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The nuclear Dbf2-related (NDR) kinases NDR1 and NDR2 belong to the NDR/LATS

(large tumor suppressor) subfamily in the Hippo signaling pathway. They are highly

conserved from yeast to humans. It is well-known that NDR1/2 control important

cellular processes, such as morphological changes, centrosome duplication, cell

proliferation, and apoptosis. Recent studies revealed that NDR1/2 also play important

roles in the regulation of infection and inflammation. In this review, we summarized

the roles of NDR1/2 in the modulation of inflammation induced by cytokines and

innate immune response against the infection of bacteria and viruses, emphasizing on

how NDR1/2 regulate signaling transduction through Hippo pathway-dependent and

-independent manners.
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INTRODUCTION

The nuclear Dbf2-related (NDR) kinase NDR1 and NDR2 are also known as serine/threonine
kinase 38 (STK38) and serine/threonine kinase 38 like (STK38L), respectively. They are two
members of the NDR/LATS kinase family, a subfamily of the AGC (protein kinase A/G/C
PKA/PKG/PKC-like) group of serine/threonine kinases, which are highly conserved from yeast to
humans (1, 2). The first NDR serine/threonine kinase, Dbf2p, was discovered in budding yeast
(3) then followed by the identification of the homologues in human cells (4). The mammalian
genome encodes four members of the NDR/LATS kinase family: NDR1 (STK38), NDR2 (STK38L),
LATS1 and LATS2 (1). The NDR orthologs are also found in different species: Cbk1p in
Saccharomyces cerevisiae, Orb6p in Schizosaccharomyces pombe, sensory axon guidance-1 (SAX-1)
in Caenorhabditis elegans, Tricornered (Trc) in Drosophila melanogaster (5). NDR1 (Stk38) mainly
distributes in the nuclei. NDR2, on the other hand, is defined as a cytoplasmic kinase (4–7). In
addition to a central kinase catalytic domain, NDR1 and NDR2 each has a conserved N-terminal
regulatory domain (NTR) and a C-terminal hydrophobic motif (8). NDR1/2 have been regarded
as protein kinases that are involved in a variety of biological processes, including morphological
changes, centrosome duplication, cell cycle and apoptosis (9). Besides, studies also showed that
NDR kinases are involved in embryonic development (10), neurodevelopment (11–14), and cancer
biology (15, 16). Originally identified in Drosophila, the Hippo pathway is a highly conserved
signaling pathway that controls organ size. The core components of the Hippo pathway in
mammals include: mammalian STE20-like serine/threonine protein kinases 1 and 2 (MST1/2), the
AGC serine/threonine protein kinases large tumor suppressor 1 and 2 (LAST1/2), Salvador family
WW domain-containing protein 1 (SAV1), monopolar spindle-one-binder protein 1(MOB1), the
transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with
PDZ-binding motif (TAZ) (17–22). YAP/TAZ translocate to nuclei and bind to transcription
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factors, such as TEAD1/2/3/4, to induce the expression of target
genes that control cell proliferation, survival, and migration (23–
26). When Hippo pathway is activated, MST1/2 phosphorylate
SAV1, MOB1, and LATS1/2. After LATS1/2 kinases get activated,
they phosphorylate YAP/TAZ. This results in the cytoplasmic
sequestration and degradation of YAP/TAZ, which inhibits
YAP/TAZ-driven cell proliferation, survival, and migration.
NDR1/2 are newly identified as members of the Hippo pathway
(5, 18, 27), and were reported to play similar roles like
LATS1/2 as upstream kinases of YAP (28–33). Recent studies
demonstrated critical functions of the Hippo signaling in innate
immunity (17, 24, 34). For example, Mst1/2 knockout mice
are more susceptible to cecal ligation and puncture (CLP)-
induced sepsis compared to wild-type mice (35). Emerging
evidences have revealed that NDR1/2 also play pivotal roles in
innate immunity. Here, we reviewed the roles of NDR1/2 in
inflammation and antimicrobial innate immune response. We
focused on their regulatory roles in innate immunity in Hippo
pathway-dependent and -independent manners.

NDR REGULATES PATTERN
RECOGNITION RECEPTOR-MEDIATED
INNATE IMMUNITY

The innate immune system is the first line of host defense
against the invasion of microbes, including bacteria, viruses and
fungi. Innate immune response is initiated by the recognition of
pathogen-associated molecular patterns (PAMPs) of pathogens
and damage-associated molecular patterns (DAMPs) of damaged
cells by pattern-recognition receptors (PRRs). The members
of PRRs include Toll-like receptors (TLRs), C-type lectin
receptors (CLRs), retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs), NOD-like receptors (NLRs) and DNA
sensors. PAMPs are conserved components of pathogens, such
as lipopolysaccharide (LPS), mannose, peptidoglycan (PGN),
dextran, teichoic acid (LTA), nucleic acids (DNA, RNA), peptide
substances (flagella, etc.), lipoproteins, etc. After PAMPs of
invading microbes are recognized by PRRs, the downstream
signaling pathways of PRRs are activated to elicit innate
immune response, accompanied by the secretion of inflammatory
cytokines and type I interferons (36, 37). CpG DNA is a typical
ligand of TLR9 located on the membrane of endosomes. Our
previous research demonstrated that NDR1 (Stk38) is a negative
regulator of TLR9-mediated immune response in macrophages.
Mechanistically, NDR1 binds with ubiquitin E3 ligase Smurf1.
This interaction promotes Smurf1-mediated ubiquitination and
degradation of mitogen-activated protein kinase kinase 2
(MEKK2), which is essential for CpG-induced ERK1/2 activation
and subsequent production of TNF-α and IL-6. However,
MEKK2 is not required for LPS-induced TNF-α and IL-6
production. Consequently, NDR1 inhibits ERK1/2 activation and
decreases the production of TNF-α and IL-6 induced by CpG in
macrophages. In contrast, NDR1 deficiency only slightly affects
LPS-induced cytokine secretion. NDR1 deficiency also increases
CpG-induced pro-inflammatory cytokine production in vivo.
For instance, Stk38-deficient mice infected with Escherichia

coli had been found to secrete higher levels of TNF-α, IL-
6, and show a higher mortality rate than control wild-type
mice. Stk38-deficiency also renders mice more susceptible to
CLP-induced polymicrobial sepsis than control mice. Similarly,
knockdown of NDR2 (Stk38L) with siRNA increased CpG-
induced IL-6 secretion, suggesting that NDR2 is functionally
similar to NDR1 in regulating the production of TLR9-mediated
inflammatory cytokines. Taken together, our results showed
that NDR1 prevents the excessive production of inflammatory
cytokines by inhibiting TLR9-mediated innate immune response.
Thus, NDR1 plays a significant role in protecting the host from
TLR9-mediated inflammation (38).

A previous study suggested that NDR1 and NDR2 kinases
were incorporated into HIV-1 particles. Furthermore, NDR1
and NDR2 can be cleaved by the HIV-1 protease, which
inhibits the activity of NDR1/2 (39). This finding draws our
attention to the connection between NDR1/2 and viral infection.
MiR146a inhibits TLR signaling by targeting IRAK1, TRAF6,
STAT1, and IRAK2 (40–44), which are important for antiviral
immune response. A recent study showed that NDR1 acts as
a transcriptional regulator by binding to the intergenic region
of miR146a, which dampens miR146a transcription to promote
the translation of STAT1. This takes place independently of the
NDR kinase activity. STAT1 translation subsequently increases
the production of type I IFN, pro-inflammatory cytokines and
interferon-stimulated genes (ISGs) for the antiviral immune
response. These findings revealed that NDR1 positively regulates
type I and type II IFN pathways and enhances antiviral
immune response (6). Glycogen synthase kinase 3β (GSK3β)
and STAT1 are important participants in the antiviral immune
response. GSK3β promotes IFN-induced STAT1 activation (45–
47). While GSK3β inhibits NDR1 activation, NDR1 decreases
the phosphorylation of GSK3β, promotes GSK3β activation and
facilitates the production of type I IFNs induced by poly (I:C) (7,
48). Meanwhile, NDR2 was reported to promote RIG-I-mediated
antiviral immune response by directly associating with RIG-I
and TRIM25, thus facilitating the forming of RIG-I/TRIM25
complex and enhancing K63-linked polyubiquitination of
RIG-I (49) (Figure 1). Overall, these findings demonstrated
that NDR1/2 down-regulates TLR-mediated inflammation but
positively regulates RIG-I-mediated antiviral immune response.
It is unclear why NDR1 inhibits CpG-induced inflammatory
cytokine production but increases virus-induced inflammatory
cytokine production. It is possible that the target of NDR1,
MEKK2, which promotes CpG-induced inflammatory cytokine
production, plays a different role in antiviral innate immunity.
As reported, MEKK2 in tumor-derived exosomes antagonizes
innate antiviral immunity (50). In addition, CpG triggers
TLR signal transduction and inflammatory cytokine production
much more rapid than virus infection. It can’t be ruled out
that alteration of miR146a and STAT1 by NDR1 are not as
efficient in upregulating CpG-induced inflammatory cytokine
production as in upregulating virus-induced inflammatory
cytokine production. The negative or positive role of NDR1 in
CpG and virus induced innate immunity might be the net results
of its regulation of MEKK2, STAT1, GSK3, and other unknown
molecules under different conditions.
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FIGURE 1 | NDR1/2 regulate RIG-I-mediated innate immunity. RIG-I senses virus nucleic acids of viruses and activates downstream signaling pathways to initiate

immune response. NDR2 directly associate with RIG-I and TRIM25, thus facilitating the formation of RIG-I/TRIM25 complex and enhancing the polyubiquitination of

RIG-I. The ubiquitination of RIG-I further promotes the production of type I IFNs, so the antiviral immune response is enhanced. NDR1 promotes the activity of GSK3β.

GSK3β promotes the activation of STAT1, then facilitates the expression of IFN-stimulated genes (ISGs). STAT1 is inhibited by miR146a. Binding to miR146a

promoter, NDR1 inhibits NF-κB-mediated miR146a expression, and subsequently releases the inhibition of STAT1 expression by miR146a.

NDR REGULATES CYTOKINE-INDUCED
INFLAMMATION

Infection and tissue injury are the two main causes of
inflammation. In these circumstances, the immune system
releases pro-inflammatory cytokines to eliminate pathogens
or damaged cells and releases anti-inflammatory cytokines to
balance inflammatory response, preventing immune injury.
Both previous cytokines form the delicate balance of the
immune system. Excessive secretion of pro-inflammatory
cytokines can cause serious inflammatory diseases (51).

Emerging evidences uncovered that major inflammatory
cytokines tumor necrosis factor alpha (TNF-α) and interleukin
17 (IL-17) are associated with autoimmune diseases (52–55).
Specifically, IL-17 participates in encephalomyelitis (EAE),
rheumatoid arthritis (RA) and IBD. Moreover, IL-17 levels

were found to be elevated in patients with multiple sclerosis
(MS) and ulcerative colitis (UC) (56–60). NDR1 promotes

TNFα-induced NF-κB activation via its kinase activity by
interacting with multiple signal components in NF-κB signaling
pathway. Thus, it acts as a positive regulator in TNFα-induced
inflammation (61). A study from Ma C demonstrated that
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NDR1 promotes the pathological process of IBD and EAE
in vivo by facilitating IL-17-mediated and TNF-α-mediated
inflammation. NDR1 competitively binds to TRAF3, thus
functions as a positive regulator of IL-17 signal transduction
(62). It was reported that the suppressor of cytokine signaling
2 (SOCS2) is an E3 ligase for NDR1, and the overexpression
of SOCS2 inhibits NDR1-induced TNFα-stimulated NF-κB
activity (63). Nevertheless, a recent study reported that NDR2
inhibits IL-17 signaling by promoting the ubiquitination
and degradation of Smurf1-mediated MEKK2. Therefore,
knockdown of NDR2 enhances IL-17-induced MAPK and
NF-κB activation and significantly increases IL-17-induced
expression of IL-6, CXCL2, and CCL20. These results suggest
that NDR2 alleviates IL-17-associated inflammation (64). In
conclusion, NDR1 promotes IL-17- and TNF-α-mediated
inflammation while NDR2 suppresses IL-17-associated
inflammation (Figure 2). Due to the crucial roles of IL-17
and TNF-α in autoimmune diseases and the contribution of
NDR1 in IL-17 signaling, NDR1 could be a potential target for

drug discovery of autoimmune diseases like EAE, RA, IBD, MS,
and UC.

DISCUSSION

Taken together, we summarized the role of NDR1/2 in innate
immunity by elucidating their roles in inflammation and
antimicrobial immune response. Although the important roles
of NDR1/2 in innate immunity have been revealed, the precise
mechanism by which they regulate innate immunity are not
fully illuminated. Besides that, NDR1/2 have been found to
phosphorylate YAP and promote the degradation of YAP. It
is reported that YAP antagonizes the antiviral innate immune
response by directly binding to interferon regulatory factor 3
(IRF3) or TANK binding kinase 1 (TBK1) (65, 66). In the context
of viral infection, whether NDR1/2 inhibit the production
of type I interferon through YAP to enhance the antiviral
immune response remains unclear. YAP impairs M2macrophage

FIGURE 2 | NDR1/2 regulate IL-17-induced inflammatory response. NDR1 competitively binds with TRAF3 and consequently dampens TRAF3-inhibited combination

between Act1and TRAF6. This results in the enhanced IL-17 signaling and the increased production of inflammatory cytokines. NDR2 promotes the ubiquitination and

degradation of MEKK2 to inhibit IL-17 signaling, thus preventing the excessive secretion of inflammatory cytokines.
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polarization and promotes M1 macrophage activation (67).
It remains unclear whether NDR1 regulates CpG-induced
inflammation through modulating YAP phosphorylation and
degradation. Furthermore, given the role of NDR1 in the
expression and activation of STAT1 and YAP, it might be worth
investigating whether NDR1 regulates macrophage polarization
via phosphorylating YAP. NDR1 ablated mice are known to be
more likely to develop T cell lymphoma (68). A recent study
reported that NDR2 facilitates TCR-induced LFA-1 activation in
T cells (69). It is intriguing to investigate the role of NDR1/2
in the adaptive immune response. Finally, both in vitro and in
vivo experiments showed that NDR1/2 regulate inflammation
and immune response. However, further investigation is required
to ascertain the participation of NDR1/2 in human inflammation
and immune response and if they could be used as therapeutic
targets for immune-related diseases.
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