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Transplant vasculopathy (TV), a hallmark of chronic allograft rejection, is the primary
cause of allograft loss after organ transplantation. Because multiple mechanisms are
involved in TV pathogenesis, effective therapy for it remains elusive. Here, we identify
the role of triptolide, which has a wide spectrum of immuno-suppressive activities,
in inhibiting TV development. Murine aortic transplants models were constructed and
divided into triptolide-treated and untreated groups. We found that triptolide significantly
alleviated intima thickening of allografts by inhibiting multiple pathways. Triptolide
significantly reduced infiltration of T lymphocytes and macrophages and inhibited the
levels of pro-inflammatory (TNF-α, IL-2, and IL-6) and pro-fibrotic factors (TGF-β,
α-SMA, and MMP-9) in the graft. Additionally, triptolide significantly decreased the
numbers of IFN-γ-producing T lymphocytes, as well as the expression of IFN-γ and
IFN-γ-inducing factor (CXCL9 and CXCL10) in recipient. Moreover, triptolide decreased
the numbers of B lymphocytes and plasma cells, as well as the levels of donor
specific antibodies (DSAs) in recipient. Furthermore, triptolide not only inhibited vascular
smooth muscle cell (VSMC) viability and promoted VSMC apoptosis but also significantly
inhibited VSMC migration in vitro. These results emphasize the efficacy of triptolide in
inhibiting TV development and provide a basis for developing new treatments to prevent
TV-related complications and improve the long-term survival of transplant recipients.

Keywords: transplant vasculopathy, triptolide, IFN-γ, donor-specific antibodies, vascular smooth muscle cells

INTRODUCTION

Organ transplantation is an ideal and final solution for patients suffering end-stage organ diseases
(1). However, approximately 90% of allografts are likely to develop transplant vasculopathy (TV)
during long-term follow-up (2). TV, featured by arterial intimal hyperplasia and inflammation, is a
key component of chronic allograft rejection, and the lethal factor of late allograft failure (3, 4). So
far, there is no effective therapy for TV, the only definitive treatment currently available for TV is
re-transplantation (5). Therefore, novel therapeutic agents based on an improved understanding of
the risk factors that contribute to TV might overcome this dilemma.

It is well known that multifactorial events participate in the development of TV. Previous
studies have reported inflammation as a primary mechanism of TV development (6), moreover,
the formation of TV needs the involvement of the interferon (IFN)-γ axis, as TV do not
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occur in settings of congenital absence or neutralizing antibody
blockade of IFN-γ (7, 8). Excessive activation of inflammation
further leads to the development of vascular fibrosis, which
promotes TV formation (9). Some reports demonstrate that
antibodies are independent risk factors for long-term survival
of recipients, and can cause or contribute to TV (10, 11).
Additionally, vascular smooth muscle cell (VSMC) migration and
proliferation are key events involved in TV development (12, 13).
Given the numerous pathogenic factors associated with TV, there
is no effective therapeutic strategy capable of simultaneously
regulating its multiple pathogenic pathways.

Triptolide is a structurally unique diterpene triepoxide and
a principal bioactive component of the Chinese traditional
medicine Tripterygium wilfordii Hook F, which is broadly used in
clinic due to its strong immunosuppressive and anti-proliferative
properties (14, 15). Triptolide has been proved to suppress the
proliferation and activity of T lymphocytes and macrophages
(16, 17), and is a strong inhibitor of IFN-γ signaling pathway
in tumors and inflammation-related diseases (18, 19). However,
there are few studies exploring its effects on antibodies. Our
preliminary study found that triptolide inhibited the production
of antibodies in acute rejection model (20). However, whether
triptolide can play the similar roles in the chronic rejection model
remains to be further studied. As far as we know, triptolide has
been shown to inhibit the proliferation of VSMC (21), but there
is no direct evidence that triptolide inhibits migration of VSMC,
especially during the formation of TV.

Given the extensive immunosuppressive and anti-proliferative
properties of triptolide, we hypothesized that it might be an
ideal inhibitor of TV. Therefore, we investigated the efficacy and
mechanisms of triptolide in attenuating TV using a murine aortic
transplant model.

MATERIALS AND METHODS

Animals and Abdominal Aortic
Transplantation Procedures
Male adult C57BL/6 and BALB/C mice (Beijing Vital River
Laboratory Animal Technology Co., Ltd., Beijing, China)
weighing between 20 and 25 g, were used as donors or recipients,
respectively. Animals were housed in a specific pathogen-
free facility at Sun Yat-sen University (Guangdong, China),
and all animal experiments were performed in accordance
with the Guide for the Care and Use of Laboratory Animals
(National Institutes of Health publication No. 80-23, revised
1996) and according to the Sun Yat-sen University Institutional
Ethical Guidelines for animal experiments. Abdominal aortic
transplantation was performed using a previously described
technique with modifications (22). Briefly, a 10–15 mm
segment of C57BL/6 donor infrarenal abdominal aorta was
isolated, resected, and replaced with the segment of BALB/C
recipient infrarenal aorta with end-to-end anastomoses using
12-0 monofilament nylon sutures (Ethicon, Somerville, NJ,
United States) under an operative microscope. The complete
grafting procedure required 45 min to 60 min, and all
surgeries were performed under inhalation anesthesia with

methoxyflurane (Metofane; Pitman-Moore, Mundelein, IL,
United States). Technical success was defined as grafts not
becoming occluded during the first 10 days after transplantation.
The graft success rate was >90%.

Treatment Protocol
All mice were weighed before and during treatment. Recipients
were randomly assigned to two groups (n = 5/group):
the triptolide group, which was subcutaneously administered
triptolide (0.5 mg/kg; Chinese National Institute for Control
of Pharmaceutical and Biological Products, Beijing, China)
every other day, initiating at day 0 after aortic transplant and
continuing through the end of the experiment (day 28 after
transplantation); the untreated group, which was subcutaneously
administered an equal volume of normal saline. No other
immunosuppressive medication was used.

Graft Harvesting and Morphometric
Analysis
Grafts were harvested at day 28 under anesthesia. For
histomorphometry analysis, tissue cross-sections (4-µm thick)
were cut, deparaffinized, and rehydrated, followed by staining
with hematoxylin and eosin. The sections were examined for
severity of luminal stenosis using a DMR Leica microscope
(Leica, Bannockburn, IL, United States) and Image-Pro Plus
(IPP) 6.0 imaging software (Media Cybernetics, Silver Spring,
MD, United States) by an experienced pathologist who was
blinded to the groups. The cross-sectional area of luminal stenosis
was calculated using the following formula: luminal occlusion
(%) = (internal elastic lamina area - luminal area)/(internal
elastic lamina area) × 100. Thickness of intimal and intimal
medial layers were measured from 10 sites per graft section
and intima/intima + media ratios were calculated as described
(23). Furthermore, luminal stenosis of the arterial graft was also
determined using a previously described scoring system (24).

Immunohistochemistry (IHC)
For IHC analysis, the cross-sections (4-µm thick) were
deparaffinized and rehydrated, followed by incubation with
antibodies against CD3 (Abcam, ab135372, 1:800), CD4 (Abcam,
ab183685, 1:800), CD8 (Abcam, ab217344, 1:1000), and CD68
(Abcam, ab125212, 1:1000) at 4◦C overnight. The samples were
then stained with Goat Anti-rabbit IgG/HRP (Bioss, bs-0295G-
HRP, 1:100) for 1 h at 37◦C. Adventitial CD3+, CD4+, CD8+,
and CD68+ cells were scored by cell counting using IPP 6.0
imaging software (Media Cybernetics) and expressed as cell
number per vessel section (400×magnification).

Real-Time Quantitative Reverse
Transcription Polymerase Chain
Reaction (qRT-PCR)
Levels of proinflammatory cytokine mRNA in allografts were
determined by qRT-PCR. Total RNA was extracted from frozen
graft tissue and mononuclear cells from recipient spleens
using a homogenizer and TRIzol reagent (Invitrogen, Carlsbad,
CA, United States), and cDNA was reverse transcribed using
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PrimeScript RT master mix (Perfect Real Time; TAKARA, Shiga,
Japan). qRT-PCR was performed in triplicate using SYBR Green
I master mix (Roche, Basel, Switzerland) in a LightCycler480
system (Roche), with glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) used as an internal control. Primers used for qRT-PCR
are provided in Table 1.

Determination of Circulating
Donor-Specific Antibodies (DSA)
Levels of circulating donor-specific antibodies (DSA; IgG and
IgM) in recipient sera at the indicated time points were assessed
by flow cytometry, as previously described (20). Briefly, recipient
sera were incubated with C57BL/6 donor splenocytes at 37◦C for
30 min, after which washed cells were incubated with fluorescein
isothiocyanate (FITC)-labeled anti-mouse IgG (Abcam, ab6724,
1:100) and rhodamine red-conjugated anti-mouse IgM (Jackson
ImmunoResearch Laboratories, 115-297-020, 1:100) at 4◦C for
1 h. Cells were analyzed by FACScan (Becton–Dickinson,
Lincoln Park, NJ, United States) flow cytometry with results
expressed as mean fluorescence intensity to reflect individual
serum DSA levels.

Flow Cytometry
Fresh recipient spleens were milled gently in phosphate-buffered
saline (PBS) supplemented with 1% heat-inactivated fetal bovine
serum using a needle on a 5-mL syringe, followed by pressing
through a 200-um mesh nylon screen. Mononuclear cells from
whole blood or spleen of recipient were collected by Ficoll
density gradient centrifugation (Solarbio, P8860). Mononuclear
cells were then stained with fluorochrome-conjugated antibodies
against CD3, CD4, CD8a, IFN-γ, CD45, CD19, and CD38.
For intracellular IFN-γ staining, cells were first stimulated
at 37◦C for 5 h with a leukocyte-activation cocktail (BD,
550583), followed by staining with a surface marker, and
further fixed and permeabilized using Cytofix/CytopermTM

(BD, 554714) according to the manufacturer’s instructions for
intracellular staining.

To evaluate the effect of triptolide on IFN-γ-producing T
cells in vitro, mononuclear cells from recipient spleens were
seeded at a density of 1 × 106 cells/well and plated into a
24-well plate (Corning Inc., Corning, NY, United States). The
cells were then stimulated with anti-CD3 (Clone: UCHIT,

BD Pharmingen, San Jose, CA, United States; 1 µg/ml) and
anti-CD28 (clone: CD28.6 eBiosciences, San Diego, CA,
United States, 1 µg/ml) with or without tiptolide (4 ng/mL)
at 37◦C for 24 h. Then, cells were cultured in the presence of
1 µg/mL brefeldin A (BFA, Sigma, B7651) for 12 h, harvested,
followed by staining with a surface marker, and further
fixed and permeabilized for intracellular staining. Data were
analyzed using the FlowJo software (Tree Star, Ashland, OR,
United States). Antibodies used for flow cytometric analysis
were purchased from BioLegend (San Diego, CA, United States),
including: FITC-CD4 (#130308,1:100), PerCP/Cy5.5-IFN-γ
(#505822,1:100), BV570-CD45 (#103136, 1:100), PerCP/Cy5.5-
CD19 (#115532,1:100), and FITC-CD38 (#102705, 1:100). Other
antibodies were obtained from eBioscience (San Diego, CA,
United States), including: eFluor 450-CD8a (#48-008, 1:100) and
Alexa Fluor 700-CD3 (#56-0032, 1:100).

Cell Culture
Aortic VSMCs (MOVAS-1) was a gift from
Southern Medical University (Guangdong, China). The
cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% FBS, 100 U/mL penicillin, and
100 µg/mL streptomycin (both from Wuhan Procell Lite Science
& Technology Co., Ltd., Wuhan, China) at 37◦C under 5% CO2.

Mononuclear cells from recipient spleens were maintained in
RPMI-1640 supplemented with 10% FBS, 100 U/mL penicillin,
and 100 µg/mL streptomycin at 37◦C with 5% CO2.

Cell Viability Assay
Cell counting kit-8 (CCK-8; Beyotime Biotechnology, Shanghai,
China) assays were performed to evaluate the viability of VSMC
following treatment with different concentrations of triptolide.
Briefly, VSMCs were seeded at a density of 1 × 104 cells/well
in a 96-well plate (Corning Inc.), followed by exposure to PBS
or various concentrations of triptolide (0, 5, 10, 20, 40, and
80 ng/mL) for 24 h and 48 h, and the subsequent addition
of CCK-8 solution (10 µl). Cells were then incubated for
1 h at 37◦C and 5% CO2, and the absorbance of each well
was recorded at 450 nm using a microplate reader (Bio-Tek,
Winooski, VT, United States). Cell viability (%) was calculated
as follows: (average absorbance of triptolide-treated cells/average
absorbance of PBS-treated cells)× 100.

TABLE 1 | Primers for qRT-PCR.

Gene Forward primer Reverse primer

IFN-γ GGAACTGGCAAAAGGATGGTGAC GCTGGACCTGTGGGTTGTTGAC

CXCL9 ATCTCCGTTCTTCAGTGTAGCAATG ACAAATCCCTCAAAGACCTCAAACAG

CXCL10 AGGGGAGTGATGGAGAGAGG TGAAAGCGTTTAGCCAAAAAAGG

TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

IL-2 ATGAACTTGGACCTCTGCGG ATGTGTTGTCAGAGCCCTTT

IL-6 GATGAAGGGCTGCTTCCAAC GCTTCTCCACAGCCACAATG

TGF-β CTTCAGCTCCACAGAGAAGAACTGC CACGATCATGTTGGACAACTGCTCC

α-SMA CTGGAGAAGAGCTACGAACTGC CTGATCCACATCTGCTGGAAGG

MMP-9 CGTCGTGATCCCCACTTACT AGAGTACTGCTTGCCCAGGA

GAPDH TGACCTCAACTACATGGTCTACA CTTCCCATTCTCGGCCTTG
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Apoptosis Assay
The in vitro effects of triptolide on VSMC apoptosis were
determined using the Annexin V-FITC/propidium iodide assay.
VSMCs were seeded at a density of 1 × 106 cells/well and
plated onto a 6-well plate (Corning Inc.), followed by exposure
to various concentrations of triptolide (0, 5, 10, 20, 40, and
80 ng/mL) for 24 h and 48 h, after which Annexin V-FITC/PI
(Thermo Fishier Scientific, #V13242) was added to the cells
and incubated for 10 min at 25◦C in the dark according to
manufacturer instructions. Cell apoptosis was analyzed by flow
cytometry using a FACScan system (Becton–Dickinson, Lincoln
Park, NJ, United States).

Mononuclear cells from recipient spleens were seeded at a
density of 1× 106 cells/well and plated in a 24-well plate (Corning
Inc). Following exposure to various concentrations of triptolide
(0.04, 0.4, 4, 40, or 400 ng/mL) for 72 h, apoptosis assays were
performed as described (20).

Transwell Migration Assay
Vascular smooth muscle cell migration was determined using
Transwell chambers, with a Transwell membrane containing
8-µm pores (Costar; Corning) and coated with 10 µg/mL

fibronectin, inserted into a 24-well plate. The lower chamber
was filled with 600 µL of DMEM with 10% FBS, and VSMCs
(1 × 105 cells/well) in serum-free DMEM were placed in
the upper chamber, followed by incubation with PBS or
various concentrations of triptolide (0, 5, and 10 ng/mL)
for 24 h. Infiltrated cells were fixed in 4% paraformaldehyde
(Bioss, C01-06002) and stained with 0.1% crystal violet (Bioss,
D10162). Migrated cells were photographed under an inverted
microscope (LEICA DMI 4000B, Germany), and five random
high-power fields (200× magnification) were selected for
quantification of cell number using the IPP 6.0 imaging
software (Media Cybernetics). VSMC-migration ability was
expressed as the ratio of the number of migrated cells to that
of control cells.

Statistical Analysis
Data are expressed as mean ± standard deviation (SD). Normal
distribution was first used to test the distribution of data using
KS normality test. All data was normal distribution. Comparisons
between two groups were performed using Student’s T-test.
Statistical analysis was performed using Prism (GraphPad).
Probability values of P < 0.05 were considered significant.

FIGURE 1 | Triptolide inhibits intimal hyperplasia in murine aortic allografts. (A) Representative photomicrographs of hematoxylin and eosin stained whole (100×)
vascular allografts 4 weeks after transplantation showing TV lesions. (B) Intima/intima + media ratio (C) lumen stenosis, and (D) vessel score. Data were represented
as mean ± SD (n = 5). *p < 0.05 vs. untreated Student’s t-test. A indicates adventitia; M, media; I, intima; and L, lumen.
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RESULTS

Triptolide Inhibits Intimal Hyperplasia in
Murine Aortic Allografts
We established an allogeneic aortic graft model, and the
recipients were treated with or without triptolide for
4 weeks; subsequently, allografts were harvested and
tissue sections were stained with hematoxylin and eosin
to visualize TV lesions. As shown in the representative
photomicrographs, the arterial intima of the triptolide-
treated group was observably thinner than those of untreated
group (p < 0.05, Figure 1A). Additionally, we measured the
intima/intima + media ratio (0.57 ± 0.14 vs. 0.23 ± 0.09;

Figure 1B) lumen stenosis (68% ± 12% vs. 31% ± 11%;
Figure 1C), and vessel score (3.80 ± 0.84 vs. 2.20 ± 0.83;
Figure 1D), all of which showed significantly reduction in
triptolide-treated group compared with untreated group
(p < 0.05).

Triptolide Reduces T Lymphocyte and
Macrophage Infiltration and Inhibits
mRNA Levels of Pro-Inflammatory and
Pro-Fibrotic Cytokines in Allografts
As shown in the representative images, the infiltration of
CD3+, CD4+, CD8+, and CD68+ cells (Figures 2A–D)

FIGURE 2 | Triptolide decreases T lymphocyte and macrophage infiltration in allografts. Representative images and quantification of (A) CD3+, (B) CD4+, (C) CD8+,
and (D) CD68+ cell infiltration in TV lesions. The positive cells were counted by automated cell counting using IPP 6.0 imaging software and expressed as the
number of positive cells per field of a vascular section (400× magnification). Three independent experiments were performed and showed similar results. Data were
expressed as mean ± SD. *p < 0.05 vs. untreated Student’s t-test. L, lumen.
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were significantly reduced in allografts following triptolide
treatment (p < 0.05). Additionally, qRT-PCR analysis of the
mRNA levels of IFN-γ and IFN-γ-inducing factors (C-X-C-
motif chemokine ligand (CXCL)9 and CXCL10) (Figure 3A),
pro-inflammatory chemokines [tumor necrosis factor (TNF)-α,
interleukin (IL)-2, and IL-6)] (Figure 3B), pro-fibrotic factors
(transforming growth factor (TGF)-β, α-smooth muscle actin
(SMA), and matrix metalloproteinase (MMP)-9 (Figure 3C)
revealed significantly reductions following triptolide treatment
(p < 0.05).

Triptolide Reduces the Number of
IFN-γ-Producing T Lymphocytes in vivo
As shown in Figure 4, the results showed that triptolide
significantly reduced CD3+ (34.6% ± 2.7% vs. 28.5% ± 1.5%),
CD3+ CD4+ (60.2% ± 1.9% vs. 52.2% ± 2.2%), CD3+ CD8+
(20.8% ± 2.0% vs. 17.8% ± 0.5%), CD4+ IFN-γ+ (5.7% ± 1.0%
vs. 3.1% ± 0.6%), and CD8+ IFN-γ+ (8.4% ± 1.4% vs.

4.3% ± 1.5%) T cells in recipient blood (n = 5 each; p < 0.05;
Figures 4A–D). Similarly, in recipient spleen, triptolide also
significantly reduced CD3+ (31.6% ± 1.6% vs. 27.6% ± 1.2%),
CD3+ CD4+ (55.7% ± 2.3% vs. 49.8% ± 2.4%), CD3+ CD8+
(21.7% ± 1.4% vs. 18.6% ± 0.6%), CD4+ IFN-γ+ (6.6% ± 0.7%
vs. 2.7% ± 0.7%), and CD8+ IFN-γ+ (8.3% ± 1.3% vs.
4.2%± 0.7%) T cells (n = 5 each; p < 0.05; Figures 4E–H).

Triptolide Inhibits IFN-γ Axis in vitro
Our results suggested that triptolide promoted lymphocyte
apoptosis in a dose-dependent manner (Figure 5A). With
triptolide at 4 ng/ml, the pro-apoptotic effect of triptolide was
mild, while the mRNA levels of IFN-γ and IFN-γ-inducing factors
(CXCL9 and CXCL10) were significantly inhibited (p < 0.05;
Figure 5B). Additionally, the levels of CD4+ IFN-γ+ and
CD8+ IFN-γ+ cells in the triptolide-treated group were also
significantly reduced (p < 0.05; Figure 5C), which was consistent
with in vivo findings (Figure 4).

FIGURE 3 | Triptolide inhibits mRNA expression levels of pro-inflammatory and pro-fibrotic factors. Aortic allograft animals were treated with or without triptolide for
4 weeks after transplantation. The mRNA expression of (A) IFN-γ and IFN-γ–inducible chemokines (CXCL9 and CXCL10), (B) inflammatory chemokines (TNF-α,
IL-2, and IL-6), and (C) pro-fibrotic factors (TGF-β, α-SMA, and MMP-9) were determined by RT-PCR. The mRNA levels were normalized to that of GAPDH. Three
independent experiments were performed and showed similar results. Data were expressed as mean ± SD. *p < 0.05 vs. untreated Student’s t-test.
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FIGURE 4 | Triptolide reduces the number of IFN-γ–producing T lymphocytes in recipient blood and spleen. Aortic allograft animals were treated with triptolide or
without for 4 weeks after transplantation. T cells in recipient blood and spleen were detected by flow cytometry. Representative dot plots, cell percentages, and
counts of CD3+, CD3+CD4+, CD3+CD8+, CD4+ IFN-γ+, and CD8+ IFN-γ+ T cells in recipient blood (A–D) and spleen (E–H) were shown. Data were represented
as mean ± SD of at least three independent samples. *p < 0.05; Student’s t-test.

Triptolide Decreases the Production of
Donor-Specific Antibodies (DSAs) and
Reduces the Amounts of B Cells and
Plasma Cells in vivo
Other studies had revealed that DSA was related to a possible
negative impact on the prognosis of TV (10, 11). However,
it was unclear that whether triptolide could improve TV by
inhibiting the levels of DSA. As shown in Figure 6, we
found that the detection of IgG and IgM in triptolide-treated
group were lower than those in untreated group (p < 0.05;
Figures 6A,B). Flow cytometric analysis was applied to detect
B cells (CD45+ CD19+) and plasma cells (CD45+ CD38+) in
recipient blood, which revealed significant reductions of both
B cells (9.00% ± 0.33% vs. 7.52 ± 0.26%) and plasma cells
(12.91%± 0.70% vs. 7.92± 0.25%) in the triptolide-treated group
(p < 0.05; Figures 6C–F). In recipient spleen cells, triptolide also
significantly reduced the amount of B cells (13.26% ± 0.66%

vs. 7.23% ± 0.63%) and plasma cells (20.70% ± 0.88% vs.
8.87%± 1.04%) (p < 0.05; Figures 6G–J).

Triptolide Significantly Inhibits VSMC
Migration Without Affecting VMSC
Viability or Apoptosis
To investigate the effects of triptolide on VSMC in vitro. VSMCs
were incubated with different concentrations (0, 5, 10, 20, 40, and
80 ng/mL) of triptolide for 24 h and 48 h. Then, the viability
was assessed by the CCK8 assay (Figure 7A) and apoptosis
was assessed by flow cytometry (Figure 7B). The data revealed
that as the concentration of triptolide increased, cell viability
decreased and cell apoptosis increased. With triptolide at 5 ng/mL
or 10 ng/mL, no significant change in cell viability and apoptosis
was found. We then administered triptolide at concentrations of
0, 5, and 10 ng/mL, which did not affect VSMC viability and
apoptosis, to assess the effect of triptolide on VMSC migration
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FIGURE 5 | Triptolide reduces the mRNA expression of IFN-γ and IFN-γ–inducing factors, and also inhibits the frequency of IFN-γ–producing T lymphocytes in vitro.
(A) Apoptotic cells were detected by flow cytometry. Mononuclear cells from the recipient spleens were incubated with various concentrations of triptolide (0.04, 0.4,
4, 40, and 400 ng/mL) for 72 h. To evaluate the effect of triptolide on IFN-γ-producing T cells in vitro, mononuclear cells from recipient spleens were stimulated with
anti-CD3 plus anti-CD28 with or without tiptolide (4 ng/mL) at 37◦C for 24 h. The mRNA expression of IFN-γ, CXCL9, and CXCL10 was assessed by RT-PCR (B).
(C) Representative dot plots for frequencies and counts of IFN-γ–producing T cells in culture media were shown. Data were represented as mean ± SD of at least
three independent samples. *p < 0.05; Student’s t-test.

using a transwell assay (Figures 7C,D). The results revealed
significant reductions in VSMC migration in the triptolide-
treated group (10 ng/mL).

DISCUSSION

The pathological features of transplant artery includes
vascular inflammation, neointima formation and progressive
luminal obstruction, which are consistent with the TV-related
complications after solid organ transplantation, what’s more,
compared with solid organ transplants such as heart and
kidney, aortic transplant has the advantages of relatively
simple operation. Therefore, many teams have used aortic
transplantation as a small animal model for studying TV
(25, 26). Our results provided strong evidence that triptolide
significantly ameliorated pathological injury associated with
TV through multiple pathways. Firstly, triptolide significantly
reduced infiltration of inflammation cells and inhibited the

levels of pro-inflammatory and pro-fibrotic cytokines in
the graft. Secondly, triptolide decreased the number of B
lymphocytes and plasma cells, as well as the levels of DSAs,
in recipient. Thirdly, triptolide not only inhibited VSMC
viability and promoted VSMC apoptosis but also significantly
inhibited VSMC migration.

Triptolide has been widely studied for its extensive anti-
inflammatory and anti-proliferative effects. Hachida and
colleagues had demonstrated that triptolide inhibits the
development of allograft vasculopathy via inhibition of
PDGF-A signaling pathways in the rat heart transplantation
(27). However, the authors only mentioned that triptolide
improved allograft vasculopathy by inhibiting the proliferation
of VSMC, without investigating the effect of triptolide on
the migration of VSMC, or the anti-inflammatory effects
of triptolide. VSMC is the main constituent cell of TV
intima, and the migration of VSMC is considered the most
critical factor associated with TV development (28). Here,
we revealed that triptolide not only significantly decreased
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FIGURE 6 | Triptolide decreases the production of donor-specific antibodies (DSA) and reduces the amounts of B cells and plasma cells in vivo. Transplant-recipient
sera collected at the indicated time points were reacted with donor spleen cells and evaluated for antibody production by flow cytometry. Circulating levels of (A) IgG
and (B) IgM are expressed as mean fluorescence intensity ± SD (n = 5). B cells (CD45+, CD19+) and plasma cells (CD45+, CD38+) were detected by flow
cytometry in recipient blood and spleen 4 weeks after transplantation. Representative dot plots for frequencies and counts of B cells and plasma cells in recipient
blood (C–F) and spleen (G–J) were shown. Data were represented as mean ± SD of at least three independent samples. ∗p < 0.05; ∗∗p < 0.01, Student’s t-test.

VSMC viability and increased VSMC apoptosis but also
significantly inhibited VSMC migration. Importantly, we
found that a lower concentration of triptolide inhibited
VSMC migration in the absence of effects on cell
viability or apoptosis.

Triptolide inhibited intimal thickening by suppressing the
IFN-γ axis. Numerous studies had reported that triptolide
inhibited the proliferation and activity of T lymphocytes (16,
29), and prevented the production of IFN-γ in some disease
models (19, 30). However, no study investigated the effect of
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FIGURE 7 | Triptolide significantly inhibits migration of VSMCs without affecting the viability and apoptosis of VSMCs. (A) Cell viability was assessed using the
CCK-8 assay. (B) Cell apoptosis was detected by flow cytometry. (C) Cell migration was assessed through the Transwell migration assay. VSMCs were incubated in
culture media containing various concentrations of triptolide (0, 5, and 10 ng/mL) for 24 h. Representative images of VSMCs that migrated through the gelatine to
the lower-chamber side of Transwell membranes. (D) Quantification of the Transwell migration assay results. Data were represented as mean ± SD. Each experiment
was performed three times. ∗p < 0.05, ∗∗p < 0.01 vs. untreated Student’s t-test.

triptolide on the IFN-γ axis in attenuating TV. IFN-γ, which
is the main cytokine secreted by T cells, exhibits crucial effect
on TV development (8, 31). Loosdregt confirmed an increased
expression of IFN-γ and IFN-γ-inducing factors (CXCL9 and
CXCL10) associated with TV (32). In our study, we detected
that T lymphocytes infiltration, expression of IFN-γ, CXCL9, and
CXCL10, and the amounts of IFN-γ-producing T lymphocytes in
recipient were significantly decreased after triptolide treatment.
Additionally, we explored the inhibitory effects of triptolide
on the IFN-γ axis through a series of experiments in vitro.
Therefore, our data showed that triptolide could not only inhibit
the production of IFN-γ, but also inhibit the expression of
IFN-γ-inducing factors (CXCL9 and CXCL10) to attenuate the
prognosis of TV.

Macrophages, pro-inflammatory and pro-fibrotic cytokines
also play important roles in TV development (33–35).
Although Crews and colleagues had described the ability
of triptolide to inhibit chronic rejection in a rat kidney
transplant model via inhibition of TGF-beta and VCAM-1
(36), the focus of this study was not TV, and the effects of
triptolide in TV treatment were not fully demonstrated. In
the murine aortic transplant model, our results showed that
triptolide inhibited macrophages infiltration into grafts and
significantly reduced the expressions of pro-inflammatory
(TNF-α, IL-2, and IL-6) and pro-fibrotic factors (TGF-β, α-SMA,
and MMP-9).

Previous studies confirmed that DSA levels were directly
related to TV development (37). The effects of triptolide on
antibodies production were not well studied, although two other
studies on IgA nephropathy and lupus nephritis noted effects of
triptolide on antibodies (38, 39). Our preliminary research had
confirmed that triptolide reduced DSA levels in an acute rejection
model (20). In the present study, we constructed a chronic
rejection model by aorta transplantation and found that triptolide
significantly reduced DSA levels. Additionally, the amounts of
B lymphocytes and plasma cells in recipient were significantly
decreased in the triptolide-treatment group. Our findings further
confirmed that triptolide could also attenuate the prognosis of
chronic rejection by inhibiting the production of DSA in the
chronic rejection model.

Several limitations of this study should be noted. Firstly,
triptolide has a wide range of effects and this study does not
make further in-depth study on the mechanisms, especially,
direct allospecific T cell response has not been demonstrated
in vitro. Secondly, the mechanisms by which triptolide inhibits
the migration of VSMC to improve the prognosis of TV remains
to be further clarified. Finally, the concentration of triptolide
used in vivo experiment is based on references and previous
experience, so the toxic and side effects of triptolide are not
described in the content.

In summary, our results reinforce the view that triptolide can
significantly attenuate TV through inhibiting multiple pathways.
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These findings highlight the efficacy of triptolide in inhibiting TV
and suggest triptolide as a potential ideal therapeutic strategy of
great clinical value for preventing TV-related complications and
improving the long-term survival of transplant recipients.
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