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Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease.

The current lack of an effective vaccine to simultaneously protect against the four

serotypes of DENV in seronegative individuals is a major unmet medical need. Further,

the immunological basis for protective immunity in the setting of DENV infection or

vaccination is not fully understood. Our team has developed a live attenuated tetravalent

dengue virus vaccine that provides complete protection in a human model of dengue

virus challenge. The goal of this study was to define, in the context of protective human

vaccination, the quality of vaccine-induced DENV-specific CD8+ and CD4+ T cells and

the temporal dynamics associated with their formation and maintenance. Multifunctional,

DENV-specific CD8+ and CD4+ T cells developed 8–14 days after vaccination and were

maintained for at least 6 months. Virus-specific CD8 T+ cells were a mixture of effector

memory T cells (TEM) and effector memory T cells re-expressing CD45RA (TEMRA), with

TEM cells predominating until day 21 post-vaccination and TEMRA cells thereafter. The

majority of virus-specific CD4+ T cells were TEM with a small fraction being TEMRA. The

frequency of virus-specific CD8+ and CD4+ T cells were further skewed to the TEMRA

phenotype following either a second dose of the tetravalent vaccine or challenge with

a single serotype of DENV. Collectively, our study has defined the phenotypic profile of

antiviral CD8+ and CD4+ T cells associated with protective immunity to DENV infection

and the kinetics of their formation and maintenance.
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INTRODUCTION

Dengue virus (DENV), a mosquito-borne flavivirus, is the most
prevalent cause of arboviral disease in humans. Nearly half of
the world’s population is at risk for DENV disease and each
year there are ∼390 million cases in over 120 countries (1).
There are four distinct serotypes of DENV (DENV1-4) and
each is capable of causing the full range of clinical disease,
from asymptomatic infection to death from DENV disease (2).
While many individuals experience a relatively undifferentiated
febrile illness, others develop severe clinical syndromes (dengue
hemorrhagic fever and dengue shock syndrome) that are
associated with severe thrombocytopenia and clotting disorders,
as well as plasma leakage. These more severe disease syndromes
are associated with increased risk of death, particularly in areas
lacking sufficient medical care or in the very young or old
(3). Although a vaccine for the prevention of DENV disease
was recently approved by the United States Food and Drug
Administration (FDA), its use is restricted to individuals 9–16
years of age with laboratory-confirmed previous dengue infection
(4). Therefore, there remains a critical need for a broadly effective
vaccine that protects dengue-naïve individuals.

A unique feature of DENV that complicates vaccine
development is the observation that individuals, when infected
with a second and different serotype of DENV, have a higher
risk of severe disease and poor outcomes (5). Serotype-
specific neutralizing antibodies raised following a first infection
successfully protect against symptomatic infection with that
serotype for life. However, non-neutralizing antibodies capable
of binding other DENV serotypes can also be induced by a
primary infection. These antibodies, when bound to a virus
particle from a heterologous DENV serotype, are thought to
predispose the heterologous virus for “enhanced” entry and
replication in target cells when the individual is infected
subsequently with this heterologous serotype (6). Thus, antibody-
dependent enhancement (ADE) of infection is thought to be a key
mechanism by which heterotypic, non-neutralizing antibodies
may increase the risk of severe clinical disease and must be
accounted for in vaccination strategies (7).

Because of the risk of developing ADE, the major global

concern surrounding dengue vaccine development is that

vaccination may create gaps in simultaneous coverage to all four

serotypes. These gaps may emerge either when the initial vaccine
series does not sufficiently prompt initial protective immunity
against all four serotypes and/or due to waning coverage over
time to one or more serotypes (8). In either scenario, partial
protection from vaccination may expose a vaccinated individual
to a risk of severe and/or life-threatening dengue disease if
infected with the serotype for which there is a gap in coverage.
It is possible that this risk may be higher due to vaccination than
for those who were never vaccinated when the vaccine induces
only partial protection. Indeed, this very concern has emerged
following introduction of the Dengvaxia R© vaccine into endemic
areas (9). This tetravalent vaccine is constructed on the non-
structural backbone of the 17D Yellow Fever vaccine. It contains
the structural membrane (M) and envelope (E) proteins of DENV
and the structural capsid (C) and non-structural proteins of

Yellow Fever virus. Early studies of Dengvaxia R© in humans and
non-human primates suggested incomplete immunity (10) and
imbalanced antibody responses across serotypes in early human
trials (11–14). Field data now confirms that individuals who are
dengue-naïve when they received Dengvaxia R© have a higher risk
of hospitalization with subsequent dengue infection compared
with unvaccinated individuals (9, 15, 16). A possible contributing
mechanism to poor protection may be the vaccine’s lack of non-
structural DENV proteins, which have been demonstrated to be
the predominant target of dengue-specific CD4+ and CD8+ T
cell responses (17–21).

Members of our team developed the NIH dengue live
attenuated tetravalent vaccine (DLAV). Constructed via reverse
genetics, this vaccine encodes wild-type dengue structural and
non-structural proteins and one or more 30-nucleotide deletions
in the 3′ untranslated region as its core attenuation strategy (22–
25). Comprehensive development over 20 years (26–31) has led
to two tetravalent formulations (TV003 and TV005) that are well-
tolerated with no fever, and no liver function or clotting function
abnormalities. This vaccine induces neutralizing antibodies
to DENV1-4 with high frequency (31, 32) and also elicits
multifunctional CD8+ and CD4+ T cells to each DENV serotype
(19, 20). In an effort to evaluate the protective efficacy of DLAV,
we developed a controlled human model of immunization and
challenge in which individuals were immunized with DLAV
and challenged 6 months later with under-attenuated strains of
DENV. Notably, in the setting of this controlled human infection
model, DLAV immunization resulted in complete protection
against DENV2 or DENV3 infection (e.g., the vaccinees did not
develop viremia, rash, or neutropenia) (32) (data not shown).

At present there is an incomplete understanding of what
constitutes protective immunity in the setting of DENV
infection. Further, it is unknown how quickly protective
immunity is established following infection or vaccination.
Neutralizing antibodies certainly contribute to protection,
possibly by providing sterilizing immunity to a subsequent
DENV exposure. There is also evidence to suggest that antiviral
CD8+ and CD4+ T cells contribute to protective immunity
and abrogation of severe disease. First, in the setting of murine
infection, both cell types play a direct role in protection (33–
40). Second, HLA alleles associated more severe disease correlate
with weak CD4+ and CD8+ T cell responses while HLA alleles
associated with less severe disease correlate with more robust
and multifunctional T cell responses (18, 21, 41, 42). This
data collectively suggests that anti-DENV T cells contribute to
protective immunity.

In the current study, our goal was to evaluate CD8+ and
CD4+ T cell phenotype and function following protective human
vaccination with DLAV. In particular, we studied two cohorts:
one that was vaccinated with DLAV and then boosted 180 days
later (31) and the other that was vaccinated with DLAV and
then challenged 180 days later with DENV2130 (Tonga/74), an
American genotype DENV2 strain that was isolated during an
outbreak of DENV in the Kingdom of Tonga in 1974 and is
heterotypic to the parent of the vaccine strain (DENV2 strain
New Guinea C) (32, 43). Notably, all individuals in the latter
study were completely protected from DENV challenge; DENV2
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challenge virus was not detected in any vaccinated subject either
by infectious virus isolation or by RT-PCR (32). Here, we describe
the natural history of DLAV-induced CD8+ and CD4+ T cell
formation and maintenance and the phenotypic attributes of
these T cell subsets.

MATERIALS AND METHODS

Study Participants
Subjects in this study were participants of phase I studies to
evaluate the safety and immunogenicity of the tetravalent live
attenuated dengue vaccine TV003 trial CIR268 (Clinicaltrials.gov
NCT01072786) (31) and trial CIR287 (Clinicaltrials.gov
NCT02021968) (32). Based on the availability of high quality
cryopreserved peripheral blood mononuclear cells (PBMC), we
were able to evaluate T cell responses from 16 CIR 268 donors
(n = 6 who were immunized with a single dose of TV003;
n = 10 who were immunized with TV003 and then given a
second dose 180 days later) and 8 CIR287 donors. All subjects
were serologically confirmed as flavivirus-naïve at the time
of immunization. Studies were approved by the Institutional
Review Boards at the University of Vermont and Johns Hopkins
University. Informed consent was obtained in accordance with
federal and international regulations (21CFR50 and ICHE6).
External monitoring was performed by National Institute of
Allergy and Infectious Diseases Data Safety Monitoring board
every 6 months.

Clinical Sample Procurement
At study visits, blood was collected by venipuncture into serum
separator tubes for analyses of viremia and serology, and into
EDTA tubes for isolation of peripheral blood mononuclear cells
(PBMC). Serum was frozen at −20◦C until use. PBMC were
isolated by Ficoll-paque density gradient separation, counted,
and frozen in cell culture medium with 10% dimethyl sulfoxide
(DMSO) and 40% fetal bovine serum (FBS), and cryopreserved
in liquid nitrogen vapor phase.

Vaccine (TV003) and Challenge Virus
(rDEN2130)
The TV003 formulation of DLAV is an admixture composed of
three DENVs attenuated by deletion(s) in the 3′ untranslated
region (3′UTR): rDENV1130, rDENV3130/31, and
rDENV4130, and a fourth component that is a chimeric
virus with the prM and E proteins of DENV2 NGC (New
Guinea C strain) exchanged for DENV4 in the rDENV4130
genome (rDENV2/4130) (illustrated in Figure 1) (31, 32). Each
donor received 103 PFU of each DENV strain via subcutaneous
inoculation. The challenge strain rDEN2130 is a recombinant
virus derived from the DENV2 Tonga/74 wild-type virus (43), a
different genotype than DEN2 NGC. Study participants received
103 PFU of this challenge virus via subcutaneous injection.

DENV Epitopes
To facilitate detection of DENV-specific T cell responses
irrespective of HLA types and DENV serotypes in various

immunological contexts where only small amounts of blood are
available, we combined previously identified DENV epitopes into
a single peptide pool [megapool (MP)] that was used for T cell
stimulation. DENV MPs were generated for both CD4+ and
CD8+ T cells, and consisted of 180 and 268 peptides, respectively
(see Table S1 for a list of these peptides). Peptides were pooled,
lyophilized, and resuspended in DMSO to form a master mix,
which was then used to stimulate T cells ex vivo. DENV CD4
and CD8 MPs account for 62 and 90% of the IFN-γ response in
Sri Lankan and Nicaraguan cohorts, respectively, and have been
validated in different geographical locations supporting their
global applicability (18, 21, 42, 44).

Ex vivo IFN-γ Enzyme-Linked
Immunosorbent Spot (ELISPOT) Assay
Flat-bottom, 96-well nitrocellulose plates (Immobilon-P;
Millipore) were pre-coated overnight with 50 µL of anti-human
IFN-γ mAb 1-D1K (1 mg/mL) (3420-3-250; Mabtech). The
next day, after washing the plates three times with PBS, 2 × 105

PBMC from each donor were plated in triplicate with either 0.5
µL of the DENV CD8 MP (4µg/mL), 0.5 µL DMSO (negative
control), 20 µL of phytohemagglutinin (PHA [1 mg/mL])
(positive control), or 1 µL each of PMA (100µg/mL) and
ionomycin (1 mg/mL) (positive control) for 16–20 h at 37◦C.
Plates were then washed six times with PBS/0.05% Tween 20
and incubated with 100 µL/well of biotinylated anti-IFN-γ mAb
7-B6-1 (1 mg/mL) (3420-6-250; Mabtech) for 2 h at 37◦C. After
six additional washes with PBS/0.05 Tween 20, IFN-γ spots
were developed by sequential incubation with Vectastain ABC
peroxidase (Vector Laboratories) and 3 amino-9-ethyl carbazole
solution (Sigma-Aldrich) and counted by computer assisted
image analysis (ZEISS KS ELISPOT Reader). Each patient sample
was tested in three replicate wells and the experimental values
were expressed as mean spots/106 PBMC. For each sample tested,
responses to DMSO were measured (to establish background
values) and subtracted from the response to the DENV CD8MP.

Flow Cytometry and Intracellular Cytokine
Staining (ICS) Assay
PBMCs (2 × 106) were cultured in the presence of DENV
CD8 or CD4 MPs (1µg/mL), DMSO (negative control), or
PMA (100 ng/mL)/ionomycin (1µg/mL) (positive control) for
2 h at 37◦C. GolgiPlug (BD Biosciences) was then added and
cells were incubated for an additional 4 h at 37◦C. Cells were
washed, and then stained with Live Dead Fixable Blue staining
reagent (Thermo Fisher) at 4◦C for 30min, after which they
were resuspended in staining buffer (PBS/1% human AB serum)
and Brilliant Violet Staining buffer (BD Biosciences) containing
surface staining antibodies and incubated at 4◦C for 30min.
For intracellular staining, cells were fixed in ice-cold PBS/4%
paraformaldehyde for 10min, washed, and incubated in staining
buffer at 4◦C overnight. Cells were permeabilized with PBS/1%
human AB serum/0.1% sodium azide/0.1% saponin, after which
they were incubated with 10% human serum in permeabilization
buffer, and then stained for intracellular cytokine expression
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FIGURE 1 | Overview of human cohorts for measurement of anti-DENV T cells following vaccination and/or challenge. (A) Immunization schedule of the CIR268

study. Donors received the TV003 formulation of DLAV on day 0 and were given a second dose of TV003 on day 180 post-primary vaccination. (B) Immunization and

challenge schedule of the CIR287 study. Donors were immunized with TV003 on day 0 and were challenged with rDENV2130 (Tonga/74) on day 180

post-vaccination. For both studies, blood and PBMC were collected at multiple times post-vaccination or post-challenge for analysis by ELISPOT, ICS, or FRNT.

at 4◦C for 30min. Flow cytometry data were collected on a
LSRII flow cytometer (BD Bioscience) and analyzed with FlowJo
software (Treestar). For the CD8+ and CD4+ T cell analyses, the
background signal from DMSO was subtracted from the signal
elicited by the DENV CD8 MP or the DENV CD4 MP.

Antibodies used in these experiments were as follows: CD3
(UCHT1), CD19 (SJ25C1), CD14 (M0Pg) from BD Biosciences,
CD4 (OKT4), CD8a (RPA-T8), and CD197 (G043H7) from
Biolegend, CD45RA (HI100) from Thermo Fisher Scientific, and
TNF-α (Mab11) and IFN-γ (4S.B3) from eBioscience.

Focus Reduction Neutralization (FRNT)
Assay
Serum neutralizing antibody titers against DENV1-4 were
determined by focus reduction neutralization test (FRNT), using
the lowest serum dilution that yielded a 50% reduction in viral
foci (FRNT50) as previously described (32). The virus strains used

were DENV1 (WestPac/74), DENV2 (New Guinea C), DENV3
(Slemen/78), and DENV4 (Dominica/81).

RESULTS

Human Cohorts for Measurement of
Anti-DENV T Cells Following Vaccination
and/or Challenge
We have previously reported on the ability of the NIH DENV
tetravalent live-attenuated vaccine (DLAV) to induce DENV-
specific T cells (19, 20) and neutralizing antibodies (31, 32), as
well as its ability to protect against challenge with an under-
attenuated strain of DENV (32). In the current study, our goal
was to define the natural history of antiviral CD8+ and CD4+

T cells in the setting of protective vaccination. We leveraged
T cells obtained from two vaccination studies. The first was
study CIR268, where individuals were either (i) vaccinated
with DLAV and followed for 180 days or (ii) vaccinated with
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DLAV and given a boost of DLAV 180 days later (Figure 1A).
We previously reported on the immunogenicity of vaccination
in these individuals relating to the formation of anti-DENV
neutralizing antibodies (31). The second study was CIR287,
which followed individuals that received DLAV and 180 days
later were protected from challenge with DENV2130 (Tonga/74)
(32) (Figure 1B). Herein, we report on the phenotypic and
temporal properties of DENV-specific T cells in the context of
these two studies, which collectively provide models of (i) single-
dose vaccination, (ii) multi-dose vaccination, or (iii) single-dose
vaccination and subsequent protection against challenge.

Natural History of DENV-Specific CD8+

T Cell Formation and Maintenance
Following Vaccination and a Subsequent
Boost
We previously demonstrated that DENV-specific CD8+ T cells
can be detected 11–13 months after DLAV vaccination (19).
Using the CIR268 cohort (described in Figure 1A), we wanted
to determine (i) the timing of DENV-specific CD8+ T cell
formation and maintenance following DLAV vaccination and
(ii) the impact of a second DLAV dose on the frequency and
durability of these vaccine-induced CD8+ T cells. To ensure
maximal sensitivity, we initially employed the ELISPOT assay to
detect CD8+ T cells capable of secreting IFN-γ in response to the
DENV CD8 MP, which contains the most frequently observed
CD8+ T cell epitopes from each of the four DENV serotypes,
regardless of HLA background (for further description, see
Materials and Methods). As shown in Figure 2, when all donors
(n = 6 who were immunized with a single dose of DLAV; n =

10 who were immunized with DLAV and then given a second
dose 180 days later) were examined, DENV-specific CD8+ T
cells first became detectable as early as 8 days post-vaccination,
with most donors exhibiting their first measurable responses
14–21 days after vaccination. Peak frequencies were typically
observed between 21 and 42 days post-vaccination, followed by
declining responses through day 180 post-vaccination. However,
responses remained detectable through this entire time period
for most donors, with the exception of 268-003-067 and 268-
003-068, who had undetectable responses at the day 180
post-vaccination time point. Additionally, responses were not
detectable by ELISPOT at any time point for donors 268-
003-057 and 268-003-083, despite the fact that both donors
generated neutralizing antibodies (data not shown). This could
reflect (i) a limit in the sensitivity of our ELISPOT assays to
detect responses that may be present in these donors, (ii) an
incompatibility between the HLA genotype of these donors
and the CD8+ T cell epitopes included in the megapool, or
(iii) that these donors failed to make CD8+ T cell responses
to vaccination.

For the CIR268 donors who received a second dose of DLAV
on day 180 after primary DLAV vaccination, we observed that
DENV-specific CD8+ T cell frequencies either increased (n =

7), or decreased (n = 2) when compared to the levels detectable
at the day 180 post-vaccination time point (Figure 2C). For
those with CD8+ T cell expansion, maximal cell frequencies

were observed between 14 and 42 days after the second
dose, followed by a decline similar to what was observed
following primary vaccination. The majority of vaccinees who
received a second dose retained detectable antiviral CD8+

T cell cells through day 360 post-primary vaccination (day
180 post-boost).

DLAV Vaccination Elicits Multifunctional
CD8+ T Cells
Having defined the kinetics and dynamics of DENV-specific
CD8+ T cell formation and maintenance following DLAV
vaccination or subsequent boosting, we next wished to
characterize the phenotypic properties of these cells using the
intracellular cytokine staining (ICS) assay. Specifically, PBMC
from CIR268 vaccinees were stimulated with the DENV CD8
MP and the virus-specific CD8+ T cells within each PBMC
population were assessed for their ability to produce cytokines
(IFN-γ or TNF-α) as well as express memory markers (CCR7
and CD45RA). Figure 3A shows our gating scheme. As shown
in Figures 3B,C, DENV-specific CD8+ T cells secreting IFN-
γ or TNF-α became detectable 14 days after vaccination and
peaked at 21 days. In contrast, the appearance of multifunctional,
DENV-specific CD8+ T cells secreting both IFN-γ and TNF-α
appeared later at day 21 post-vaccination and reached peak values
28–42 days following vaccination. Similar to the cohort-wide
averaged ELISPOT results shown Figures 2A,B, the frequencies
of all three populations of DENV-specific CD8+ T cells (those
making IFN-γ, TNF-α, or both) declined thereafter until day
180 post-vaccination (Figures 3B,C). Delivering a second dose
of DLAV did not lead to a significant change in the cell
frequencies through the remaining 180 days following the
boost (Figure 3C).

DLAV Vaccination Elicits Dynamic
DENV-Specific TEM and TEMRA CD8+ T Cell
Populations
Our team has previously reported that the majority of DENV-
specific memory CD8+ T cells induced by DLAV at 11–
13 months after vaccination are of the T effector memory
phenotype where some cells were re-expressing CD45RA
(TEMRA) (CD45RA+, CCR7−) (19). The frequent sampling
points in the CIR268 study provided an opportunity to map
the kinetics DENV-specific memory CD8+ T cell formation
following vaccination and boosting. Figure 4A shows our gating
scheme while Figures 4B,C show memory marker expression
on total CD8+ T cells or DENV-specific, IFN-γ+CD8+ T cells,
respectively. An examination of DENV-specific CD8+ T cells
expressing IFN-γ revealed a mixture of T effector memory
(TEM) (CD45RA−, CCR7−) and TEMRA on day 14 following
vaccination, while no T central memory (TCM) (CD45RA−,
CCR7+) cells were detected (Figure 4C). Strikingly, we noted a
predominance of DENV-specific CD8+ TEM cells at days 14–
21 post-vaccination, with a peak CD8+ TEM frequency at day
21 (∼83% of IFN-γ+CD8+ T cells). Thereafter, CD8+ TEM

frequencies declined, while CD8+ TEMRA frequencies steadily
increased until day 180 post-vaccination, where the proportion
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FIGURE 2 | ELISPOT measurement of DENV-specific IFN-γ+CD8+ T cells following DLAV vaccination and boosting in CIR268 individuals. ELISPOT analysis was

used to identify the number of IFN-γ producing CD8+ T cells that responded to the DENV CD8 MP following DLAV vaccination on day 0 and DLAV boosting on day

180 post-primary vaccination. Note that the time of DLAV boosting (day 180 post-primary vaccination) is shown in each graph in (B,C) with a red arrow. (A) Depicts

the mean responses ± SEM for the donors that received only the primary DLAV vaccination and were followed to day 180 (n = 6) while (B) shows the mean

responses ± SEM for donors that received DLAV vaccination on day 0 and a boost of DLAV on day 180 post-primary vaccination (n = 10). (C) Shows individual donor

responses for all vaccinees.

of TEM and TEMRA IFN-γ+CD8+ T cells was similar (∼50%
of each). Interestingly, following the second dose of DLAV
at day 180 post-vaccination, CD8+ TEMRA cells continued to
increase while CD8+ TEM cells decreased. Specifically, at day
188 post-primary vaccination (8 days post-boost), the frequency

of IFN-γ+CD8+ T cells that were TEMRA was 57 vs. 40%
that were TEM. Together, these data indicate that DENV-
specific CD8+ T cell response to TV003 is characterized by an
early TEM response that gradually gives rise to a long-lasting
TEMRA response.
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FIGURE 3 | Kinetics of multifunctional CD8+ T cell formation and maintenance following DLAV vaccination or boost in CIR268 individuals. ICS was used to measure

the frequency of CD8+ T cells that made IFN-γ, TNF-α, or both in response to the DENV CD8 MP following DLAV vaccination on day 0 and DLAV boosting on day

180 post-primary vaccination. The time of DLAV boosting (day 180 post-primary vaccination) is shown with a red arrow in (C). (A) Depicts the gating strategy used for

these analyses. For each patient sample, the background signal to DMSO was subtracted from the signal to the DENV CD8 MP. (B) Depicts the mean ± SEM

responses for the donors that received only the primary DLAV vaccination and were followed to day 180 (n = 6) while (C) shows the mean responses for donors that

received DLAV vaccination on day 0 and a boost of DLAV on day 180 post-primary vaccination (n = 10).

Natural History of DENV-Specific CD8+

and CD4+ T Cell and Neutralizing Antibody
Responses in the Setting of Protective
Vaccination in Humans
Previous studies from our team have demonstrated that

DLAV vaccination provides protection against a subsequent

DENV challenge in humans. In particular, the CIR287 study

summarized in Figure 1B demonstrated that DLAV-vaccinated
individuals were fully protected against the development of
DENV viremia and rash when challenged 180 days after
vaccination with the under-attenuated DENV2130 (Tonga/74)
(32). Thus, the CIR287 study provided us with a unique
opportunity to evaluate both DENV-specific CD8+ and CD4+

T cells, as well as neutralizing antibodies, in the context
of protective vaccination.

We initially evaluated CD8+ T cell responses to the DENV

CD8MP via ELISPOT. As shown in Figures 5A,B, in six CIR287

donors, the kinetics and magnitude of the DENV-specific CD8+

T cells behaved similarly to that observed in the CIR268 cohort
(Figure 2). Responses were detectable as early as day 8 post-
vaccination, reached peak titers between 21 and 42 days after
vaccination, and, for most donors, began to wane by day 180
post-vaccination. The magnitude of response varied between

donors, but in all cases, responses were detectable throughout
the first 180 days following vaccination. Similar to the CIR268
cohort, we observed accelerated kinetics of DENV-specific CD8+

T cells making IFN-γ or TNF-α, followed by the appearance of
multifunctional CD8+ T cells making both IFN-γ and TNF-α
(Figure 6A).

We next used ICS to measure the frequency and kinetics
of DENV-specific CD4+ T cells from eight CIR287 vaccinees
that responded to the DENV CD4 MP. Following vaccination,
DENV-specific CD4+ T cells expressing IFN-γ, TNF-α, or
both were detectable by day 14, peaked on day 21, decreased
in frequency through day 56, and then remained relatively
unchanged until day 180 (Figure 6B). Unlike the antiviral CD8+

T cells, multifunctional IFN-γ+TNF-α+ CD4+ T cells formed
with the same kinetics as CD4+ T cells expressing only IFN-γ+

or TNF-α+.
While we did not screen for anti-DENV2 NGC neutralizing

antibodies until day 28 post-vaccination, the eight CIR287
vaccinees examined in Figures 6A,B began to exhibit low
levels of neutralizing antibodies on day 28 post-vaccination
(Figure 6C). Antibody titers then increased and reached peak
levels on day 90 post-vaccination and remained stable until day
180 post-vaccination. We observed no correlation between the
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FIGURE 4 | DLAV vaccination and boosting elicits dynamic DENV-specific TEM and TEMRA CD8+ T cell populations. (A) Depicts the gating strategy used for these

analyses. (B) ICS was used to measure the frequency of all CD8+ T cells exhibiting different memory T cell phenotypes (naïve, CD45RA+CCR7+; TCM,

CD45RA−CCR7+; TEM, CD45RA
−CCR7−; or TEMRA, CD45RA

+CCR7−) in CIR268 vaccinees following DLAV vaccination on day 0 and DLAV boosting on day 180

post-primary vaccination. (C) Shows the frequency of IFN-γ+CD8+ T cells that exhibited different memory phenotypes following stimulation with the DENV CD8 MP.

Mean values ± SEM are shown (n = 6 that received only the primary DLAV vaccination and were only following this primary vaccination; n = 11 that received DLAV

vaccination on day 0 and a boost of DLAV on day 180 post-primary vaccination). Note that the time of DLAV boosting (day 180 post-primary vaccination) is shown in

each graph with a red arrow.

magnitude of multi-functional CD4 and CD8T cell responses
on day 180 and antibody neutralization titers (data not
shown). Thus, multifunctional CD4+ T cell formation and peak

expansion (Figure 6B) occurs prior to the generation of antiviral
neutralizing antibodies (Figure 6C) as well as multifunctional
CD8+ T cells (Figure 6A).
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FIGURE 5 | ELISPOT measurement of DENV-specific IFN-γ+CD8+ T cells in the setting of protective vaccination in CIR287 individuals. ELISPOT analysis was used to

identify the number of IFN-γ producing CD8+ T cells that responded to the DENV CD8 MP following DLAV vaccination on day 0 and DENV2130 (Tonga/74) challenge

on day 180 post-vaccination. Note that the time of DENV2130 (Tonga/74) challenge (day 180 post-vaccination) is shown in each graph with a red arrow. (A) Depicts

the mean responses for selected individuals that were examined (n = 6) while (B) shows the individual response of these six donors.

Similar to the ELISPOT analysis of CD8+ T cells from
individual donors in Figures 2C, 5B, there was heterogeneity in
the frequency and kinetics of individual CD8+ T cell, CD4+

T cell, and DENV2-specific neutralizing antibody responses.
To illustrate this, Figure 7 shows the antiviral CD8+ T cell,
CD4+ T cell, and DENV2 neutralizing antibody titers observed
in representative donors (287-03-033, 287-03-035, 287-03-039,
and 287-03-048). The findings from these individual donors are
mostly consistent with the average trends seen when examining
the mean values of the entire CIR287 cohort shown in Figure 6.
There are several key observations from this analysis. First, there
appears to be a relatively equal rate of IFN-γ+, TNF-α+, or
IFN-γ+TNF-α+ CD4+ T cell formation. Further, at the peak
of expansion on day 21 post-vaccination, IFN-γ+ CD4+ T cells
reach higher frequencies when compared to TNF-α+ or IFN-
γ+TNF-α+ CD4+ T cells. Second, there is a staggered appearance
of IFN-γ+ and IFN-γ+TNF-α+ CD8+ T cells, with the IFN-γ+-
only population forming earlier and the IFN-γ+TNF-α+ cells
reaching peak levels later and remaining the highest frequency
CD8+ T cell subset through 180 days post-vaccination. Last,
neutralizing antibodies to DENV2 appear (and peak) after the
establishment of DENV-specific CD8+ and CD4+ T cells.

Impact of Virus Challenge on
DENV-Specific CD8+ and CD4+ T Cells
Following challenge of CIR287 vaccinees with DENV2130
(Tonga/74) at day 180 post-vaccination, virus-specific CD8+

and CD4+ T cell responses varied by donor. By CD8+ T
cell ELISPOT, two donors showed increased DENV CD8+ T
cells following challenge, while one showed a decline, and
three remained unchanged (Figure 5B). By ICS, when mean
values for the entire CIR287 cohort were examined, there
appeared to be a trend of multifunctional IFN-γ+TNF-α+ CD4+

and CD8+ T cells increasing slightly on day 184 following

vaccination (day 4 post-challenge) and then either maintaining
at this frequency or decreasing through day 360 post-vaccination
(d180 post-challenge) (Figures 6A,B). When examined at the
individual level, the vaccinees shown in Figure 7 did not
show appreciable boosting of DENV-specific CD4+ T cells by
DENV2130 (Tonga/74) challenge, with the possible exception
of donor 287-03-035. However, this analysis is complicated by
the fact that CD4+ T cell reactivity was below the limit of
detection for all three donors at most time points following
challenge. With regard to DENV-specific CD8+ T cells, two of
the three donors (287-03-033 and 287-03-039) shown in Figure 7
had increases in IFN-γ+TNF-α+ cells following challenge with
DENV2130 (Tonga/74) while donor 287-03-035 maintained
even cell frequencies directly after challenge.

Memory CD8+ and CD4+ T Cell
Populations in the Setting of Protective
DENV Vaccination
We next examined the kinetics and phenotypic profile of DENV-
specific memory CD8+ and CD4+ T cells that were elicited by
DLAV vaccination in the CIR287 cohort and associated with
complete protection against DENV2130 (Tonga/74) challenge.
CIR287 individuals exhibited a similar pattern of memory CD8+

T cell formation to that seen for the CIR268 vaccinees in Figure 4.
Specifically, the initial virus-specific CD8+ T cell response on
days 14–21 following vaccination was dominated by TEM cells
in CIR287 donors (Figure 8B) (Note that Figure 8A shows
memory subset frequencies for CD8+ T cells unable to elicit
IFN-γ in response to CD8 megapool stimulation). Thereafter,
the frequency of CD8+ TEM cells steadily declined and returned
to baseline levels. Conversely, the frequency of CD8+ TEMRA

cells steadily increased from day 21 after vaccination to day
180 where it represented 68% of virus-specific IFN-γ+CD8+ T
cells. Following DENV2130 (Tonga/74) challenge, CD8+ TEMRA
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FIGURE 6 | Kinetics of multifunctional CD8+ and CD4+ T cell or neutralizing

antibody formation and maintenance in the setting of protective DENV

vaccination in CIR287 individuals. Following DLAV vaccination on day 0 and

DENV2130 (Tonga/74) challenge on day 180 post-vaccination, ICS was used

to measure the frequency of CD8+ T cells (A) or CD4+ T cells (B) that made

IFN-γ, TNF-α, or both in response to the DENV CD8 MP (A) or DENV CD4 MP

(B) while FRNT was used to measure the titer of anti-DENV2 NGC neutralizing

antibodies (C). Note that the time of DENV2130 (Tonga/74) challenge (day

180 post-vaccination) is shown in each graph with a red arrow and that the

limit of detection in (C) is indicated with a dashed line. For each patient

sample, the background signal to DMSO was subtracted from the signal to the

DENV CD8 MP (A) or DENV CD4 MP (B). Mean values ± SEM are shown for

the eight CIR287 individuals examined (A–C).

cells continued to increase for 8 days, then declined slightly
and became stable whereas CD8+ TEM cells showed a slight
increase on day 4 post-challenge (day 184 post-vaccination), and
then remained fairly stable through day 180 post-challenge (day
360 post-vaccination).

We had previously reported that DLAV vaccination induces
virus-specific CD4+ T cells that are predominantly TEM at 10–
26 months after vaccination (20). Here, we confirm and extend
this observation by demonstrating that while the majority of
DENV-specific memory CD4+ T cells were TEM (range 78–
98% of IFN-γ+CD4+ T cells), vaccination induces a progressive
increase in the DENV-specific CD4+ TEMRA cells over 180
days, and that this frequency is maintained for at least 180
days after challenge with DENV (Tonga/74) (Figure 9). DENV-
specific CD4+ TEMRA cells were initially very low between days
14 and 28 post-vaccination (range 1 to 2% of IFN-γ+CD4+ T
cells) and then steadily increased to ∼7–19% of IFN-γ+CD4+

T cells. Following challenge, there appeared to be a slight trend
of gradually increasing antiviral CD4+ TEMRA. Taken together,
these data suggested that protective immunity against DENV in
a human challenge model was associated with an early effector
phase marked by the generation of multi-functional CD4+ and
CD8+ TEM cells, followed by late phase marked by a progressive
increase in the frequency of CD4+ and CD8+ TEMRA cells.

DISCUSSION

DENV is a serious threat to human health and the current lack of
an FDA-approved vaccine for dengue-naïve individuals to safely
prevent disease from all four DENV serotypes is a major unmet
medical need. Further, the immunological basis for protective
immunity to DENV infection is not fully understood. Certainly
there is support that both arms of the adaptive immune response,
T and B cells, play an important role (45, 46). In the current
study, we had the opportunity to detail the natural history and
functional attributes of DENV-specific CD8+ and CD4+ T cells
in the setting of protective DENV vaccination and to view these T
cell responses concurrently with antiviral neutralizing antibodies.
There were several key findings. First, multifunctional (e.g., IFN-
γ+TNF-α+-producing) CD8+ and CD4+ T cells specific for
DENV form rapidly, typically within the first 8–14 days after
vaccination and remain detectable for at least 6 months. Second,
multifunctional CD4+ T cells form prior to both multifunctional
CD8+ T cells and antiviral neutralizing antibodies and thus may
contribute the establishment and quality of these CD8+ T cell and
antibody responses. Third, vaccine-induced CD8+ T cells that are
dominated by TEM early after vaccination eventually give way to
increased frequencies of TEMRA cells that remain elevated 1 year
after vaccination. Last, although the majority of DENV-specific
CD4+ T cells induced by DLAV vaccination are TEM, and only
a small proportion are TEMRA, the frequency of virus-specific
CD4+ TEMRA, is significantly increased after vaccination and
challenge. Thus, our study details for the first time the formation,
maintenance, and phenotypic profile of antiviral CD8+ and
CD4+ T cells associated with protection against DENV infection.

There are several lines of evidence to suggest that DENV-
specific CD8+ and CD4+ T cell responses play a protective
role against DENV infection and/or disease severity (18, 21, 33–
42). Indeed, data from the CIR287 study (DLAV vaccination
followed by DENV2130 (Tonga/74) challenge) adds support
to this hypothesis. Specifically, of the 21 DLAV vaccinees who
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FIGURE 7 | Kinetics of neutralizing antibody and multifunctional CD8+ and CD4+ T cell formation and maintenance in the setting of protective DENV vaccination in

CIR287 individuals. ICS was used to measure the frequency of CD8+ T cells or CD4+ T cells that made IFN-γ, TNF-α, or both in response to the DENV CD8 MP or

DENV CD4 MP, respectively, following DLAV vaccination on day 0 and DENV2130 (Tonga/74) challenge on day 180 post-vaccination. Neutralizing antibody titer

against DENV2 strain New Guinea C (NGC) was measured in the same individuals via the focus reduction neutralization (FRNT50) test. Note that in each graph the

time of DENV2130 (Tonga/74) challenge (day 180 post-vaccination) is shown with a red arrow and the limit of detection is indicated with a dashed line.

were protected from DENV2130 (Tonga/74) challenge, nine
exhibited a 4-fold or greater boost in their antiviral neutralizing
antibodies following challenge (32). This result indicates that
sterilizing immunity from neutralizing antibodies was not the
sole mechanism of protection at work in these individuals.
Rather, it is possible that the multifunctional CD8+ and/or
CD4+ T cells detected in the CIR287 vaccinees contributed to
the observed protection. However, formally demonstrating that
DLAV-induced CD8+ and/or CD4+ T cells are sufficient to

protect humans against DENV infection remains a challenge
considering the high rate of neutralizing antibody induction
typically observed in vaccinees (31, 32).

Our team previously demonstrated that DLAV vaccination
elicits virus-specific CD8+ and CD4+ T cells recognizing all
four DENV serotypes with the same antigen specificity and
phenotypic attributes as those formed during natural DENV
infection (19, 20). Further, these DLAV-induced CD8+ and
CD4+ T cell responses remain detectable for at least 12 or 26
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FIGURE 8 | Memory CD8+ T cell populations in the setting of protective DENV vaccination in CIR287 individuals. (A) ICS was used to measure the frequency of all

CD8+ T cells exhibiting different memory T cell phenotypes (naïve, CD45RA+CCR7+; TCM, CD45RA
−CCR7+; TEM, CD45RA

−CCR7−; or TEMRA, CD45RA
+CCR7−) in

CIR287 vaccinees following DLAV vaccination on day 0 and DENV2130 (Tonga/74) challenge on day 180 post-vaccination. (B) Shows the frequency of IFN-γ+CD8+

T cells that exhibited different memory phenotypes following stimulation with the DENV CD8 MP. Mean values ± SEM are shown for the eight CIR287 individuals

examined. Note that the time of DENV2130 (Tonga/74) challenge (day 180 post-vaccination) is shown in each graph with a red arrow.

months, respectively (19, 20). In the current study, we were
able to fine map the appearance of DENV-specific CD8+ and
CD4+ T cells following vaccination. Thus, assuming that these
T cells are protective, our studies collectively suggest that DLAV
vaccination may provide protection within 8–14 days and that
this protection could last for at least a year. The kinetics and
phenotype of CD8+ T cell induction andmaintenance in humans
has also been examined following vaccination with Takeda’s live-
attenuated tetravalent dengue vaccine (TDV) consisting of an
attenuated DENV2 strain (TDV-2), and three chimeric viruses
encoding the pre-membrane (prM) and E proteins of DENV1, 2,
or 4 on the TDV-2 backbone. Chu et al. examined DENV-specific
CD8+ T cells on days 14 and 90 after primary vaccination and,
by ICS, could detect multifunctional (IFN-γ+TNF-α+) CD8+

T cells at the day 90 time point (47). Subjects received a boost

at this same time point (day 90 post-primary vaccination) and
retained DENV-specific CD8+ T cells for another 90 days. More
recently, Waickman et al. detected DENV-specific CD8+ T cells
by IFN-γ ELISPOT as early as 28 days following administration
of this same live-attenuated tetravalent dengue virus vaccine
candidate (48). Thus, there are similarities in CD8+ T cell
responses elicited by the DLAV and TDV platforms and our
studies help to more precisely fill in the timing of anti-DENV
T cell formation and maintenance following vaccination. Future
human challenge studies will be required to define how quickly
protective immunity is established following vaccination and the
durability of this protective response.

A considerable challenge to the development of a safe DENV
vaccine has been the requirement to simultaneously induce
protective immunity to all four DENV serotypes. Failure to do
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FIGURE 9 | Memory CD4+ T cell populations in the setting of protective DENV vaccination in CIR287 individuals. (A) ICS was used to measure the frequency of all

CD4+ T cells exhibiting different memory T cell phenotypes (naïve, CD45RA+CCR7+; TCM, CD45RA
−CCR7+; TEM, CD45RA

−CCR7−; or TEMRA, CD45RA
+CCR7−) in

CIR287 vaccinees following DLAV vaccination on day 0 and DENV2130 (Tonga/74) challenge on day 180 post-vaccination. (B) Shows the frequency of IFN-γ+CD4+

T cells that exhibited different memory phenotypes following stimulation with the DENV CD4 MP. Mean values ± SEM are shown for the eight CIR287 individuals

examined. Note that the time of DENV2130 (Tonga/74) challenge (day 180 post-vaccination) is shown in each graph with a red arrow.

so theoretically puts vaccinees at risk of developing severe DENV
disease due to antibody-dependent enhancement, a phenomenon
whereby antiviral antibodies raised against one serotype (e.g.,
DENV1) can bind a second serotype (e.g., DENV3) and lead
to enhanced entry of this virus into target cells (7). Indeed,
the underperformance of Dengvaxia (9–14), a tetravalent DENV
vaccine with the prM and E proteins of DENV and the backbone
of yellow fever virus, illustrates the possible danger of a vaccine
that primarily targets the generation of neutralizing antibodies,
but not antiviral T cells. Not only has Dengvaxia failed to
fully protect against DENV infection, it increases the risk of
hospitalization in DENV-naïve individuals when compared to
unvaccinated individuals (9, 15, 16). One possible advantage of
a live-attenuated vaccine like DLAV is that it induces balanced
CD8+ and CD4+ T cells responses to all four DENV serotypes

after a single dose, with a particular focus on several of the
DENV non-structural proteins that are missing from Dengvaxia
(17–21). It is a possibility that the multifunctional CD8+

and CD4+ T cells induced by DLAV may not only provide
protection against primary DENV infection, but could also
counteract the more severe DENV disease caused by antibody-
dependent enhancement.

The generation of CD8+ T cell memory after vaccination is
associated with progressive changes in the frequencies of virus-
specific TEM and TEMRA cells (49, 50). Previous studies have
demonstrated that long-term CD8+ and CD4+ T cell memory
following both natural DENV infection and DLAV vaccination
is associated with multi-functional TEM and/or TEMRA cells (19,
20, 51). Our results here reveal the dynamics of the formation
and maintenance of these memory T cell populations in the
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setting of a protective immune response to dengue virus (32). For
both CD4+ and CD8+ T cells, the generation of multifunctional
T cells in the first 2–4 weeks after vaccination is associated
primarily with a TEM phenotype, after which there is a steady
increase in the frequency of virus-specific TEMRA cells until
180 days after vaccination. These kinetics are similar to those
previously observed after vaccination with both yellow fever
and smallpox (52), indicating that these phenotypic changes are
not restricted to specific pathogens. Rather, they are phenotypic
features associated with the generation of virus-specific T cell
memory. Indeed, previous reports that a high frequency of
CD8+ TEMRA is associated with protection against symptomatic
H1N1 influenza (53) and HSV-1 reactivation (52) underscore the
relevance of using TEMRA generation as a primary goal in the
design of effective vaccines.

The mechanisms underlying the efficacy of TEMRA in the
memory response remain unclear. We found that although the
initial response to DLAV is dominated by TEM cells, the virus-
specific response upon dengue challenge or DLAV boost is
dominated by TEMRA cells, indicating that it may be the TEMRA

subset that drives the memory T cell immune response. This
finding is consistent with a recent report indicating that CD8+

TEMRA cells retain epigenetic marks that foster rapid effector
function (50). Although comparatively less is known of CD4+

TEMRA, it was recently shown that DENV-specific CD4+ TEMRA

cells are cytolytic and are associated with protective immunity
(41, 54, 55).

In conclusion, these data provide a detailed map of the natural
history of DENV-specific CD4+ and CD8+ T cell phenotype
and function in a human challenge model of protective DLAV
vaccination. Our data demonstrate that the protective DLAV
vaccine elicits multi-functional CD4+ and CD8+ TEMRA cells
and suggest that these virus-specific T cells may play a role in
protective immunity. Future studies will be needed to determine
whether these DENV-specific T cell populations are a bona fide
correlate of protection against DENV infection.
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