NF-κB responses
switch from being protective to mediating damaging effects is
needed for the therapeutic modulation of neuroinflammation
and neurodegeneration.
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