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Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease leading to

considerable disability over time. The disease can be characterized by the presence of

multiple autoantibodies in the serum and synovial fluid. Microbial dysbiosis is proposed

to play a role in the pathogenesis of RA. Increased systemic bacterial exposure leads to

elevated levels of antimicrobial response factors (ARFs) in the circulation. In the present

study, we tested whether RA patients have increased levels of ARFs by analyzing the

levels of multiple ARFs in serum from RA patients and healthy age and sex-matched

controls. The levels of soluble CD14 (sCD14), lysozyme, and CXCL16 were significantly

elevated in RA patients compared to healthy controls. Lipopolysaccharide binding protein

(LBP) levels remained unchanged in RA patients compared to healthy controls. A

positive correlation of LBP with rheumatoid factor (RF) was also found in RA subjects.

Interestingly, the levels of anti-endotoxin core antibodies (EndoCAb) IgM, total IgM,

EndoCAb IgA, and total IgA were significantly elevated in RA patients compared to

healthy controls. No significant changes in the levels of EndoCAb IgG and total IgG

were observed in RA patients compared to healthy controls. Furthermore, lysozyme

and CXCL16 levels were positively correlated with disease severity among RA subjects.

Increases in the levels of several ARFs and their correlations with clinical indices suggest

systemic microbial exposure in the RA cohort. Modulation of microbial exposure may

play an important role in disease pathogenesis in individuals with RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease leading to severe disability.
Genetic, environmental, and epigenetic factors instigate the production of autoantibodies and the
loss of tissue tolerance in RA (1–4). These autoantibodies recognize cartilage components, cellular
chaperonins, IgG molecules, and citrullinated proteins (5). Similar to other autoimmune diseases,
the disease predominantly occurs in females (4, 6, 7). The disease perturbs the synovial joint lining,
which undergoes hyperplasia and inflammation leading to irreversible destruction of articular
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cartilage, ligaments, and bone (8–10). Frequent involvement
of extra-articular tissues including the heart, lungs, skin, eyes,
and nervous system is associated with very high levels of
autoantibodies and circulating immune complexes (11, 12). Early
diagnosis can greatly improve the outcome of RA, but the disease
prediction remains a challenge (4).

Recently it was hypothesized that microbial dysbiosis plays
a role in the pathogenesis of RA (3, 13–16). Patients with
classified RA showed alterations in the gut microbiome with
a relative increase in the abundance of Prevotella copri and
decrease in Haemophilus spp. compared to healthy controls
(14, 17). Alterations in lung microbiota, including increased
levels of members of Pseudonocardia suggest that distal airway
dysbiosis is also associated with RA (18). A pathogenic role for
Porphyromonas gingivalis, an oral commensal was also reported
(19, 20). These changes in the gut, oral and lung microbiome
could cause the leakage of bacterial products into circulation,
promoting inflammation and aggravating disease (20–24).

Constant exposure of microbes in the circulation elicits an
antibody response to bacteria and thus can act as a measure
of microbial exposure (25). Antibodies directed against multiple
bacteria have been found to be elevated in RA patients. For
example, circulating antibodies directed against the periodontal
bacteria Prevotella intermedia, P. gingivalis, and Bacteroides
forsythus were reported (19, 26, 27). Elevated levels of IgA
and IgM antibodies directed against Proteus mirabilis were also
found in RA patients and were positively correlated with total
IgA and total IgM levels (28). Antibodies against members of
Enterobacteriaceae and bacterial nucleic acids from P. gingivalis
and P. copri were detected in synovial fluid from RA patients
(15, 29–31). A role of Aggregatibacter actinomycetemcomitans
as a factor in the pathogenesis of RA has also been proposed
(32, 33). Persistence of microbial products and elevated levels
of antimicrobial antibodies in RA patients further suggests the
role of systemic bacterial exposure in the pathogenesis and
progression of the disease.

In response to microbial exposure, antimicrobial response
factors (ARFs) are released into the circulation to neutralize
microbial products. ARFs are diverse pleiotropic molecules that
include cytokines, chemokines, anti-endotoxin core antibodies
(EndoCAb), peptides, and proteases (34, 35). The bactericidal
activity of many ARFs is based on their ability to disrupt
the bacterial cell envelope, opsonize targets, and/or inhibit
intracellular functions of bacteria. The bacterial functions
disrupted by ARFs include respiration, enzyme activation, and
protein and nucleic acid synthesis. ARFs also modulate immune
responses. For example, ARFs can activate innate immunity
by recruiting and/or activating immune cells. Furthermore,
some ARFs can regulate Toll-like receptor (TLR) recognition of
microbial products (36). These immunomodulatory ARFs can
lead to inflammation and tissue damage in the host (37).

In the present study, we tested whether RA patients have
increased levels of ARFs by analyzing the levels of multiple
ARFs in serum from RA patients and healthy age- and sex-
matched controls. Increased levels of ARFs may indicate an
increase in systemic bacterial exposure. The ARFs tested include
soluble CD14 (sCD14), lipopolysaccharide-binding protein

(LBP), lysozyme, CXCL16, EndoCAb IgG, EndoCAb IgA, and
EndoCAb IgM. Our results revealed amarked elevation of several
ARFs in RA patients. These significant elevations of ARFs may
be clinically relevant since they correlate with clinical indices.
Our results point to systemic microbial exposure as a common
stimulus in RA, which could perpetuate the disease.

MATERIALS AND METHODS

Study Subjects
Subjects were recruited for the Studies of the Etiology of
Rheumatoid Arthritis (SERA), a prospective longitudinal study
designed to evaluate the contributions of environmental and
genetic factors to the development of RA. Recruitment of
RA population has been described in detail previously (38).
Healthy control subjects included in this study were recruited
via local advertisement from the general population and tested
negative for RA related autoantibodies at their baseline visit.
For both the RA and healthy control populations, the base
line visit was selected for this study and the duration of the
study entry would be time=0 since this was their first visit.
Ethical approval for this study was obtained from University
of Colorado’s Institutional Review Board (COMIRB#01-675) in
compliance with Declaration of Helsinki. Informed consents
were obtained from each participant prior to including them in
the study. Our study included 50 RA subjects (39 females and
11 males), all fulfilling the revised criteria of 1987 American
Rheumatism Association (39) and 50 age- and sex-matched
healthy control subjects. All but three of the RA subjects reported
being currently or previously on immunosuppressive and/or
immunomodulatory drugs at the time of their research study
visit. Health assessment, pain index, and disease activity index
were collected for RA group at their study visit. The health
assessment disability questionnaire index (HAQ; range 0–3) is
considered the benchmark for measuring the functional status in
adults with RA (40). HAQ Total assesses the hierarchy of patient
outcomes by analyzing activity index, disability index, and pain
index collected in 100mm visual analog scale. Demographics and
smoking history were obtained by questionnaire. Patient data
is provided in Table 1. Individual ARF values per patient are
included in Supplementary Table 1.

Sample Collection
Venous blood was drawn in BD Vacutainer R© serum separator
tubes (Franklin Lakes, NJ, USA) from both RA patients and
healthy controls. After clotting, the whole blood collected was
centrifuged (for 10 minutes at 3,000 × g and 20◦C) and the
serum layer was removed. Measurements of rheumatoid factor
(RF), high sensitivity C-reactive protein (CRP), and anti-cyclic
citrullinated protein antibodies (anti-CCP) in the serum were
measured using previously described methodologies (38–41).
Multiple aliquots were made from all the serum samples and
stored at−80◦C until analysis.

Measurement of Analytes in the Serum
sCD14 and LBP were measured using sandwich ELISA kits
procured from R&D systems (Minneapolis, USA) and Hycult
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TABLE 1 | Demographic and descriptive characteristics of rheumatoid arthritis

and control population.

Variable RA

(n = 50)

Control

(n =50)

p-value

Age (mean ± SD) 50.0 ± 14.7 49.2 ± 14.9 0.77

Female n (%) 39 (78.0) 39 (78.0) 1.00

Non-Hispanic White

n (%)

33 (66.0) 38 (76.0) 0.42

Education > High

School n (%)

33 (66.0) 46 (92.0) 0.002

Income > $40k n (%) 26 (52.0) 31 (62.0) 0.34

Ever smoke yes n (%) 18 (36.0) 14 (28.0) 0.32

High sensitivity CRP

(median, IQR)

2.7, 1.0–6.6 1.0, 0.6–1.9 0.002

CCP2 (median, IQR) 87.2, 56.4–107.1 0.1, 0.02–0.6 <0.0001

RF nephelometry

(median, IQR)

84.1, 33.2–292.6 10.1, 9.8–10.7 <0.0001

Disease duration years

(mean ± SD)

12.44 ± 12.46 NA NA

Current smoker yes

n (%)

4 (8.3) 2 (4.0) 0.43

Shared epitope positive

n (%)

37 (74.0) 22 (44.0) 0.003

Missing data in the table: 1 participant missing age; 23 controls missing high sensitivity

CRP (mg/L); 5 controls missing anti-CCP2; 5 controls missing RF nephelometry.

n = total number of cases/individuals in the population.

Biotech (Pennsylvania, USA), respectively. EndoCAb IgG,
EndoCAb IgA, and EndoCAb IgM were measured using direct
ELISA kits procured from Hycult Biotech. CXCL16 was analyzed
using a sandwich ELISA kit procured from Thermo Scientific
(Frederick, MD, USA). Lysozyme levels were measured using
sandwich ELISA kit procured from MBL (Massachusetts, USA).
Total IgG, IgA, and IgM were measured using sandwich ELISA
kits procured from Invitrogen (Carlsbad, CA, USA). To block
non-specific antibodies that may interfere with the assay, the
samples were diluted in appropriate buffers, which contained
50µg/ml of HeteroBlock (Omega Biologicals, Bozeman, MT,
USA) and kept for 30 minutes before adding into the ELISA
plate. All the analyses were performed blinded to case/control
and clinical status. In order to maintain the test quality and
reproducibility, an internal control was included in all the assays
and the coefficient of variation (CV) of replicates was set at≤10%.

Statistical Analysis
We transformed all the data into base-10 logarithm values
for statistical analysis and correlation studies. Square root
transformation was employed for disease indices, which included
true zeros. For testing statistical significance, the unpaired t-
test was used. For correlation analysis, Pearson product-moment
correlation coefficient (Pearson’s r) analysis was performed.
Gender stratification was also done to detect sex-related changes
in the levels of ARFs in RA subjects compared to their respective
control subjects. For all statistical tests, P < 0.05 was considered
to be statistically significant. All the statistical tests were done
with GraphPad Prism 7 (GraphPad Software, Inc., San Deigo,

USA). Descriptive statistics of all the analyte levels are given in
Supplementary Table 2.

RESULTS

sCD14 Levels Are Increased in RA Patients
Since CD14 acts a co-receptor for LPS, elevated levels of
sCD14 are considered to reflect LPS exposure and subsequent
monocyte/macrophage activation (42–44). Interestingly, Gram-
positive bacterial cell wall components can also bind with
CD14 (44–46). Binding of endotoxins to CD14 activates TLRs
and promotes the release of proinflammatory cytokines (47,
48). We found a significant increase in the levels of sCD14
in RA patients (P = 0.004) compared to healthy controls
(Figure 1A). Gender stratification showed that sCD14 levels
in the male RA cohort were significantly elevated compared
to control males (P = 0.009). RA females showed a trend
toward an increase in sCD14 levels when compared to control
females (P = 0.075).

LBP Levels Positively Correlate With
Rheumatoid Factor (RF) in RA Subjects
LBP is an acute phase protein synthesized by hepatocytes
involved in the transfer of LPS to CD14, which partners
with TLR4 expressed on innate immune cells (49, 50). We
determined that LBP levels were increased in our RA cohort,
however the results did not achieve statistical difference (P =

0.224) (Figure 1B). A positive correlation between LBP and
CRP (r = 0.335, P = 0.017) in RA patients is observed
in our study (Supplementary Figure 1). However, we did not
find a correlation between CRP with any other ARFs that
we measured.

RF was the first described autoantibody in RA and is directed
against the Fc region of IgG. RF is also a valuable biomarker in
terms of disease severity, diagnosis and prognosis in RA (5, 51).
We found that levels of RF IgG were positively correlated with
LBP (r = 0.363, P = 0.041) (Figure 1C). Furthermore, total
antibody levels for all RF isotypes were also positively, though
weakly, correlated with LBP (r = 0.271, P = 0.058) (Figure 1D).
We did not find any correlation between RF and other ARFs that
we measured (Data not shown).

Levels of Lysozyme Are Increased in RA
Patients
Lysozyme is an important ARF that is secreted by monocytes,
macrophages, neutrophils, glandular cells, and dendritic cells.
Lysozyme kills bacteria by hydrolyzing the peptidoglycan
component of the bacterial cell wall. Lysozyme also possess
bactericidal activity against Gram-negative bacteria (52, 53). We
observed a significant increase in the levels of lysozyme in RA
patients (P = 0.033) compared to healthy controls (Figure 2A).
However, gender stratification of RA subjects showed that
neither RA males (P = 0.118) nor RA females (P = 0.141)
(Figure 2A) were significantly different than their respective
healthy controls.
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FIGURE 1 | Levels of sCD14 are increased in RA patients. (A) Circulating levels of sCD14 in RA patients showed a significant elevation compared to healthy controls.

Gender stratification revealed a significant elevation of sCD14 only in RA males compared to healthy control males while RA females showed a trend toward increase

in the levels of sCD14 compared to healthy control females. (B) Concentration of LBP in healthy controls and RA patients. LBP levels were not significantly different in

RA patients compared to healthy controls. Bars represent median analyte levels. (C) LBP is correlated with rheumatoid factor IgG (RF IgG). Correlation analysis

revealed a significant positive correlation of LBP with RF IgG (C) and a trend toward significant positive correlation with total rheumatoid factor (RF Total) (D).

Levels of CXCL16 Are Increased in RA
Patients
CXCL16 is an important chemokine that acts as a mediator of the
innate immune response (54). CXCL16 mediates adhesion and
phagocytosis of both Gram-negative and Gram-positive bacteria
and acts as a strong chemoattractant for CXCR6+ T cells (55–
57). CXCL16 levels are also affected by alterations in the gut
microbiome (58).We observed a significant elevation in the levels
of CXCL16 in RA patients (P = 0.0003) compared to healthy
controls (Figure 2B). Both RAmales (P= 0.016) and RA females
(P= 0.006) showed a significant increase in the levels of CXCL16
compared to their respective controls (Figure 2B).

sCD14 Levels Positively Correlate With
LBP, Lysozyme, and CXCL16 in RA
Subjects and Healthy Controls
Pearson’s r analysis showed a significant positive correlation of
sCD14 with LBP (r = 0.669, P < 0.0001 in RA subjects and r

= 0.521, P = 0.0001 in healthy controls), lysozyme (r = 0.708,
P < 0.0001 in RA subjects and r = 0.480, P = 0.0005 in healthy
controls), and CXCL16 (r= 0.618, P < 0.0001 in RA subjects and
r = 0.759, P < 0.0001 in healthy controls) in both RA patients
and in healthy controls (Figures 3A–C). Moreover, a significant
positive correlation between CXCL16 and lysozyme (r = 0.501,
P = 0.0002 in RA subjects and r = 0.507, P = 0.0002 in healthy
controls) was also observed in both RA subjects and in healthy
controls (Figure 3D).

Total IgA and IgM levels, Including
EndoCAb-Specific IgA and IgM, Are
Increased in RA Patients
EndoCAbs are antibodies directed against the endotoxin core
of LPS. They bind and neutralize LPS activity (59–61). We
did not find significant changes in the levels of EndoCAb
IgG in RA subjects compared to healthy controls (Figure 4A).
Interestingly, levels of EndoCAb IgA (P = 0.001) and EndoCAb
IgM (P = 0.011) were elevated in our RA cohort compared to
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FIGURE 2 | Elevated levels of lysozyme and CXCL16 in RA subjects. (A) Circulating levels of lysozyme are significantly elevated in RA patients compared to healthy

controls. Following gender stratification, the lysozyme levels were similar in both the male and female RA cohorts compared to respective healthy controls. (B) RA

patients have elevated levels of CXCL16 in the circulation compared to healthy controls. A significant increase in the levels of CXCL16 was also observed in both the

male and female RA patients compared to respective healthy controls. Bars represent median analyte levels.

healthy controls (Figures 4B,C). RA females showed a significant
increase in the levels of EndoCAb IgA compared to control
females (P= 0.007) whereasmales showed only a trend toward an
increase (P= 0.06) (Figure 4B). EndoCAb IgM levels were found
to be significantly elevated in RA females (P = 0.032) compared
to control females. RA males did not show any significant
difference in EndoCAb IgM levels (P = 0.156) compared to
control males (Figure 4C).

Analysis of total immunoglobulins (Igs) in RA cohort
showed that IgA (P = 0.001) and IgM (P = 0.0004) were
significantly elevated in RA patients compared to healthy
controls, confirming earlier reports (62–64). The levels of IgG
were also elevated in the RA cohort but did not achieve statistical
significance (P = 0.096) (Figure 4D). RA females showed a
significant elevation of IgA (P = 0.001) whereas RA males
showed a trend toward significant increase (P = 0.293). IgM
levels of both RA males (P = 0.038) and RA females (P =

0.003) were elevated compared to respective control subjects
(Figures 4E,F).

We then assessed whether the proportion of EndoCAbs
was elevated by analyzing the ratios of EndoCAbs:total Igs
in all the groups. We did not find any significant difference
between the ratios of EndoCAb IgG:total IgG (P = 0.194),
EndoCAb IgA:total IgA (P = 0.697), and EndoCAb IgM:total
IgM (P = 0.528) in RA subjects compared to healthy
controls (Figures 4G–I).

Correlations of EndoCAbs With sCD14, and
Lysozyme in RA Subjects
In order to determine whether the levels of EndoCAbs were
associated with other factors, we analyzed the correlations of
EndoCAbs with other ARFs and RF. We observed a negative
correlation between the ratio of EndoCAb IgA:total IgA with

sCD14 in RA subjects (r = −0.268, P = 0.059). Healthy controls
did not show any significant correlation between these factors
(r = 0.176, P = 0.226) (Figure 5A). We found a significant
positive correlation between lysozyme and EndoCAb IgG (r =
0.301, P = 0.033 in RA subjects; r = 0.329, P = 0.021 in
healthy controls) and EndoCAb IgA (r = 0.291, P = 0.040
in RA subjects; r = 0.420. P = 0.002 in healthy controls) in
both RA subjects and healthy controls (Figures 5B,C). Moreover,
lysozyme levels were also found to be positively correlated
with total IgG (r = 0.497, P = 0.0002 in RA subjects; r =

0.389, P = 0.0057 in healthy controls) and total IgA levels (r
= 0.392, P = 0.0049 in RA subjects; r = 0.319, P = 0.025
in healthy controls) in both RA patients and healthy controls
(Figures 5D,E).

Lysozyme Levels Positively Correlate With
Total Health Assessment Disability
Questionnaire Index (HAQ Total) Values in
RA Subjects
We found a significant positive correlation between lysozyme
levels and the HAQ Total index (r = 0.308, P = 0.032)
(Figure 6A). A trend toward a positive correlation was observed
in the pain index vs. CXCL16 (r = 0.280, P = 0.051) and the
activity index vs. CXCL16 (r = 0.283, P = 0.054) in RA subjects
(Figures 6B,C). Furthermore, a significant positive correlation
between pain index and total IgA was also observed (r = 0.336,
P= 0.019) (Figure 6D). Thus, the levels of these analytes parallel
clinical measurements of disease severity.

No other ARFs showed a significant association with disease
activity measures. In addition, we did not find any significant
correlation between the levels of anti-CCP antibodies with ARFs
in RA patients (data not shown).
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FIGURE 3 | Circulating levels of sCD14 are positively and significantly correlated with LBP, lysozyme, and CXCL16 in RA patients and healthy controls. (A–C) Analysis

showing a significant positive correlation of sCD14 with LBP, lysozyme, and CXCL16 in both RA patients and healthy controls. (D) Analysis showing a significant

positive correlation between CXCL16 and lysozyme in RA patients and healthy controls.

DISCUSSION

Systemic exposure to microbial products has been hypothesized
to trigger and/or potentiate several autoimmune diseases
including RA (65–67). In response to microbial products,
multiple ARFs are released into circulation as a protective
mechanism to clear microbes and reduce inflammation (68, 69).
Interestingly, increased circulatory levels of several ARFs in
response to bacterial infection such as in sepsis also indicates that
these ARFs may be specific for infection (70–73). In this study,
we found increased levels of multiple ARFs in RA patients.

We observed a significant elevation of sCD14 levels in
RA patients compared to healthy controls confirming previous
reports (74–76). sCD14 acts as a co-receptor for endotoxin
and facilitates the activation of those cells which are devoid
of membrane bound CD14 via TLR4 transmembrane signaling
(77–80). Elevated levels of sCD14 could be caused by bacterial
exposure, alterations in the microbiome, compromised gut

integrity and increased levels of cytokines. This would induce
monocyte/macrophage activation and elevate the circulating
concentrations of sCD14 (43, 81–86). Release of sCD14 by
synovial macrophages was also suggested to contribute to
elevated levels in RA patients (74). Overproduction of sCD14
by macrophages may act as a death associated molecular
pattern (DAMP) and induce the production of proinflammatory
cytokines (87). Thus, the elevated levels of sCD14 in circulation
contributes to the maintenance of tissue inflammation by
increasing the responsiveness against endotoxins (82, 87).
Alternatively, elevated levels of sCD14 were reported to reduce
the interaction between LPS and monocytes thereby reducing
the adverse effects of monocyte/macrophage activation (42, 88).
Due to the ambiguities in these experimental outcomes, further
investigations are required to define the pathophysiological role
of elevated levels of sCD14 in the circulation.

Similar to sCD14, LBP is a critical circulatory molecule
involved in endotoxin clearance (89). We did not observe
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FIGURE 4 | Elevated levels of total IgA and total IgM, including EndoCAb-specific IgA and IgM, in RA patients. (A) Circulating EndoCAb IgG levels were not

significantly different in RA patients compared to healthy controls with or without gender stratification. (B) Circulating levels of EndoCAb IgA were significantly elevated

in RA patients compared to healthy controls. RA females showed a significant elevation of EndoCAb IgA whereas RA males showed a trend toward significance

compared to their respective healthy controls. (C) Levels of circulating EndoCAb IgM were significantly elevated in RA patients compared to healthy controls. Gender

stratification revealed a significant increase of EndoCAb IgM in RA females whereas RA males did not show any significant change compared to their respective

healthy controls. (D) Circulating levels of total IgG were similar in RA and controls, with or without gender stratification. (E) Total IgA levels were significantly increased

in RA patients compared to healthy controls. RA females showed a significant elevation of total IgA whereas in RA males the changes did not achieve any statistical

significance (F) Levels of circulating total IgM were significantly elevated in RA patients compared to healthy controls. Both the RA males and RA females showed a

significant elevation in the levels of total IgM compared to their respective healthy controls. (G–I) Ratio of EndoCAbs:total Igs were not significantly different in RA

patients than the healthy controls. Gender stratification also showed no significant changes in the ratios of EndoCAbs:total Igs compared to their respective healthy

controls. For all figures, bars represent median analyte levels.

any significant difference in the levels of LBP in RA subjects
compared to healthy controls. Our findings are in contrast
to a recent report of elevated levels of LBP in RA patients
(90). From their results, it is proposed that LBP is a specific
and sensitive biomarker for RA (90). The discrepancies with
our results could reflect differences in assay methodology or
patient populations. Regarding methodology, while the assays
are identical, the inclusion of HeteroBlock in our study could
make a difference. Autoantibodies produced in RA such as RF

cause interference in some immunoassays (91). RF can generate
false signals by bridging capture and detection antibodies in
sandwich ELISAs (92), an effect that can be mitigated through
HeteroBlock (91, 93). A lack of corrective measures to block the
RF interference in the study reported by Wen et al. (90) could
explain their results. Differences in the two patient populations
could also affect the observed differences in LBP levels. It
should be noted that the LBP values for RA subjects reported
by Wen et al. (90) were comparable with those reported for
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FIGURE 5 | sCD14 levels correlate with the ratio of EndoCAb IgA:total IgA in RA patients. (A) Analysis showing a trend toward negative correlation between sCD14

and the ratio of EndoCAb IgA:total IgA in RA patients whereas healthy controls did not show any significant correlation between these values. (B–E) Analysis showing

a significant positive correlation of circulating levels of lysozyme with EndoCAb IgG, EndoCAb IgA, total IgG, and total IgA in both RA patients and healthy controls.

sepsis and other severe illnesses (73, 94, 95). Furthermore, their
reported CRP values were substantially higher than those for
our cohort.

Levels of lysozyme were significantly elevated in RA
patients, confirming previous observations (96). Lysozyme is
an important bacteriolytic enzyme produced by monocytes,
macrophages, neutrophils, dendritic cells and glandular cells
(52, 97). The antimicrobial potential of lysozyme is derived from
its ability to hydrolyze the glycosidic bond of peptidoglycan,
which is found in the cell walls of both Gram-positive
and Gram-negative bacteria (94). In circulation, lysozyme
facilitates the degradation of bacterial peptidoglycan into
peptidoglycan monomers. This leads to the activation of myeloid
cells via various pattern recognition receptors (52). Bacterial
exposure can elevate the levels of lysozyme by increasing
the activation of monocytes/macrophages and neutrophils (97–
100). Moreover, proinflammatory cytokines released by activated
macrophages can elevate the production and/or release of
lysozyme (96, 97, 101).

We found that CXCL16 was elevated in our RA subjects
compared to healthy controls, confirming earlier results (9, 102).
CXCL16 is recognized as an antimicrobial protein involved

in the adhesion and phagocytosis of bacteria (54, 55, 103,
104). Moreover, CXCL16 serves as a chemoattractant that
mediates the recruitment of CXCR6-expressing immune cells
and mediates inflammation (105–107). The binding of LPS with
CD14 triggers the activation of NF-κB, inducing the release of
CXCL16 (108, 109). Elevated circulatory levels of CXCL16 in
RA patients may reflect systemic inflammation. Interestingly,
we also observed a positive correlation of CXCL16 with disease
severity (pain index and activity index). Li and colleagues (9)
also reported a significant positive correlation of CXCL16 and RA
disease activity.

B cells play an important role in the pathogenesis of RA
by secreting autoantibodies, presenting antigens and producing
cytokines. We observed increased levels of total IgA and total
IgM in RA patients compared to healthy controls. Increased
levels of total IgA and IgM in RA patients reflects activation
of the immune system (61–63). EndoCAbs are endotoxin core
antibodies, which can bind and neutralize circulating LPS
(58). Similar to total Igs, EndoCAb IgA and EndoCAb IgM
levels were significantly increased in RA patients compared
to healthy controls. Elevated levels of IgM and IgA specific
to some bacterial species were also observed in RA patients
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FIGURE 6 | Lysozyme levels correlate with Total Health Assessment Quality questionnaire disability index (HAQ Total) in RA patients. (A) Analysis showing a significant

positive correlation of lysozyme with HAQ total in RA patients. (B–C) CXCL16 levels showed a trend toward significant positive correlation of CXCL16 with pain index

and disease activity index in RA patients. (D) Analysis showing a significant positive correlation between pain index and total IgA levels in RA patients.

(28, 110). However, we found that the ratios of EndoCAb
Igs:total Igs were not different from controls. This indicates that
elevated levels of IgA and IgM may be due to polyclonal B
cell activation. Systemic exposure of microbial products leads to
polyclonal B cell hyperactivation and elevated levels of Igs (111–
113). From our study, it appears that monocyte/macrophage
activation is the likely cause of B cell activation and subsequent
increase of total Igs and EndoCAbs in RA patients. Apart
from microbial products, sCD14 was found to activate B cells
(114). In addition, Ig secretion could be stimulated by cytokines
released by activated monocytes/macrophages and dendritic
cells (115–117).

Similar to other autoimmune conditions, RA mainly affects
females (6). We observed gender differences in the levels of
some ARFs. Levels of sCD14 in RA males were significantly
elevated compared to control males and not females. Conversely,
EndoCAb IgA, EndoCAb IgM, and total IgA levels were
higher in RA females compared to control females, but were
unaffected in males. This could reflect gender-specific changes
in the microbiome, which were found to modulate the immune
response distinctly in males and females (118–120). These
gender-specific changes in gut microbiota could drive gender-
biased autoimmunity (121, 122).

Multiple studies suggest the potential role of microbes as
triggering and/or accelerating factors in autoimmunity (66, 123–
126). Our previous studies with systemic lupus erythematosus
(SLE) samples showed elevated levels of ARFs similar to what
we observed in this RA study. Similar to SLE, RA subjects
also showed elevated levels of total IgA, sCD14, lysozyme, and
CXCL16 compared to healthy controls (127). In RA, elevated
levels of IgA and total IgM along with EndoCAb IgA and
EndoCAb IgM in RA indicate a global immune response.
Differences in the microbiome could be a determining factor in
the changes in the levels of ARFs (128).

Elevated levels of ARFs in our study support the
role of myeloid cell activation in disease pathogenesis,
possibly via systemic microbial exposure in RA cohort
(Supplementary Figure 2). The gastrointestinal and lung
microbiomes could contribute to the modulation of ARF
levels. Longitudinal studies in human RA subjects are
required to understand the significance of these ARFs as
biomarkers for future RA development. A deeper understanding
of the connection between antimicrobial responses and
autoimmunity in RA could help to establish therapeutic
strategies for the effective disease management in highly
susceptible populations.
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