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Extracellular vesicles (EVs) play an important role in the cellular crosstalk by transferring

bioactive molecules through biological barriers from a cell to another, thus influencing

recipient cell functions and phenotype. Therefore, EVs are increasingly being explored as

biomarkers of disease progression or response to therapy and as potential therapeutic

agents in different contexts including in hematological malignancies. Recently, an EV

role has emerged in allogeneic hematopoietic cell transplantation (allo-HCT) as well.

Allogeneic hematopoietic cell transplantation often represents the only curative option

in several hematological disorders, but it is associated with potentially life-threatening

complications that can have a significant impact on clinical outcomes. The most

common complications have been well-established and include graft-versus-host

disease and infections. Furthermore, relapse remains an important cause of treatment

failure. The aim of this review is to summarize the current knowledge, the potential

applications, and clinical relevance of EVs in allo-HCT. Herein, we will mainly focus on

the immune-modulating properties of EVs, in particular those derived from mesenchymal

stromal cells, as potential therapeutic strategy to improve allo-HCT outcome. Moreover,

we will briefly describe the main findings on EVs as biomarkers to monitor graft-versus-

host disease onset and tumor relapse.

Keywords: extracellular vesicles, allo-HCT, immune-reconstitution, GvHD, disease-relapse

INTRODUCTION

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic procedure
applied to a broad range of hematological disorders, most frequently acute leukemias and
myelodysplastic syndromes (1). Hematopoietic cell transplantation consists of the intravenous
infusion of hematopoietic stem and progenitor cells, from a fully or partially human leukocyte
antigen (HLA)–matched healthy donor, which aims to reestablish a normal hematopoiesis and
immune functions. Before HCT infusion, a conditioning regimen is necessary to provide an empty
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stem cell niche in the host bone marrow (BM) for new stem
cells. Following engraftment, allo-HCT contributes to control the
underlying malignancy through a graft-versus-leukemia (GvL)
effect that is mainly mediated by donor-derived alloreactive
T cells and/or natural killer (NK) cells (2). However, HCT is
still limited by potentially life-threatening complications, the
management of which has markedly improved, although still
associated with high morbidity and mortality (3).

The most important complications after allografting are acute
and chronic graft-versus-host disease (GvHD), which remain the
main cause of morbidity and mortality despite the high number
of clinical trials aimed at improving prophylaxis and therapy
(4, 5).

Acute GvHD (aGvHD) usually develops within 100 days after
allo-HCT in 30% to 50% of patients (1). Typical aGvHD target
organs are the skin, gastrointestinal tract, and liver. Chronic
GvHD (cGvHD) is a pleiotropic entity observed in 30–70% of
patients and deeply affects patients’ quality of life. It involves
potentially most organ systems including, among the others, the
lung, oral mucosa, eyes, joints, hair and nails, musculoskeletal,
and genital tract (6, 7).

Graft-versus-host disease occurs when immune cells of donor
origin recognize the recipient tissues as foreign. The first step
in aGvHD pathogenesis is the conditioning regimen-induced
tissue damage and infiltration of the gastrointestinal tract by
neutrophils and monocytes. Moreover, release of reactive oxygen
species, DAMP (damage-associated molecular pattern), and
PAMP (pathogen-associated molecular pattern) molecules elicit
inflammation and activation of both innate and adaptive immune
responses (8). Donor alloreactive T cells recognizing major or
minor histocompatibility antigens of the host is the key event in
aGvHD pathogenesis. The targeting of host cell death is mediated
by the expression of Fas Ligand and by release of granzyme B and
perforins (9). Another significant factor in aGvHD pathogenesis
is the production of cytokines and chemokines [e.g., interleukin
(IL)-1, interferon γ (IFN-γ), tumor necrosis factor (TNF), IL-6]
that can directly and indirectly exert cytotoxicity (10).

Chronic GvHD pathogenesis consists of three phases: the
first phase is characterized by tissue damage and production
of DAMPs and PAMPs as in aGvHD, resulting in activation
of antigen-presenting cells (APCs) and T cells. During phase
2, priming and expansion in lymph nodes and thymus of B
lymphocytes and T cells (mostly T helper (TH) 1, 2, and 17),
respectively, are observed. Of note, thymus injuries due to
the conditioning regimens have been associated with reduced
generation of regulatory T cells. Then, deposition of extracellular
matrix and fibrosis (third phase) is the result of chronic
inflammation and fibroblast activation (11). Immunosuppressive
agents are needed to prevent and treat GvHD.

Following HCT, a prolonged state of immunodeficiency is
observed (12). Therefore, patients are exposed to the risk of
infectious complications, often severe and difficult to treat.

Unfortunately, the immunosuppressive agents can also reduce
the beneficial GvL effects, leading to an increased risk of disease
relapse. Indeed, disease relapse still represents the major cause
of allo-HCT failure, and many efforts are being made to prevent
it, including immunosuppression modulation, disease-specific

drug intervention, or delayed lymphocyte infusions, which can
be used alone or in combination (13). In this context, early
detection of disease reappearance is particularly important (14),
because results are commonly dismal after an overt relapse has
occurred (15).

In this review, we will discuss the main characteristics of
extracellular vesicles (EVs), which make them very attractive for
the development of their potential application as biomarkers for
the most common post–allo-HCT complications or EV-based
therapeutic strategy. Furthermore, we will focus on the immune-
modulating properties of EVs derived from mesenchymal
stromal cells (MSCs), which have been widely characterized in
allo-HCT field.

EXTRACELLULAR VESICLES

Extracellular vesicles are membrane enclosed particles, secreted
by virtually all cell types and containing different biomolecules,
including nucleic acids, proteins, lipids, and carbohydrates
(16). In recent years, several studies demonstrated that EVs
play an essential role in intercellular communications, thus
being involved in regulation of physiological homeostasis, as
well as in pathological states by influencing cell proliferation,
differentiation, organ homing, injury and recovery, and disease
progression (17). Extracellular vesicles can be further classified
based on their dimension and origin (16). The term “extracellular
vesicles” is widely used mainly to describe the two most
abundant EV populations, that are the microvesicles (MVs),
which originate from outward protrusion or budding of the
plasma membrane, and the exosomes (EXs) of endosomal origin
(Figure 1).

Extracellular vesicles target recipient cells by surface
molecules, and once attached, they can induce intercellular
signaling via receptor–ligand interaction (Figure 2);
alternatively, they can be internalized by endocytosis and/or
phagocytosis, or they can fuse directly with the plasmamembrane
releasing their cargo (miRNAs, proteins, and other bioactive
molecules) (18). The cargo content could have short- and
long-term implications on target cell phenotype and function.
For example, miRNAs could negatively regulate complementary
mRNA, after being released, mediating its cleavage with
subsequent degradation or translation inhibition.

Because different cell types can release discrete subpopulations
of EVs, each with different proteomic and RNA cargo and
membrane protein composition, they can mediate different
biological and sometimes opposite effects, because of their vast
heterogeneity and specificity (19–23).

Because of the therapeutic potential of EVs and to better
understand their pathophysiological role, many studies have
been designed to identify in EVs molecules responsible of their
great effect and to serve as biomarkers. In this context, it has
been observed that EVs released from immune or regulatory
cells can partially regulate immune responses. This property
has great therapeutic potential in allo-HCT, in which immune
cells play a major role in mediating GvL effects and reducing
GvHD (Figure 3).
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FIGURE 1 | Biogenesis and composition of extracellular vesicles. (A) Diagram illustrates the well-accepted model for extracellular vesicle biogenesis. Microvesicles

and ARMM [arrestin domain–containing protein 1 (ARRRDC1)–mediated microvesicles] originate from budding of plasma membrane, whereas exosomes from the

endosomal compartment (multivesicular endosome). (B) EVs carry several bioactive molecules such as membrane and intraluminal proteins (e.g., adhesion molecules,

MHCI), lipids (e.g., lipid raft, sphingomyelin, disaturated lipids, phosphatidylserine, ceramide), nucleic acids (miRNAs, genomic and mitochondrial DNA, and mRNA),

and organelles.

FIGURE 2 | Potential communication mechanisms and biological functions of EVs. (A) Potential intercellular communication mechanisms between donor cells and

recipient cells. Intercellular communication can occur: (1) direct interaction of ligands expressed on the surface of EVs with receptors on the recipient cell membrane;

(2) direct fusion of the EVs with the cell membrane of the recipient cell, resulting in the release of their content; or (3) internalization through the endocytic pathway,

which can result in (a) degradation via the lysosomal pathway, (b) transcytosis, or (c) fusion of the EVs with membrane of the endosome, resulting in content release.

(B) Potential biological functions of EVs on recipient cells. Microvesicles and exosomes may dock at the plasma membrane of a target cell. Bound vesicles may either

fuse directly with the plasma membrane or be endocytosed. Both pathways result in the delivery of proteins, lipids, and RNAs into the membrane or cytosol of the

target cell. Binding of EVs to specific receptors can stimulate recipient cells through a signal transduction or by transferring receptors into the recipient membrane.
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FIGURE 3 | Potential application of extracellular vesicles in allografting. Red arrows represent potential effect of infused EVs; green arrows represent potential

application of EVs as biomarkers. HSC, hematopoietic stem cells; HCT, hematopoietic cell transplantation; EVs, extracellular vesicles; MSCs, mesenchymal stromal

cells; GvL, graft-versus-leukemia; GvHD, graft-versus-host disease.

EV Production and Characterization
The importance of the starting material (cell cultures, tissue
specimen, biological fluids) and its preprocessing (time of
harvest, storage) are considered crucial for EV applications.
Recently, the International Society of Extracellular Vesicles
(ISEV) established general guidelines to uniform EV collection
and characterization (24). Some experiments were conducted
to asses EV stability in plasma and serum under different
storage conditions and concluded that storage temperature
does not significantly affect EV stability as well as their cargo
(25). Conversely, the presence of different contaminants (such
as lipoproteins, protein complexes, platelets), patient-related
variables (age, gender, time of collection, etc.), and source of EVs
should be carefully considered (24).

Another critical point is the isolation method. As a matter
of fact, many techniques developed in recent years are more
suitable for research rather than clinical applications. At present,
the gold standard protocol is the differential ultracentrifugation
(24), which could be coupled with other techniques such
as density gradients, precipitation, filtration, size exclusion

chromatography (SEC), and immune isolation to eliminate
contaminants (24). However, this method would be difficult to
translate into the clinical setting, given its high cost and lack of
automatization (26).

The potential EV application in clinical practice requires
user-friendly, cheaper, and faster methods for EV isolation
and characterization. Moreover, the introduction of EVs as
therapeutic agent needs methods that allow high yield and purity.
Tangential-flow fractionation and SEC meet those requirements
with minimal manipulation of the starting material. Tangential-
flow fractionation separates particles in a filter column
containing hollow fibers applying a tangential flow. Size exclusion
chromatography isolates EVs according to their size, relying on
the correlation between elution volume or diffusion coefficient
and the molecule hydrodynamic radius. Both methods could be
coupled to obtain a scalable and Good Manufacturing Practices
grade product (27–29).

Extracellular vesicle application as biomarkers does not
necessarily require big yields and purity collection methods.
Commonly used techniques with a high translational potential
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are precipitation-based protocols that allow fast and user-friendly
EV isolation for further biomarker identification analyses.
In addition, direct immunoaffinity capture, which employs
immunomagnetic beads to isolate and characterize EVs, is
a suitable technique easy to apply in the clinical setting.
This technique allows the concomitant isolation of specific
subpopulation of EVs and in part their characterization (30).

New lab-on-chip methods have been proposed as diagnostic
platforms (31) and can be coupled with high-throughput
procedures offering the possibility to extend EV research into
routine diagnostic and therapeutic settings.

Different methods can be used to characterize the
concentration and size of EVs (32). Dynamic light scattering and
nanoparticles tracking analysis rely on the Brownian motion of
particles to measure size distribution and concentration of EVs.
Both techniques are widely employed, although data might be
influenced by EV composition and presence of contaminants,
as lipoproteins (24). Others methods for size measurement that
are recommended by ISEV are flow cytometry (33) and resistive
pulse sensing (34).

Electron microscopy and atomic force microscopy are more
precise tools that allow size and morphology evaluation of EV
population (32). Unfortunately, these techniques do not allow
further cargo characterization that should be investigated for
clinical application. To identify the molecules responsible of EV
biological activity, -omic approaches such as RNAseq, Raman
spectroscopy, mass spectrometry, and lipidomic analyses are
required (24, 32).

THERAPEUTIC POTENTIAL OF EVs IN
allo-HCT

MSC-Derived EVs and Modulation of the
Immune Response
Mesenchymal stromal cells are fibroblast-like multipotent cells
that can be isolated from different tissues, including BM,
umbilical cord (UC), and adipose tissue (35). In the BM
niche, these cells play an important role in controlling
hematopoietic stem cell (HSC) fate (36). In detail, BM-MSCs
support hematopoiesis expressing multiple adhesion molecules
necessary for cell–cell and cell–matrix interactions, homing, and
mobilization of HSCs (37).

It is widely assumed that the ability of MSCs to support
hematopoiesis is also mediated by the constitutive secretion
of several soluble factors, such as stem cell factor, leukemic
inhibitory factor, and IL-6 (38–40), thus affecting HSC expansion
and differentiation in a paracrine manner (41–44). Moreover,
MSCs can be easily isolated from different human tissues,
and they possess immune-modulatory properties, influencing
both adaptive, and innate immune responses (45). For these
reasons, allogeneic MSCs appear as a promising source for
cell replacement strategies and have been tested for the
treatment of several diseases, including acute injuries, such as
ischemic stroke or myocardial infarction. However, in non-
immunocompromised patients, allogeneic MSCs are rapidly
rejected by the recipient immune system (46).

Growing evidence suggests that the paracrine effect of MSCs
could be at least partially mediated by MSC-derived EVs (MSC-
EVs). In this regard, by analyzing the miRNA and protein
expression profile in MSCs and MSC-EVs both in normal
and inflammatory conditions, Adamo et al. (47) observed the
presence of several molecules such as MOES, LG3BP, PTX3, and
S10A6 proteins; miR155; andmiR497 involved in immunological
processes. Different in silico approaches have also investigated the
correlation between miRNA and protein expression profile and
then evaluated the putative molecules or pathways involved in
immunoregulatory properties of MSC-EVs.

Thus, given their possible involvement in hematopoiesis
and immune homeostasis, MSC-EVs have been studied as an
alternative therapeutic tool in a variety of preclinical models of
immune disorders, including autoimmune diseases (48, 49) and
GvHD in allo-HCT recipients (50–52).

MSC-EV Effect on Adaptive Immune Cells

Several lines of evidence demonstrated that MSC-EVs can
influence adaptive immunity by modulating both T and B
lymphocyte activity. Mesenchymal stromal cell–derived EVs
are able to suppress T-cell proliferation and to promote a
tolerogenic environment. Indeed, in an experimental murine
model of autoimmune encephalomyelitis, it has been first
observed that BM-MSC-MVs can act on T lymphocytes by
inhibiting their proliferation and by promoting apoptosis of
activated T lymphocytes and the generation of T regulatory
cells (Tregs) (48). This evidence has been further confirmed in
rodent models of allogeneic skin graft, liver injury, and islet
transplantation using human EXs from embryonic- and BM-
derived MSCs (53–55).

In agreement, human in vitro experiments on adipose-derived
MSC-EXs demonstrated that EXs can inhibit the proliferation
and differentiation of T cells as well as their IFN-γ production
ability (56). Similarly, both EXs and MVs derived from BM- and
UC-MSCs are able to suppress T-cell activation and to drive the
expansion of Tregs in both healthy controls and type 1 diabetes
patients (57–60).

This inhibitory effect of MSC-EVs on T-cell proliferation
has been hypothesized to be mediated by the up-regulation
of intracellular pathways, such as indoleamine 2,3-dioxygenase
(IDO) (61, 62), despite no significant change in IDO activity has
been detected upon BM-MSC-EV treatment of human peripheral
blood mononuclear cells (PBMCs) (58, 59). In addition, the
establishment of an anti-inflammatory and tolerant environment
by BM-MSC-EVs is also favored by increased levels of IL-10, IL-
6, transforming growth factor β (TGF-β), and prostaglandin E2
(PGE2) (48, 58, 60).

The effect of MSC-EVs has been investigated in vitro on B
cells as well. In accordance with the observations on T cells, it
has been demonstrated that BM-MSC-EVs are able to inhibit
B-cell proliferation in a dose-dependent manner. Moreover, the
treatment with theseMSC-MVs affects the in vitro differentiation
of human plasma cells from B lymphocytes, as well as the
production of immunoglobulin (Ig) M, IgG, and IgA (63).

Despite these experimental findings on the
immunomodulatory effect of MSC-EVs on adaptive
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lymphocytes, both the B cell–to–plasma cell ratio and the
proliferation of T cells appear to be less affected by human MSC-
EVs than by intact MSCs both in vitro and in vivo. These findings
suggest that the cell–cell contact, although not essential, may
play a pivotal role in the immunosuppressive potential of MSCs
derived from UC, BM, and adipose tissue (51, 64, 65). Moreover,
the immune regulatory effect of human BM-MSC-EVs could
vary depending on the context and on the EV preparation. Thus,
a careful investigation is essential to optimize their therapeutic
potential (66).

MSC-EV Effect on Innate Immune Cells

In addition to the direct effect on adaptive immune cells, MSC-
EVs also modulate innate immune responses. Furthermore, in
vitro evidence demonstrates that BM-MSC-EVs can indirectly
induce an immune-tolerant phenotype in T and B cells by
inducing an anti-inflammatory state on APCs. Indeed, human
peripheral blood (PB) granulocytes and monocytes are more
prone to uptake BM-MSC-EVs than lymphocytes (67). To further
support this observation, it has been shown that MSC secretion
is not sufficient to promote Treg expansion, but the presence of
additional mediators, including monocytes, is essential (68, 69).
The stimulation with EXs isolated from human embryonic–
or UC-derived MSCs induces an anti-inflammatory M2-like
polarization in both human and murine monocytes, via the
activation of TLR-dependent signaling. Such M2-like phenotype
is characterized by an enhanced expression of anti-inflammatory
IL-10 and TGF-β and an attenuated proinflammatory cytokine
(IL-1β, IL-6, TNF-α, and IL-12P40) response. In turn, these
M2 macrophages can promote a Treg phenotype in CD4+ T
cells (53, 70, 71). A possible MSC-EV-mediated mechanism,
determining this unbalance in favor of anti-inflammatory
cytokines, could involve the cyclooxygenase 2 (COX2)–PGE2
axis. As a matter of fact, COX2 is contained in MSC-EVs, and
its amount is particularly high in MSC-EVs preactivated with
proinflammatory stimuli, as demonstrated by in vitro studies on
EVs from human BM-isolated MSCs (67).

Similarly, the in vivo administration of human MSC-EXs
increased the number of circulating Tregs in mice receiving
a skin allograft, preventing graft rejection (53). Furthermore,
in vivo tracking experiments in rats with damaged spinal cord
demonstrated that BM-MSC-EXs localized into the injured site
after infusion. This homing ability of MSC-EXs appeared to be
mediated by macrophages, especially M2 (72). In agreement, a
mouse model of renal dysfunction showed that BM-MSC-EXs
can prevent the chemotaxis of activated macrophages into the
inflamed organ, thus preventing the tissue damage caused by
their accumulation (73).

Similar to monocytes, dendritic cells (DCs) can also be
affected by MSC-EVs. In vitro studies in patients with type 1
diabetes demonstrated that human BM-MSC-EVs are able to
induce an immature and resting phenotype in monocyte-derived
DCs (moDCs), showing a reduced expression of CD80, CD86,
CCR7, and HLA-II molecules. These moDCs produce high levels
of IL-10, IL-6, TGF-β, and PGE2, thus potentially contributing
to create an immune-suppressant microenvironment for T cells

and leading to the induction of Treg during DC and naïve T-cell
co-culture (74).

In addition to APCs, MSC-EVs can also modulate NK cell
activity. In this regard, similarly to adaptive lymphocytes, in vitro
studies demonstrated that human BM-MSC-EVs could suppress
NK cell proliferation especially in presence of inflammatory
stimuli (75). Moreover, the periocular injection of human MSC-
EVs, in experimental rodent models of autoimmune type 1
diabetes and uveoretinitis, appeared to reduce the NK cell
trafficking within the lesions (76, 77).

EV Applications in GvHD
Growing evidence demonstrates that regulatory cells (Treg, NK
cells, invariant NK T cells, multipotent adult progenitor cells,
MSCs, myeloid-derived suppressor cells, innate lymphoid cells)
could play a role in reducing GvHD incidence and severity.
Thus, these cells have been tested as GvHD prophylaxis or
therapy in clinical trials (78). Given their immunomodulatory
effect, regulatory cell–derived EVs have been proposed as cell-
free therapeutic tool to counterbalance the excessive activation of
the immune system during GvHD.

In the clinical setting of HCT, BM-MSC-EXs have been
safely infused for the treatment of a patient with steroid-
refractory cutaneous and intestinal grade IV GvHD (50). The
infusion of such EXs significantly ameliorated GvHD symptoms.
These EXs carried anti-inflammatory molecules, including IL-
10, TGF-β, and HLA-G, but not proinflammatory cytokines and
apoptosis-inducing molecules (50). This case demonstrated the
beneficial effect of MSC-EVs as anti-inflammatory and immune-
modulatory mediators. The efficacy observed is probably due
to a decline of proinflammatory cytokines (e.g., TNF-α, IL-1β,
and IFN-γ) released by patient-derived PBMCs upon MSC-EV
stimulation (50).

To better characterize the immunomodulatory properties of
MSC-EVs, several murine models of GvHD have been used.
In a mouse model of allo-HCT, the intravenous administration
of UC-derived MSC-EVs significantly lowered the numbers of
alloreactive T cells. Moreover, the serum levels of IL-2, TNF-
α, and IFN-γ were reduced, whereas the IL-10 levels were
increased. All these changes resulted in the reduction of the
clinical manifestations of aGvHD, thus improving mice survival
(51). Consistent with these findings, it has been recently reported
that, in a mouse model of aGvHD, the systemic infusion of BM-
MSC-EVs reduces the pathologic damage in multiple GvHD-
targeted organs and prolongs animals’ survival. This effect could
be due to the ability of MSC-EVs to suppress the proliferation of
CD4+ and CD8+ T cells and the differentiation of naive T cells
to an effector phenotype, preserving naive Treg cells (79).

Bone marrow–derived MSC-EVs isolated from healthy
donors are able to modulate the expression of CD45RA on CD4+

and CD8+ T cells from PBMCs in vitro, by determining a shift
of effector (TE) and effector memory (TEM) T cell frequencies.
In addition, MSC-EVs were able to promote IFN-γ production
by CD4+ TE and TEM. All these effects appear to be mainly
influenced by recipient responsiveness toward a certain MSC-
EV preparation, thus suggesting that the ex vivo assessment of
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PBMC and MSC-EV interactions could predict in vivo anti-
GvHD responses (66).

In addition to the effects of MSC-EVs in ameliorating aGvHD
symptoms, EVs have also been tested in cGvHD. In a model
of human-into-mouse xenogeneic cGvHD, it has been observed
that CD73+ EXs derived from BM-MSCs can inhibit TH1 cell
effector functions through the conversion of ATP to adenosine,
thus modulating GvHD (80). Moreover, a reduction of CD4+ T-
cell activation and lung infiltration, as well as the inhibition of
TH17 pathogenic cells and the induction of Treg cells, was also
observed. These effects resulted in a significant reduction of skin,
lung, and liver fibrosis and a prolonged mice survival (52).

Taken together, these findings strongly suggest that BM-MSC-
EVs could recapitulate the therapeutic efficacy of BM-MSCs for
the treatment of acute and cGvHD.

Extracellular vesicles find application for GvHD treatment
also as carrier of bioactive molecules, such as anti-miRNA
oligonucleotides. These molecules, synthetically designed, can
be passively or actively loaded into EVs and used to neutralize
specific regulatory miRNAs (81). This EVs have been tested in
a mouse model of GvHD to reduce dysregulation of miR155,
which is involved in the regulation of inflammation, as well
as innate and adaptive immune responses (82). MiR155 up-
regulation has been observed in immune cells and in EVs in
specimens from patients with evidence of intestinal GvHD (83)
and in rodent GvHD experimental models (82). It has been
shown that the dysregulation of miR155 in mouse model drives
TH1 proinflammatory T-cell phenotype (84). In this context,
the infusion of EVs loaded with anti-miR155 in preclinical
models reduced differentiation toward TH1, TH9, and TH17
cells and skewed differentiation toward TH2 and Treg cells, thus
ameliorating the manifestations of GvHD and increasing mice
survival (85).

An additional proposed application of miRNA-carried EVs is
the use of EVs derived from a T-cell line overexpressing a miR146
mimic, which plays a regulatory role in inflammatory response
in both mice and humans (86). MiR146 plays a major role
also in endothelial inflammatory responses and activation (87),
essential for the early phase of aGvHD onset, prior to its clinical
presentation. In fact, preventive use of drugs, which protect
and reduce endothelium activation, resulted in a decrease of
frequency of GvHD in humans (88, 89). Thus, we can assume that
the use of EVs enriched with miR146 mimic could potentially
reduce endothelium activation affecting the incidence of aGvHD.

Circulating EVs and their miRNA and protein cargo could
be useful not only as putative therapeutic tool, but also as
biomarkers in HCT. Levels and composition of circulating EVs
appear to be altered after HCT and before GvHD onset (90). A
retrospective study demonstrated that the altered expression of
CD146, CD31, and CD140a on EV surface correlated with risk
of developing aGvHD (91). This correlation with GvHD onset
has been confirmed in a prospective study for CD146 and CD31
(92). Furthermore, expression change of several miRNAs was
also observed in serum EVs before GvHD onset. Representative
examples are miR155, with miR100 and miR194b in EVs (92),
and miR423, miR199, and miR93 in serum-derived EXs (93).
Further studies are needed to define the reliability of such

biomarkers. Nevertheless, all these findings strongly suggest the
potential clinical application as biomarkers after HCT.

MSC-EV Effect on Hematopoietic Stem
Cells
Several evidence demonstrated that MSC-EVs could also
modulate HSC fate. In particular, different studies performed
in both human and mouse models have shown that EVs, either
MVs or EXs derived from BM-MSCs, embryonic stem cells, and
maturemegakaryocytes promote the ex vivo expansion of CD34+

cord blood HSCs (CB-HSCs), cord blood-mononuclear cells,
and BM-derived HSCs (42, 94–96). Additionally, when added
to co-cultured HSCs and MSCs, human BM-MSC-MVs further
improve the expansion of CB-HSCs, thus suggesting that they
could represent a promising therapeutic tool to generate a great
number of HSC for transplantation purposes (42).

In agreement, a recent work showed that human BM-
MSC-EVs can up-regulate the JAK/STAT pathway and increase
the levels of phospho-STAT5 in in vitro–cultured CD34+

cells, enriched from leukapheresis (97). The involvement of
the JAK/STAT signaling pathway in CD34+ cell proliferation
is important in several hematologic neoplasms, including
myelodysplastic syndromes and acute myeloid leukemia (AML).
In addition, it has been shown that this pathway plays a
significant role in promoting cell survival (98). As shown
in both humans and mice, MSC-EV treatment could also
modify the gene expression profile of CD34+ cells and favor
survival directly or indirectly, through microRNAs and Piwi-
interacting RNAs (96, 97, 99). Gene expression profile of
CD34+ cells is also modulated by human MSC-EV–derived
miRNAs through repression of the Wnt/β-catenin signaling
pathway (42). Furthermore, both murine and human BM-MSC-
EVs showed anti-apoptotic effect on CD34+ cells (97, 99).
When human CD34+ cells are co-cultured with human BM-
MSC-EVs, there is an up-regulation of anti-apoptotic genes,
such as BIRC2, BIRC3, and NFKB, a down-regulation of pro-
apoptotic genes, including CASP3 and CASP6, and a decreased
phosphorylation of H2AX. Further evidence supporting the
importance of MSC-EVs in promoting HSC survival derive
from studies demonstrating that the infusion of both murine
and human MSC-EVs into lethally irradiated mice reduces
the radiation damage to BM-HSCs, resulting in a long-term
survival (99, 100). In particular, the use of EXs and MVs in
combination was found to be superior to either MVs or EXs
alone (77).

In addition to the ability of MSC-EVs to promote HSC
survival and proliferation, BM-MSC-EVs appear to possess
homing potential. Indeed, it has been observed that human BM-
MSC-EVs can up-regulate CXCR4 expression in CD34+ HSCs,
increasing their migration from the PB to the BM niche (96).
Very recent findings supported this enhanced HSC migratory
ability both in vitro and in vivo in the presence of human BM-
MSC-EV stimulation, although the CXCR4 up-regulation was
not confirmed (97).

Altogether, these data strongly suggest that MSC-EV
treatment appears to positively contribute to HCT engraftment,
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favoring HSC survival, proliferation, and migration to the BM
niche. Thus, BM-MSC-EVs combined with HSCs may contribute
to the reconstitution of hematopoietic microenvironment and
represent a new therapeutic option.

EV Applications in Promoting GvL and in
Preventing Disease Relapse
Therapeutic effects of allo-HCT are to a large extent mediated
by GvL effects, through alloreactive donor-derived immune
cells. Unfortunately, beneficial GvL effects are reduced by
prophylaxis and treatment of GvHD. Therefore, ensuring
good GvL effects preventing GvHD remains the “holy grail”
of allo-HCT (101–103). Several strategies (such as the use
of cytokines, the selective depletion of alloreactive T cells,
regulatory immune cell infusions—in particular NK transfer
and DC vaccination—and novel pharmacological agents, such
as bortezomib and azacytidine) have been investigated to
enhance, support, and preserve the antileukemia effects without
aggravating GvHD (104). In this setting, EVs potentially find
application to stimulate immune cells and promote antileukemia
alloreactive responses.

The role played by NK cells in antileukemia activity has
been extensively investigated. Natural killer lymphocytes are
an integral component of the innate immune system and
represent important effector cells in cancer immunotherapy,
particularly in the control of hematological malignancies (105).
Natural killer–derived EVs (NK-EVs), purified from either cell
culture supernatants or plasma of healthy volunteers, have been
shown to lyse target human tumor cells in vitro (106) and
show promising anti-tumor effects in preclinical studies without
impacting normal cells (107). Natural killer–derived EVs contain
cytolytic and cytotoxic proteins, such as perforin, granzymes
A and B, granulysin, and Fas ligand (108, 109) able to kill
malignant hematologic cell lines (107). However, the underlying
mechanisms of specific killing of tumor cells mediated by NK-
EVs remain unclear.

In addition to NK-EVs, the anti-tumor effect of DC-
derived EVs (DC-EVs) for immunotherapy of cancer is under
investigation in clinical trials (110). DCs are professional APCs
which present antigen material to T lymphocytes activating an
antigen-specific T-lymphocyte immune response. Anti-tumor
DC-based vaccines have revealed their high efficiency in various
murine tumor models (111, 112) and human xenografts in
immunodeficient mice (113).

Dendritic cell–derived EVs carry all the functionally active
molecules needed for the activation and the induction of anti-
tumor T-cell immune responses (complexes of MHC class I
and II with tumor antigens, as well as co-stimulatory and
adhesion molecules such as CD80, CD86, and CD40) (114) and
can act alone as cell-free anti-tumor vaccines. To efficiently
activate anti-tumor immune responses by DC-EVs, the proper
choices of tumor antigens to load EV-producing DCs and
of factors stimulating the maturation of DCs are of great
importance. Significant success in the treatment of tumors
by DC-EVs has been achieved in murine models and in

human cell lines. Other strategies using tumor-derived EVs
to deliver antigens to DCs and stimulating GvL are under
investigation (110).

Even though anti-tumor activity of NK- and DC-EVs has
been demonstrated in vitro and in preclinical studies (105, 110),
studies to stimulate GvL after allo-HCT are lacking.

Extracellular vesicles could also be used as biomarkers to
monitor disease persistence or promptly detect early signs
of relapse before and after HCT. In this context, higher
levels of EVs in patients’ sera compared to healthy donors
are detected in many hematological malignancies (115–118).
Moreover, changes in absolute EV counts and EV protein
contents have been observed after induction chemotherapy
and corresponded to blast reduction in the BM (117, 119).
Furthermore, EVs from malignant cells express abundant
surface proteins unique to their cell of origin (120). For
example, EVs derived from multiple myeloma cells overexpress,
on their cell membrane, proteins such as CD147, CD38,
and CD138 (115, 121–123). Disease progression has been
correlated with an increase of CD147+ EVs, whereas CD138+

EVs have been associated with the disease phase. Similarly,
circulating EVs derived from AML cells are enriched with
cancer-derived proteins such as CD34, CD13, and CD117
(115, 124, 125).

In addition to surface membrane proteins, EV cargo (miRNAs
and proteins) could give relevant information about drug
resistance and disease relapse (119, 125). For instance, it has
been observed that the presence of different forms of TGF-β1
propeptide, latency-associated peptide (LAP), and mature TGF-
β1 in plasma EXs reflects the effects of chemotherapy and might
be used as an indicator of AML relapse (117).

Higher levels of miRNAs, including let7a, miR9, miR99b,
miR150, miR155, miR191, and miR223, have been found in
AML cell–derived EXs, ranging from 2- to 40-fold enrichment
compared with the levels in parent cells (126). MiR155, in
particular, is significantly dysregulated in serum EVs in many
hematologic malignancies (127), and its levels correlate with high
white blood cell counts in AML patients.

Thus, the characterization by molecular and cytofluorimetric
technique of EVs cargo may be useful to measure and monitor
blast persistence before and after HCT, as well as potential
predictor of drug resistance and disease relapse in patients in
complete remission.

CONCLUSIONS AND PERSPECTIVES

The role of EVs in the context of HCT is rapidly growing
in recent years. Because of their low immunogenicity, the
effective use of MSC-EVs as treatment of inflammatory disease
and their immune-modulating properties make EVs potential
candidates for the treatment of post-allo-HCT complications (53,
58, 75, 128). Besides, their role as biomarkers for prognosis and
disease progression has emerged. Many studies are now focusing
on the characterization of their cargo and the identification
of molecules responsible for their effects. In addition, in
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several hematological malignancies, one of the most promising
future applications of EVs is their potential as non-invasive
liquid biopsies, given that they appear to reflect the cell
of origin.

Nevertheless, EVs need to be carefully characterized to
thoroughly identify their composition to exploit them as
therapeutic tools and as reliable biomarkers. The possibility of
using EVs in clinical settings raises important technical issues on
large-scale EV production and characterization methods.

Methodological issues remain to be resolved, and further
studies are needed to better standardize isolation protocols.
For instance, no single biomarker has yet been validated in
independent patient cohorts to identify preclinical signs of
HCT complications.

Altogether, the studies reported in this review show that EVs
are potential biomarkers and promising drug delivery vectors
in the setting of HCT-associated complications. The potential
applications of EVs may eventually help in the early diagnosis
and treatment of several HCT complications.
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