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Microglia sustain normal brain functions continuously monitoring cerebral parenchyma

to detect neuronal activities and alteration of homeostatic processes. The metabolic

pathways involved in microglia activity adapt at and contribute to cell phenotypes.

While the mitochondrial oxidative phosphorylation is highly efficient in ATP production,

glycolysis enables microglia with a faster rate of ATP production, with the generation of

intermediates for cell growth and cytokine production. In macrophages, pro-inflammatory

stimuli induce a metabolic switch from oxidative phosphorylation to glycolysis, a

phenomenon similar to the Warburg effect well characterized in tumor cells. Modification

of metabolic functions allows macrophages to properly respond to a changing

environment and many evidence suggest that, similarly to macrophages, microglial cells

are capable of a plastic use of energy substrates. Neuroinflammation is a common

condition in many neurodegenerative diseases and the metabolic reprograming of

microglia has been reported in neurodegeneration. Here we review the existing data on

microglia metabolism and the connections with neuroinflammatory diseases, highlighting

how metabolic changes contribute to module the homeostatic functions of microglia.
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INTRODUCTION

Microglia Phenotypes and Metabolic States
Microglia are the resident immune cells of the central nervous system (CNS) and, depending
on the brain region, they can represent from 5 to 12% of total cell population (1). Microglial
cells continuously monitor the surrounding parenchyma to sense alteration of brain functions
(2, 3) and are involved in controlling neuronal excitability, synaptic activity, neurogenesis, and
clearance of apoptotic cells in the healthy adult brain (4). Microglia interact with the cerebral
microenvironment through different molecules such as chemokines, cytokines, and trophic factors
which, in turn, modulate microglia activities converting the homeostatic microglia into reactive
microglia and viceversa (5). Alterations of functional phenotype are accompanied by dynamic
changes of shape of cell body and processes, although no unique correlation among microglial
cell morphology and functional phenotype has been identified (6). However, in early stages of
brain development, and upon in vitro activation with pro-inflammatory stimuli, such as bacterial
lipopolysaccharide (LPS), microglial cells display an ameboid profile, with large and round cell
bodies, short and thick branches; this morphology is often accompanied by an increased phagocytic
activity, production of specific molecules and gene expression signatures. At more mature stages
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of development, microglia have usually a highly ramified
morphology, dynamically reacting to brain parenchymal
alterations and injuries (3) and changing phenotype from
surveillant to pro- or anti-inflammatory in response to
pathological conditions (7, 8). Under pathological conditions,
it was shown that microglia comprise cells with diverse
phenotypes (9). In fact, microglial-activated cells can be roughly
divided into classically activated M1 cells, with cytotoxic and
pro-inflammatory properties and alternatively activated M2
cells, with phagocytic activities. The M2 condition can be
further divided into three classes: M2a, involved in repair and
regeneration; M2b, an immune-regulatory phenotype; M2c,
an acquired-deactivating phenotype (10, 11). Indeed, more
recent transcriptomic analysis of microglia in different brain
area and different disease conditions, reveal a much higher
complexity, with several overlapping genes and few signature
genes specifically expressed by microglia subgroups (12, 13).
Upon aging, microglia phenotype changes further, and it was
recently demonstrated an age-related senescent microglial
phenotype in humans, possibly involved in pathological
processes associated with brain aging (14). Like other cells,
in order to perform their functions, microglia require a
large amount of energy and it has been recently shown that
different microglia phenotypes are associated with distinct
metabolic pathways (15–18). Under normal oxygen supply,
cells produce energy in the mitochondria, in the glycolytic
pathway, through the oxidative phosphorylation (19); in hypoxic
conditions, the anaerobic glycolysis converts pyruvate into
lactate in the cytoplasm (20, 21). The bioinformatics analysis
of a transcriptome database of mouse brain cells (22) showed
that microglia express all the genes required for the glycolytic
and the oxidative energy metabolism (16). It has been proposed
that glucose metabolism exerts transcriptional control over
microglial activation, and that the homeostatic phenotype of
(cultured) microglia preferentially utilize oxidative metabolism
(23–26). An essential fuel for microglia is glucose, which
enters the cell through different transporters (GLUTs) (27).
Microglia predominantly express GLUT3 (28) and the fructose
transporter GLUT5 (29, 30), but under inflammatory conditions,
GLUT1 expression is upregulated to increase glucose uptake and
promote glycolysis (31). In the absence of glucose, microglia
are able to use free fatty acids as alternative energy source,
as also suggested by the accumulation of lipid droplets in
glucose-deprived microglial cells (32). Microglia also express
the nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase NOX2 and the superoxide is used to kill pathogens
(33, 34). Glucose metabolism controls NOX activation by the
NADH-dependent transcriptional co-repressor C-terminal
binding protein (CtBP) that affects nuclear factor kappa-
light-chain-enhancer of activated B cell (NF-κB) signaling
and the expression of inducible nitric oxide synthase (iNOS)
(35, 36). Interestingly, microglia also express the monocarboxylic
transporter (MCT) 1 and 2 and absorb lactate and ketons (37)
and it has been demonstrated that a ketogenic diet is correlated
with a suppression of microglia activation (38–40) likely due
to the inhibition of histone deacetylases (HDACs) by ketonic
bodies, which decreases NK-kB signaling (41–43). Moreover,

silencing HDAC activity affects microglia during development
and in adulthood, as a function of the activation state, suggesting
that epigenetic changes affect cellular metabolism in activated
microglia, modulating microglia function (44). Microglial
activity, together with glucose availability and glycolytic rate,
influences pro-inflammatory gene and protein expression (45).
The oxidative phosphorylation occurs within the mitochondria
and produces more ATP molecules; on the other hand, glycolysis
permits a faster ATP production in activated microglia (46)
allowing a rapid metabolism for cell growth, and the production
of cytokines and reactive oxygen species (47). These pathways of
energy production are both of primary importance for microglia
to maintain their homeostatic functions and are critical for
the progression and repair mechanisms upon CNS injury
and neurodegeneration.

The “Warburg Effect” in Microglia
It is well-established that peripheral immune cells, such as
macrophages and dendritic cells (DCs), switch from the
oxidative phosphorylation to the aerobic glycolytic pathway
when activated (48–50), similarly to what described in tumor
cells (Warburg effect) (51–53), to foster cell proliferation. Even
if microglia originate from a distinct embryological lineage,
they share many characteristics with macrophages (54), as
concern cell plasticity and the adaptable use of energy substrates.
Several reports recently marked the metabolic similarity of
microglia with DCs and macrophages: microglia exposed
to inflammatory stimuli exhibit a transient upregulation of
specific metabolic pathway’s genes (45), indicating that energy
metabolism is modulated during brain inflammation. Many
studies have been performed with microglia cell lines: in
particular, it was observed that upon activation, microglia
alter the mitochondrial metabolism in a nitric oxide (NO)-
dependent manner (24, 25). Another study demonstrated that
lysophosphatidic acid (LPA) stimulates alteration in glycolysis,
morphology and motility of C13NJ microglia cells (23).
Furthermore, lipopolysaccharide (LPS) stimulation of themurine
microglial cell line BV-2 increased lactate production, reduced
the mitochondrial oxygen consumption and ATP production,
with the resulting increase of glycolysis and decrease of
oxidative phosphorylation (15), ultimately increasing nucleic
acid production for gene transcription (55). It has also been
observed that treatment of primary microglia with Deoxy-D-
glucose (2-DG), a blocker of glycolytic pathway, reduced tumor
necrosis factor α (TNFα) and interleukin-6 (IL-6) production
through NF-kB inhibition, leading to microglia death (56,
57). On the other hand, primary rat microglia cultured with
increasing glucose concentration (from 10 to 50mM) boosted
TNFα secretion (58, 59). More recently, Rubio-Araiz et al.
showed that primary microglia exposure to LPS and amyloid-β
(Aβ) induced an inflammatory state associated with the increase
of the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3), with a boost in extracellular
acidification rate (ECAR) (60). IFNγ and Aβ also increased
microglia glycolysis together with an increase in PFKFB3,
hexokinase II and Pyruvate kinase isozymes M2 (PKM2) (61),
suggesting that inflammation affects microglia metabolism,

Frontiers in Immunology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 493

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lauro and Limatola Microglia Phenotype and Metabolic State

driving the glycolysis pathway through increased PFKFB3
activation. Consistently, classic anti-inflammatory stimuli, such
as interleukin-4 (IL-4), decreased glucose consumption and
lactate production (55) in BV2, and this was confirmed in
primary microglia, where IL-4 increased oxygen consumption
rate (OCR), basal respiration and ATP production (62);
in addition, IL-4/IL-13 stimulation maintained an oxidative
metabolic state (16), suggesting that this metabolic shift was
associated with a reduced need for anabolic reactions. Pro-
inflammatory activation of microglia leads to changes in
mitochondrial dynamics and in particular to the metabolic
switch from oxidative phosphorylation to glycolysis. It has
been recently demonstrated that in inflammatory conditions,
microglia upregulate GLUT1 to facilitate glucose uptake
and promote glycolysis and that the blockade of GLUT1
reprogrammed back microglia from glycolysis to mitochondrial
oxidative phosphorylation, thus altering microglial activation
and reducing retinal neurodegeneration in a mouse model
(31). These changes represent an adaptive mechanism, since
the conversion of microglia from surveying to reactive is
accompanied by increased energy consumption. In line with
this view, Nair et al. showed that LPS-treated primary microglia
increasedmitochondrial fragmentation together with a reduction
in oxidative phosphorylation and an increase in both oxygen
consumption rate, glycolysis and cytokine production (63).
In fact, fragmented mitochondria represent the preferred
morphofunctional state when the respiratory activity is low
(64). Moreover, when mitochondrial fragmentation increases,
due to overmuch fission, it can increase the inflammatory
response of microglia modulating DRP1 de-phosphorylation
and ROS elimination, as already demonstrated for macrophages
(65, 66). The same authors also demonstrated that normalizing
mitochondrial membrane potential and ROS production with a
putativemitochondrial division inhibitor (Mdivi-1) abolished the
release of pro- and anti- inflammatory cytokines and chemokines
(63). It fact, it has been shown that LPS induces an increase in
proton leak and in membrane potential of primary microglia,
partially mediated by the uncoupling proteins (UCPs) present in
the mitochondrial inner membrane (67).

Microglia Dysfunction and
Neurodegenerative Diseases
When exerting homeostatic activities, microglia rely on several
membrane proteins: the Pattern Recognition Receptors (PRRs)
and immune receptors such as the triggering receptor expressed
on myeloid cells-2 (TREM2), the signal regulatory protein 1A
(SIRP1A), the fractalkine receptor (CX3CR1), the cell surface
transmembrane glycoprotein receptor CD200 (CD200R) and
the colony stimulating factor 1 receptor (CSF-1R) (68–70) that
recognize Damage-associated molecular patterns (DAMPs) or
Neurodegeneration-associated molecular patterns (NAMPs)
(71). Upon stimulation by potentially dangerous molecules,
microglia assume a neurodegenerative phenotype (MGnD) or
disease-associated microglia (DAM), also recently identified
as “dark microglia” (72) in several neurodegenerative diseases
such as amyotrophic lateral sclerosis (ALS), multiple sclerosis

(MS), and Alzheimer’s disease (AD) (71, 73, 74). It was shown
that an aberrant microglia activation may result in a loss
or alteration of their physiological functions with possible
implications on the emergence or maintenance of pathological
conditions; moreover, neuro-inflammation caused by microglia
hyperactivity has been associated with several neurodegenerative
diseases (12, 75–77) and many evidence support a metabolic
reprograming of microglia in neurodegeneration (17). A
possible mechanism explaining this microglial metabolic
reprogramming has been described in a mouse model of
AD, where Aβ directly triggers microglial inflammation
together with a metabolic reprogramming from oxidative
phosphorylation to glycolysis, in mTOR-HIF-1α pathway-
dependent manner (78). Upon activation, microglia enter in a
tolerant state with defects in cellular metabolism and reduced
responses to inflammatory stimuli, including cytokine secretion
and phagocytosis, suggesting that Aβ-induced microglial
tolerance might represent a critical cue for AD progression
(78). Nonetheless, when microglial glycolytic metabolism was
reactivated by interferon-γ (IFN-γ) treatment, which is a known
regulator of the mTOR (79) and glycolysis pathway (80), the
phagocytic activity of microglia was restored, Aβ plaques and
neuronal losses were reduced and cognitive impairment was
rescued (78) indicating a (close) relation between the cellular
metabolic pathways and functional phenotypes of microglia.
The involvement of mTOR pathway in modulating microglial
metabolism in AD was also previously suggested by Ulland et al.,
that identified TREM2 and the downstream mTOR signaling as
mediators in maintaining microglial metabolic homeostasis (17).
In particular they found that in AD patients carrying a TREM
risk variant (81, 82) and in TREM2-deficient mice with AD-like
pathology, microglia have an anomalous autophagy activity due
to defective mTOR signaling. They demonstrated that upon AD
development, TREM2 deficiency affects the mTOR pathway
and the energetic metabolism in microglia: TREM2 deficiency
was associated with decreased expression of genes for glucose
transporters, glycolytic enzymes, and the transcription factor
HIF1α, all involved in glycolysis (17). The role of TREM2 in
microglial metabolic function was also confirmed in microglia
produced by patient-derived iPSC expressing loss of function
variants of TREM2: TREM2 variants could not perform the
immune-metabolic switch toward glycolysis due to altered
PPARg-p38MAPK-PFKFB3 signaling (83). Of note, in AD as
well as in other diseases such as traumatic brain injury and
ischemia, microglia phenotype changes from anti- to pro-
inflammatory upon disease progression (84–86). In particular, in
brain ischemia, a phenotypic change is well-documented (87, 88):
few minutes after the ischemic attack, resident microglial cells,
mainly in the peri-infarct region, acquire an anti-inflammatory
phenotype in order to restrain brain damage. Few days after
the ischemic insult, pro-inflammatory microglia predominate
in the region adjacent the infarct zone (89, 90) and release
ROS and pro-inflammatory cytokines that induce the activation
of cerebrovascular endothelial cells and sustain the adhesion
and transmigration of leukocytes into the injured tissue,
contributing to further brain damage (91–94). It was recently
demonstrated that upon permanent middle cerebral artery
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occlusion (pMCAO), the expression profiles of anti- and pro-
inflammatory genes in microglia correlates with the expression of
genes related to the oxidative and glycolytic pathway, respectively
(18), suggesting that a targeted modulation of microglia could
be used to reduce the extent of tissue damage in brain ischemia.
All these data indicate that a metabolic reprogramming is crucial
for microglial function in several neuropathologies and the
identification of tools to modulate microglial bioenergetics
pathways might be a promising therapeutic strategy.

Microglia Metabolic Remodeling as
Therapeutic Approach
Considering the heterogeneity of microglia phenotypes
present in specific time windows in different CNS regions
in pathophysiological conditions (87, 88, 95), studies based
on general microglial depletion cannot be considered effective
therapeutic strategies to eliminate potentially dangerous
microglia phenotypes. Accordingly, since a given microglia
subpopulation can plastically modify its phenotype and function
in response to signals from the microenvironment (10), the

targeting of specific microglial phenotypes in a proper time
window could represent a more selective and efficacious
approach and represent the current challenge of this field of
research. One recent experimental approach proposes to induce
a ketogenic state in microglia, suppressing glucose utilization
to reduce inflammation, tissue loss and functional impairment
after brain injury (41–43). The activation of the G-protein-
coupled receptor 109A (GPR109A) with b-hydroxybutyrate
(41, 43, 96) on microglial cells attenuates the NF-kB signaling
and the production of pro-inflammatory cytokines, promoting
a microglial neuroprotective phenotype in a mouse model of
PD (42). Also, a metabolic switch toward oxidative metabolism
might contribute to promote a protective microglia in some
pathophysiological conditions, resulting in the production
of metabolites beneficial for neurons (18, 97). Starting from
the observation that in animal models of cerebral ischemia
the increased anti-inflammatory polarization of microglia is
associated with a smaller infarct area and the resolution of
inflammation (98) it could be useful to identify a number of
factors able to induce a metabolic switch in favor of an anti-
inflammatory state of microglia. Among the possible candidates

FIGURE 1 | Microglia phenotype and metabolic state: in response to appropriate signals, reactive microglia can switch from a pro-inflammatory to an

anti-inflammatory phenotype and vice versa, reorganizing their structure and functions. In particular, pro-inflammatory microglia release cytokines and free radicals that

impair brain repair and regeneration while anti-inflammatory microglia resolve cerebral inflammation and promote brain repair increasing phagocytosis and release of

trophic factors. Different phenotypes of microglia are associated to distinct metabolic pathways, in order to perform their different functions and their activation leads

to changes in mitochondrial dynamics and switch among oxidative phosphorylation and glycolytic metabolism. Several neurodegenerative diseases have been

associated with neuro-inflammation related to microglia hyperactivity or mitochondrial dysfunction. Factors able to promote an anti-inflammatory microglia, such as a

ketogenic diet, 2-DG and CX3CL1, may represent an intriguing approach to counteract some aspect of neurodegenerative diseases.
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is CX3CL1, a chemokine released from neurons in response to
ischemic insult that has neuroprotective properties in permanent
focal cerebral ischemia (99), able to modulate the activation
state of microglia and its metabolism, down-modulating the
expression of several pro-inflammatory and glycolytic pathway-
related genes and inducing an increase in the expression of
several anti-inflammatory and oxidative pathway-related genes
after the ischemic insult (18). CX3CL1 thus acts potentiating
the anti-inflammatory function of microglia, prolonging this
phenotype to limit neuro-inflammation and gaining time
used by parenchymal cells to organize a neuroprotective
response. Another possibility could be to regulate the dynamic
of microglial mitochondria to prevent neurological disorders
caused by aberrant microglial activation: as discussed above,
microglia mitochondrial functions correlate with neuronal
survival, as a function of microglial ROS production, but also
indirectly affecting the activation state and cytokine production
(63, 65). Therefore, targeting cytokines that promote the anti-
inflammatory phenotype of microglia may result in protecting
mitochondrial homeostasis and, on the other hand, direct
approaches to enhance microglial mitochondrial function may
promote the activation of the microglia anti-inflammatory state
(Figure 1).

CONCLUSION

Many brain disorders are accompanied by changes in energy
metabolism (100–105). While the mechanisms connecting
inflammation to cell energy metabolism have been addressed
(106), few information are available on how energy metabolism

affects the inflammatory responses. Since microglia represent
the sentries of the CNS, consistently, they respond to changes
in brain metabolism; however, very little is known about their
own metabolism, especially because most of the metabolic
studies in microglia were conducted in dissociated populations
of primary cultures, which do not mirror the complexity and
diversity of multiple cell types which interact with other cells
and external cues to adapt to bioenergetics changes. For this
reason, it is essential to identify experimental approaches to study
microglia metabolism in in vivo systems, in pathophysiological
conditions. Moreover, most of our knowledge on microglia
biology derives from rodents and, even if some in vitro
studies suggest that polarization of human microglia might
resemble that observed in rodents cells (107), there are
several important differences between rodent microglia and
their human counterparts (108) and additional studies using
human biological systems, such as induced pluripotent stem
cells, will be useful in the effort to translate the studies
on microglia phenotype into preclinical biomedical research.
However, despite these limitations, microglia represent an
intriguing target for the treatment of neurodegenerative diseases
and targeting their metabolism in order to change their
immunological phenotype could represent a promising future
therapeutic approach.
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