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Alligators are crocodilians and among few species that endured the

Cretaceous–Paleogene extinction event. With long life spans, low metabolic rates,

unusual immunological characteristics, including strong antibacterial and antiviral ability,

and cancer resistance, crocodilians may hold information for molecular pathways

underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of

calcium-activated enzymes that cause posttranslational protein deimination/citrullination

in a range of target proteins contributing to protein moonlighting functions in health

and disease. PADs are phylogenetically conserved and are also a key regulator of

extracellular vesicle (EV) release, a critical part of cellular communication. As little

is known about PAD-mediated mechanisms in reptile immunology, this study was

aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator

plasma EVs were found to be polydispersed in a 50–400-nm size range. Key immune,

metabolic, and gene regulatory proteins were identified to be posttranslationally

deiminated in plasma and plasma EVs, with some overlapping hits, while some

were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins

were identified to be deiminated, while 77 proteins were found as deiminated

protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins

specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG

pathways specific to deiminated proteins in whole plasma related to adipocytokine

signaling, while KEGG pathways of deiminated proteins specific to EVs included

ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways

as well as core histones. This highlights roles for EV-mediated export of deiminated

protein cargo with roles in metabolism and gene regulation, also related to cancer.

The identification of posttranslational deimination and EV-mediated communication
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in alligator plasma revealed here contributes to current understanding of protein

moonlighting functions and EV-mediated communication in these ancient reptiles,

providing novel insight into their unusual immune systems and physiological traits.

In addition, our findings may shed light on pathways underlying cancer resistance,

antibacterial and antiviral resistance, with translatable value to human pathologies.

Keywords: peptidylarginine deiminases, protein deimination/citrullination, American alligator (Alligator

mississippiensis), extracellular vesicles, immunity, metabolism, antimicrobial/antiviral

INTRODUCTION

Alligators are crocodilians, with two living species, the American
alligator (Alligator mississippiensis) and the Chinese alligator
(Alligator sinensis). Alligators are long-lived ancient animals and,
alongside crocodiles, are among the few species who endured the
Cretaceous–Paleogene extinction event. Crocodilians appeared
∼240 million years ago, during the Middle Triassic. Although
crocodilians are similar in appearance to other reptiles, they
are only distantly related to lizards and belong to the closest
extant relatives of birds, therefore occupying an important
evolutionary position (1–3). Alligators can endure and occupy
unsanitary environments, withstand radiation of high levels, and
be routinely exposed to heavy metals but are rarely reported
to develop cancer (4). With long life spans and unusual
immunological characteristics, including unique antimicrobial
responses (5–8), antiviral activity against enveloped viruses,
including HIV (9) and low metabolic rate (10), crocodilians
may hold information for molecular pathways underlying such
unusual physiological traits.

Peptidylarginine deiminases (PADs) are a group of
calcium-dependent enzymes that posttranslationally convert
arginine into citrulline in target proteins in an irreversible
manner (11). Such calcium-mediated deimination/citrullination
can lead to structural and sometimes functional changes in target
proteins and therefore affect protein function (12, 13). A range of
proteins known to undergo this posttranslational modification
belong to cytoplasmic, nuclear, and mitochondrial targets, and
therefore, depending on which target proteins are modified,
deimination can for example contribute to the generation
of neo-epitopes as well as affecting gene regulation (14–22).
Such posttranslational changes in proteins may also allow for
protein moonlighting, an evolutionarily acquired phenomenon
facilitating proteins to exhibit several physiologically relevant
functions within one polypeptide chain (23, 24).

PADs and associated protein deimination are crucial players
in cancer and autoimmune and neurodegenerative diseases
(17, 19, 20, 22, 25). PADs have received particular attention
due to roles in cancer (20, 22, 26, 27), rheumatoid arthritis
(28–33), multiple sclerosis (34–38), as well as due to their
contribution to skin physiology and diseases (39). PADs have
furthermore been shown to play crucial roles in hypoxia and
CNS regeneration (40–44), and roles for PAD2 in promotion
of oligodendrocyte differentiation and myelination have been
shown (45). PAD-mediated mechanisms have also been related
to aging (46, 47). Importantly, PADs have also been implicated

in infection, including sepsis and endotoxemia (48–55). Roles
for PADs in tissue remodeling and immunity have also recently
been described (56–58). PADs have furthermore been identified
as important regulators of the release of extracellular vesicles
(EVs) (27, 59–62). EVs participate in cellular communication
via transfer of cargo proteins and genetic material and can be
isolated from most body fluids (20, 63–66). As EV cargo is
comprised of a large range of proteins, enzymes, and genetic
material, characteristic of the cells of origin, EV signatures can
be useful biomarkers and easily isolated from a range of body
fluids, including serum and plasma (67, 68). While work on
EVs has largely focused on human pathologies, an increasing
body of comparative studies with respect to EVs and EV cargo
has been performed in a range of taxa, including by our group
(69–80).

PADs have been identified in diverse taxa throughout
phylogeny, from bacteria to mammals. In mammals, five
tissue-specific PAD isozymes with deimination activity are
described: three in chicken, one in bony and cartilaginous fish
(14, 56, 58, 76, 81), and PAD homologs (arginine deiminases,
ADI) in parasites (82), fungi (83), and bacteria (62, 84). While
in the American alligator three PADI genes have been reported
(PADI1, Gene ID: 102574884, Protein ID: XP_014457295.1;
PADI2, Gene ID: 102575591, Protein ID: XP_019355592.1;
PADI3, Gene ID: 102574651, Protein ID: XP_014457295.1),
no studies have hitherto been carried out on PAD protein
function and putative physiological relevance for PAD-mediated
posttranslational deimination in crocodilians.

Plasma of the American alligator has previously been
evaluated for its exceptional antibacterial activity, including a
cathelicidin, which has been identified to show promise against
multidrug-resistant Acinetobacter without toxicity to eukaryotic
cells (8). Blood and plasma biochemistry for baseline physiology
assessment has been carried out in alligator (85) as well as
corticosterone characterization for assessment of environmental
stressors (86), including chronic exposure to selenium (87). To
date though, no assessment of EVs has been carried out in
crocodilians, and therefore, the roles for EVs in the unusual
immune responses and metabolism of alligators remain to be
further explored and may provide novel biomarkers.

This current study profiled plasma and plasma-derived EVs
for deiminated protein signatures in the American alligator.
For the first time, this posttranslational modification is
assessed in crocodilians, reporting deimination of key immune,
metabolic, and nuclear proteins in alligator and species-specific
EV signatures. Our findings provide novel insight into the
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unusual physiology of crocodilians and may further current
understanding of pathways underlying cancer, antiviral and
antibacterial resistance.

MATERIALS AND METHODS

Plasma Sampling From Alligator
Blood was collected from the occipital sinus of three healthy
young male alligators (weight, 2,538, 2,850, and 2,810 g; snout-
vent length, 42.1, 47.1, and 47.2 cm, respectively), and plasma
was prepared as previously described (88). In brief, blood samples
were collected from the occipital sinus, quickly placed in a non-
heparinized microfuge tube, and immediately centrifuged for
2min at 10,000 g to separate the plasma (88). Sample collection
was conducted under Texas A&M Institutional Animal Care and
Use Protocol # 2015-0347. Plasma was aliquoted and kept at
−80◦C until used.

Isolation of Extracellular Vesicles and
Nanoparticle Tracking Analysis (NTA)
Plasma aliquots that had been collected as described above
and kept frozen at −80◦C were thawed. Plasma EVs were
isolated from plasma of individual animals (n = 3), using
sequential centrifugation and ultracentrifugation in accordance
with previously established protocols (61, 76, 79) and according
to the recommendations of the minimal information for studies
of extracellular vesicles 2018 [MISEV2018; (89)]. For each
individual EV preparation, 100 µl of alligator plasma were
diluted 1:5 in Dulbecco’s phosphate-buffered saline (DPBS,
ultrafiltered using a 0.22-µm filter, before use) and then
centrifuged at 4,000 g for 30min at 4◦C, to ensure the removal
of aggregates and apoptotic bodies. Thereafter, the supernatants
were collected and centrifuged further, using ultracentrifugation
at 100,000 g for 1 h at 4◦C. The EV-enriched pellets were
resuspended in 1ml DPBS and ultracentrifuged again at
100,000 g for 1 h at 4◦C. The resulting washed EV pellets
were then resuspended in 100 µl DPBS and frozen at −80◦C
until further use. For EV size distribution profiles and EV
quantification, nanoparticle tracking analysis (NTA) was carried
out using the NanoSight NS300 system (Malvern, UK), which
analyzes particle size based on Brownianmotion. The EV samples
were diluted 1/100 in DPBS (10 µl of EV preparation diluted in
990 µl of DPBS) and applied to the NanoSight using a syringe
pump to ensure continuous flow of the sample. For each sample,
five 60-s videos were recorded, keeping the number of particles
per frame in between 40 and 60. Replicate histograms were
generated from the videos, using the NanoSight software 3.0
(Malvern), representingmean and confidence intervals of the five
recordings for each sample.

Transmission Electron Microscopy
A pool of EVs, isolated from plasma of the three individual
animals as described above, was used for morphological analysis
using transmission electron microscopy (TEM), according to
previously described methods (79, 80). Following isolation, the
EVs were frozen at −80◦C and used within 3 days for TEM
imaging. Before TEM preparation, the EVs were thawed and

resuspended in 100mM sodium cacodylate buffer (pH 7.4), and
a drop (∼3–5 µl) of the suspension was placed onto a grid
with previously glow-discharged carbon support film. After the
suspension had partly dried, the EVs were fixed by placing the
grid onto a drop of a fixative solution [2.5% glutaraldehyde in
100mM sodium cacodylate buffer (pH 7.0)] for 1min at room
temperature and washed afterwards by touching the grid to
the surface of three drops of distilled water. Excess water was
removed by touching the grid to a filter paper. Next, the EVs
were stained with 2% aqueous uranyl acetate (Sigma-Aldrich) for
1min, the excess stain was removed by touching the grid edge
to a filter paper, and the grid was let to dry. Imaging of EVs
was performed using a JEOL JEM 1400 transmission electron
microscope (JEOL, Japan) operated at 80 kV at a magnification
of 30,000–60,000×. Digital images were recorded using an AMT
XR60 CCD camera (Deben, UK).

Isolation of Deiminated Proteins Using F95
Enrichment
Immunoprecipitation and isolation of deiminated proteins
in plasma and plasma-derived EVs was carried out as
previously described (76), using the Catch and Release R©

v2.0 immunoprecipitation kit (Merck, UK) in conjunction with
the F95 pan-deimination antibody (MABN328, Merck),
which has been developed against a deca-citrullinated
peptide and specifically detects proteins modified by
deimination/citrullination (90). Alligator plasma pools of
the three individual animals (3 × 25 µl) were used for F95
enrichment from whole plasma, while for EVs, total protein
was first extracted from a pool of EVs derived from three
animals (EV pellets derived from 100 µl plasma per animal),
using RIPA+ buffer (Sigma, UK). Following application of
RIPA+ buffer, the EVs were incubated on ice for 2 h followed
by centrifugation at 16,000 g for 30min to collect the protein
containing supernatant. Thereafter, immunoprecipitation (F95
enrichment) was carried out overnight on a rotating platform
at 4◦C. F95-enriched proteins were eluted according to the
manufacturer’s instructions (Merck), using denaturing elution
buffer (Merck), and diluted 1:1 in Laemmli sample buffer. The
F95-enriched eluates from whole plasma and plasma-EVs were
then analyzed by sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE), followed by Western blotting,
silver staining, or liquid chromatography with tandem mass
spectrometry (LC-MS/MS).

Western Blotting Analysis
Alligator plasma and plasma EVs were diluted 1:1 in
denaturing 2× Laemmli sample buffer (containing 5%
beta-mercaptoethanol, BioRad, UK) and boiled for 5min at
100◦C. Proteins were separated by SDS-PAGE using 4–20%
gradient TGX gels (BioRad, UK). Western blotting was carried
out using the Trans-Blot R© SD semidry transfer cell (BioRad,
UK); even transfer was assessed by staining the membranes
with PonceauS (Sigma, UK). Blocking was performed for 1 h
at room temperature using 5% bovine serum albumin (BSA,
Sigma, UK), in Tris-buffered saline (TBS) containing 0.1%
Tween 20 (TBS-T; BioRad, UK). Following blocking, the

Frontiers in Immunology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 651

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Criscitiello et al. Deimination and EV Signatures in Alligator

membranes were incubated overnight at 4◦C on a shaking
platform with the primary antibodies, which were diluted in
TBS-T. For the detection of deiminated/citrullinated proteins,
the F95 pan-deimination antibody was used (MABN328, Merck,
1/1,000). For the detection of putative PAD proteins in alligator
plasma, cross-reaction with antihuman PAD2, PAD3, and PAD4
was assessed using the following antihuman PAD antibodies:
anti-PAD2 (ab50257, Abcam, 1/1,000), anti-PAD3 (ab50246,
Abcam, 1/1,000), and anti-PAD4 (ab50247, Abcam, 1/1,000),
which have previously been shown to cross-react with PAD
homologs in a range of taxa (40, 41, 56, 58, 76, 77, 79, 80). Cross-
reaction with antibodies against other human PAD isozymes
was not assessed in the current study (PAD1 or PAD6). For the
detection of deiminated histone H3, the citH3 antibody was used
(citH3, Abcam, 1/1,000), which is also a marker of neutrophil
extracellular trap formation (NETosis). EV isolates were blotted
against two EV-specific markers: CD63 (ab216130, 1/1,000) and
Flotillin-1 (Flot-1, ab41927, ½,000), for the characterization of
EVs. After primary antibody incubation, the membranes were
washed for 3× 10min in TBS-T at room temperature (RT) and
incubated for 1 h, at RT with horseradish peroxidase (HRP)-
conjugated secondary antibodies [antirabbit immunoglobulin
G (IgG) (BioRad) or antimouse IgM (BioRad) respectively,
diluted 1/3,000 in TBS-T]. The membranes were then washed
in TBS-T for 5× 10min, and positive proteins bands were
visualized digitally, using enhanced chemiluminescence (ECL;
Amersham, UK) and the UVP BioDoc-ITTM System (Thermo
Fisher Scientific, UK).

Silver Staining
F95-enriched protein eluates from alligator plasma and plasma
EVs were silver stained following SDS-PAGE (4–20% gradient
TGX gels, BioRad, UK) under reducing conditions. The BioRad
Silver Stain Plus Kit (1610449, BioRad, UK) was used, according
to the manufacturer’s instructions (BioRad) and previously
described methods (91).

Liquid Chromatography With Tandem Mass
Spectrometry Analysis of Deiminated
Protein Candidates
F95-enriched eluates from alligator plasma and plasma EVs were
analyzed by LC-MS/MS as previously described (79, 80). For
LC-MS/MS analysis, the F95-enriched eluates were run 0.5 cm
into a 12% TGX gel (BioRad, UK), the band cut out, trypsin
digested, and subjected to proteomic analysis using a Dionex
Ultimate 3000 RSLC nano-UPLC (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) system and a QExactive Orbitrap mass
spectrometer (Thermo Fisher Scientific Inc., Waltham, MA,
USA). Peptides were separated by reverse-phase chromatography
(flowrate, 300 nl/min) and using a Thermo Scientific reverse-
phase nano Easy-Spray column (Thermo Scientific PepMap
C18, 2µm particle size, 100A pore size, 75µm i.d. × 50 cm
length). Peptides were next loaded onto a precolumn (Thermo
Scientific PepMap 100 C18, 5µm particle size, 100A pore size,
300µm i.d. × 5mm length) for 3min, from the Ultimate 3000
autosampler, in the presence of 0.1% formic acid, at a 10 µl/min

flowrate. Thereafter, elution of peptides from the precolumn
onto the analytical column was facilitated by switching the
column valve (solvent A = water + 0.1% formic acid; solvent
B = 80% acetonitrile, 20% water + 0.1% formic acid). A linear
gradient of 2–40% B was employed for 30min. The LC eluent
was sprayed into the mass spectrometer (using the Easy-Spray
source, Thermo Fisher Scientific Inc.). Measuring of all m/z
values for eluting ions was performed using an Orbitrap mass
analyzer; setting was at a resolution of 70,000 and scanning
between m/z 380–1,500. For automatic isolation and generation
of fragment ions by higher energy collisional dissociation (HCD,
NCE, 25%), data-dependent scans (Top 20) were employed, in
the HCD collision cell. The measurement of resulting fragment
ions was then performed using the Orbitrap analyzer, which
was set at a resolution of 17,500. Ions with unassigned charge
states and singly charged ions were excluded from being selected
for MS/MS. Furthermore, a dynamic exclusion window of 20 s
was employed. The data were processed postrun, using Protein
Discoverer (version 2.1., Thermo Scientific); all MS/MS data
were converted to mgf files. For the identification of deiminated
protein hits, the files were next submitted to Mascot (Matrix
Science, London, UK) and searched against the UniProt Alligator
mississippiensis_20191104 database (31974 sequences; 16476323
residues) and a common contaminant sequences (123 sequences;
40594 residues). The fragment mass and peptide tolerances were,
respectively, set to 20 ppm and 0.1 Da. The significance threshold
was set at p < 0.05, and the peptide cutoff score was set at 20
(analysis carried out by Cambridge Proteomics, Cambridge, UK).

Protein–Protein Interaction Network
Analysis
For the identification and prediction of putative interaction
networks for deiminated proteins identified in alligator plasma
and plasma EVs, the Search Tool for the Retrieval of Interacting
Genes/Proteins analysis (STRING; https://string-db.org/) was
used as previously described (80). Protein networks were
built based on the protein IDs and using the function of
“search multiple proteins” in STRING, choosing “Alligator
mississippiensis” as the species database. Settings for the analysis
were set at “basic,” and confidence was applied at “medium.”
Color lines connecting the nodes indicate the following evidence-
based interactions for network edges: known interactions
(based on curated databases, experimentally determined),
coexpression or protein homology, predicted interactions (based
on gene neighborhood, gene fusion, gene co-occurrence), or via
text mining.

Phylogenetic Comparison of American
Alligator PADs With Human PADs
Previously reported predicted alligator (A. mississippiensis)
protein sequences for PAD1 (XP_006259278.3), PAD2
(XP_019355592.1), and PAD3 (XP_014457295.1) isozymes
were aligned with human PAD isozyme sequences PAD1
(NP_037490.2), PAD2 (NP_031391.2), PAD3 (NP_057317.2),
PAD4 (NP_036519.2), and PAD6 (NP_997304.3), using
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Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). A
neighbor-joining phylogeny tree was constructed.

Statistical Analysis
The histograms and the graphs were prepared using the
Nanosight 3.0 software (Malvern, UK) and GraphPad
Prism version 7 (GraphPad Software, San Diego, USA).
NTA curves represent mean and standard error of mean
(SEM), indicated by confidence intervals. STRING analysis
(https://string-db.org/) was used for the prediction of
protein–protein interaction networks. Significance was set at
p ≤ 0.05.

RESULTS

Characterization of Alligator Plasma EVs
Plasma EVs were assessed by nanoparticle tracking analysis
(NTA) for particle numbers and size distribution using the
NanoSight NS300 system, revealing a poly-dispersed population

of EVs in the size range of mainly 50–400 nm, albeit with
some individual variation in EV profiles within these size
ranges and peaks at smaller (30 nm) and larger (500 nm) sizes
(Figure 1A). Further characterization of the EVs was performed
by Western blotting using the EV-specific markers CD63
and Flot-1 (Figure 1B), and by TEM, confirming typical EV
morphology (Figure 1C). Some variation was observed between
the three individuals with respect to EV yield (Figure 1D)
and modal EV size, which fell in the range of 110–170 nm
(Figure 1E).

PAD Protein Homologs and Deiminated
Proteins in Alligator Plasma and Plasma
EVs
For assessment of alligator PAD protein homologs, antihuman
PAD-isozyme-specific antibodies were used forWestern blotting,
identifying positive protein bands at an expected ∼70–75 kDa
size for cross-reaction with antihuman PAD2, PAD3, and PAD4

FIGURE 1 | Extracellular vesicle profiling in alligator plasma. (A) Nanoparticle tracking analysis shows a size distribution of plasma extracellular vesicles (EVs) from

Alligator mississippiensis in the size range of mainly 50–400 nm, albeit with some individual variation in EV profiles within these size ranges and peaks at smaller

(30 nm) and larger (500 nm) sizes, with main peaks at ∼50, 100, 200, 300, and 400 nm. (B) Western blotting analysis confirms that alligator EVs are positive for the

phylogenetically conserved EV-specific markers CD63 and Flot-1. (C) Transmission electron microscopy (TEM) analysis of alligator plasma-derived EVs shows typical

EV morphology; scale bar is 100 nm in all figures. (D) EV yield in alligator plasma (n = 3). (E) EV modal size in alligator plasma (n = 3).
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FIGURE 2 | Peptidylarginine deiminases (PADs) and deiminated proteins in alligator plasma and plasma extracellular vesicles (EVs). (A) PAD positive bands were

identified at the expected size range of approximately 70–75 kDa using the antihuman PAD2-, PAD3-, and PAD4-specific antibodies in alligator plasma. (B) Plasma

EVs show positive for PAD2 and for PAD3 at lower levels but negative for PAD4 (at expected 70–75 kDa size range), using antihuman PAD isozyme-specific antibodies

against PAD2, PAD3, and PAD4, respectively. (C) Total deiminated proteins were identified in alligator plasma using the pan-deimination-specific F95 antibody.

(D) Total deiminated proteins were identified in alligator plasma EVs using the pan-deimination-specific F95 antibody. (E,F) F95-enriched IP fraction from alligator

plasma (E) and plasma EVs (F), shown by silver staining. (G) Deiminated histone H3 (citH3) is detected in alligator plasma. The F95-enriched IP fraction derived from a

pool of three individual alligator plasma and a pool of plasma EVs (n = 3) is shown, respectively.

antibodies in plasma, although this was most prominent for
anti-PAD2 (Figure 2A). In plasma EVs, cross-reaction with
antihuman PAD2 antibody was prominent, and cross-reaction
with antihuman PAD3 was detected at low levels, while the
EVs did not show positive against the anti-human PAD4
antibody (Figure 2B). Cross-reaction with other antihuman
PAD antibodies (against PAD1 or PAD6) was not tested in
the current study. For assessment of total deiminated proteins
present in plasma and plasma EVs, the pan-deimination F95
antibody revealed positive bands between 25 and 250 kDa in
plasma (Figure 2C) and in EVs mainly in the size range of
50–150 kDa (Figure 2D). The F95-enriched fractions obtained
by immunoprecipitation from alligator plasma and plasma
EVs were assessed by SDS-PAGE and silver staining, showing
protein bands in the size range of 15–250 kDa in plasma
and 10–250 kDa in EVs (Figures 2E,F). The presence of
deiminated histone H3, also a putative marker of NETosis, was
confirmed in alligator plasma in the expected 17–20 kDa size
range (Figure 2G).

LC-MS/MS Analysis of Deiminated Proteins
in Alligator Plasma and Plasma EVs
Protein identification of deiminated proteins in alligator plasma
and plasma EVs was carried out using F95 enrichment and
LC-MS/MS analysis, searching for species-specific protein hits
using the Alligator mississippiensis protein database. In plasma,
112 species-specific deiminated protein hits were identified
(and further 33 species-specific uncharacterized protein hits)
(Table 1 and Supplementary Table 1). In plasma EVs, 77 species-
specific deiminated protein hits were identified (and further
23 species-specific uncharacterized protein hits) (Table 2 and
Supplementary Table 2). Of the hits identified, 59 proteins
were specific for whole plasma only (and an additional 17
uncharacterized alligator protein hits) and 24 proteins for EVs
only (with an additional 7 uncharacterized alligator protein hits),
while 53 hits overlapped (with an additional 16 unidentified
alligator hits) (Figure 3).

Deiminated proteins in alligator plasma were isolated by
immunoprecipitation using the pan-deimination F95 antibody.
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TABLE 1 | Deiminated proteins in plasma of alligator (Alligator mississippiensis),

as identified by F95 enrichment and liquid chromatography with tandem mass

spectrometry (LC-MS/MS) analysis.

Protein name Symbol Sequences Total score

(p < 0.05)
†

Uncharacterized protein

(complement C3)

A0A151NL74_ALLMI 84 5,545

Uncharacterized protein

(venom factor)

A0A151NM44_ALLMI 64 4,001

Uncharacterized protein A0A151NFJ9_ALLMI 55 3,599

Uncharacterized protein A0A151MJS8_ALLMI 55 3,527

Uncharacterized protein A0A151NDR9_ALLMI 51 3,205

Serum albumin A0A151N5S7_ALLMI 45 2,909

Fibrinogen beta chain A0A151N5S7_ALLMI 37 2,603

Uncharacterized protein A0A151N583_ALLMI 38 2,432

Fibrinogen gamma chain A0A151PB79_ALLMI 33 2,280

Alpha-2-macroglobulin-like A0A151NFQ0_ALLMI 28 2,233

Plasminogen A0A151M2C0_ALLMI 36 2,185

Plasminogen A0A151M2C2_ALLMI 36 2,184

Uncharacterized protein A0A151MZ64_ALLMI 31 2,150

Complement receptor type

1-like

A0A151MS72_ALLMI 27 1,798

Uncharacterized protein A0A151NDR1_ALLMI 25 1,797

Melanotransferrin A0A151MJZ7_ALLMI 27 1,766

Kininogen-1 A0A151M678_ALLMI 24 1,693

Hemopexin A0A151NGB2_ALLMI 23 1,662

Plasma kallikrein isoform B A0A151PAG7_ALLMI 26 1,627

Complement C5 A0A151NUM2_ALLMI 22 1,426

Uncharacterized protein A0A151NLW7_ALLMI 20 1,328

Uncharacterized protein A0A151MYR7_ALLMI 19 1,304

Uncharacterized protein A0A151MYS3_ALLMI 16 1,191

Uncharacterized protein A0A151MJK7_ALLMI 19 1,183

Uncharacterized protein A0A151NAV0_ALLMI 19 1,181

Fetuin-B isoform B A0A151M7P5_ALLMI 20 1,164

Complement factor H A0A151NM72_ALLMI 17 1,054

IgGFc-binding protein-like A0A151MJC3_ALLMI 14 1,043

Vitamin D-binding protein A0A151N541_ALLMI 19 998

Carbonic anhydrase 6 A0A151N4K1_ALLMI 15 920

Uncharacterized protein A0A151MYV2_ALLMI 12 911

Uncharacterized protein A0A151P5P7_ALLMI 15 873

CD5 antigen-like A0A151PHB7_ALLMI 13 867

Antithrombin-III A0A151MIW1_ALLMI 13 792

Uncharacterized protein A0A151MYX2_ALLMI 10 752

Uncharacterized protein A0A151PB91_ALLMI 9 726

Ovoinhibitor A0A151MEG6_ALLMI 11 625

Coagulation factor XII A0A151NM16_ALLMI 8 610

Alpha-1-inhibitor 3-like A0A151M7F0_ALLMI 11 591

T-cell surface glycoprotein

CD8 beta chain

A0A151P975_ALLMI 6 567

Hemoglobin subunit alpha-A A0A151P678_ALLMI 9 538

Uncharacterized protein A0A151MYQ9_ALLMI 8 514

Ig lambda chain V-1 region A0A151P8L7_ALLMI 6 500

Uncharacterized protein A0A151MZ31_ALLMI 7 484

Heparin cofactor 2 isoform B A0A151MLS1_ALLMI 9 483

Glutathione peroxidase A0A151MUD9_ALLMI 8 480

(Continued)

TABLE 1 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

Uncharacterized protein A0A151MYZ1_ALLMI 6 479

Inter-alpha-trypsin inhibitor

heavy chain H2 isoform A

A0A151NPL6_ALLMI 8 459

Ficolin-3 A0A151NG70_ALLMI 8 455

Hemoglobin subunit beta A0A151PG12_ALLMI 7 450

Ig epsilon chain C region A0A151MYW1_ALLMI 7 439

Apolipoprotein E A0A151N3F1_ALLMI 6 430

Complement factor I A0A151MIQ2_ALLMI 7 424

Fibrinogen C-terminal

domain-containing protein

A0A151MF51_ALLMI 5 420

TED_complement

domain-containing protein

A0A151N5Z3_ALLMI 6 417

Complement C1q

subcomponent subunit B

A0A151MZU2_ALLMI 6 374

Alpha-1-antitrypsin A0A151P8U9_ALLMI 6 367

Uncharacterized protein A0A151M7P2_ALLMI 4 351

Coagulation factor XIII B

chain

A0A151NCL4_ALLMI 5 333

Alpha-1-antitrypsin A0A151P8P3_ALLMI 6 322

Alpha-2-antiplasmin A0A151LY18_ALLMI 6 321

Fructose-bisphosphate

aldolase

A0A151MLN4_ALLMI 4 303

Basement

membrane-specific heparan

sulfate proteoglycan core

protein

A0A151MTT0_ALLMI 5 299

Coagulation factor XIII A

chain isoform A

A0A151NCL4_ALLMI 7 295

Complement C1q

subcomponent subunit C

A0A151N005_ALLMI 4 290

Uncharacterized protein A0A151MFZ6_ALLMI 5 271

Zinc finger and BTB

domain-containing protein 4

A0A151MYL8_ALLMI 5 265

Complement C1q

subcomponent subunit A

A0A151MZN0_ALLMI 4 245

Keratin, type I cytoskeletal 19 A0A151PC64_ALLMI 4 234

Haptoglobin A0A151MVG5_ALLMI 4 228

Ig-like domain-containing

protein

A0A151NG86_ALLMI 3 206

C4b-binding protein alpha

chain-like

A0A151MAQ5_ALLMI 5 206

Serpin peptidase inhibitor,

clade A (Alpha-1

antiproteinase, antitrypsin),

member 4

A0A151P987_ALLMI 5 201

Ovostatin-like protein 1-like A0A151MRY5_ALLMI 3 198

Adiponectin A0A151M626_ALLMI 2 181

Ig-like domain-containing

protein

A0A151M7S2_ALLMI 2 176

Plasma protease C1 inhibitor A0A151NVG0_ALLMI 3 173

Uncharacterized protein A0A151NG84_ALLMI 3 173

Stanniocalcin-2 A0A151M6X4_ALLMI 3 168

Pantetheinase A0A151M3D7_ALLMI 3 162

Uncharacterized protein A0A151MFZ3_ALLMI 3 155

(Continued)

Frontiers in Immunology | www.frontiersin.org 7 April 2020 | Volume 11 | Article 651

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Criscitiello et al. Deimination and EV Signatures in Alligator

TABLE 1 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

Retinoic acid receptor

responder protein 2

A0A151LYA0_ALLMI 2 161

Protein AMBP A0A151MF04_ALLMI 2 139

Ig-like domain-containing

protein

A0A151P541_ALLMI 2 138

V-set domain-containing

T-cell activation inhibitor

1-like

A0A151MVY5_ALLMI 3 137

Protein Z-dependent

protease inhibitor

A0A151P8Q1_ALLMI 3 135

Fibrinogen C-terminal

domain-containing protein

A0A151MF29_ALLMI 2 134

Ig-like domain-containing

protein

A0A151P538_ALLMI 2 133

Vitelline membrane outer

layer 1-like protein

A0A151PFR3_ALLMI 3 132

Apolipoprotein A-IV A0A151LZQ0_ALLMI 2 131

Ig-like domain-containing

protein

A0A151NR11_ALLMI 2 131

Keratin, type I cytoskeletal 14 A0A151PC58_ALLMI 3 130

Vitronectin A0A151NVP9_ALLMI 2 130

Sushi domain-containing

protein

A0A151P1M1_ALLMI 2 129

Uncharacterized protein A0A151MP64_ALLMI 3 126

Disabled-like protein 1

isoform B

A0A151M4I5_ALLMI 2 121

Beta-2-glycoprotein 1 A0A151N2D1_ALLMI 2 120

Ig-like domain-containing

protein

A0A151M7W3_ALLMI 1 118

Complement component C8

alpha chain

A0A151M4H1_ALLMI 2 113

Histidine-rich glycoprotein A0A151M7M7_ALLMI 2 112

Chondroadherin isoform A A0A151N2Q4_ALLMI 2 109

Ig-like domain-containing

protein

A0A151M7N2_ALLMI 1 108

Complement factor H-related

protein 3-like

A0A151NBK6_ALLMI 3 108

Uncharacterized protein

(apolipoprotein E-like)

A0A151N395_ALLMI 2 105

Ig-like domain-containing

protein

A0A151P518_ALLMI 2 104

Alpha-1-antitrypsin-like A0A151P8V8_ALLMI 2 94

Ig heavy chain V region 6.96 A0A151P441_ALLMI 2 93

Leucine-rich

alpha-2-glycoprotein

A0A151MCJ2_ALLMI 2 90

Uncharacterized protein A0A151MAL5_ALLMI 2 88

Ig-like domain-containing

protein

A0A151P518_ALLMI 2 86

Alpha-1-antiproteinase-like A0A151P8W0_ALLMI 2 82

Insulin-like growth

factor-binding protein

complex acid labile subunit

A0A151N6V5_ALLMI 2 78

Apolipoprotein B-100 A0A151PIT1_ALLMI 3 77

Properdin A0A151MYJ4_ALLMI 2 77

(Continued)

TABLE 1 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

Complement component C7 A0A151MX90_ALLMI 2 75

Anionic trypsin-2-like A0A151NL42_ALLMI 1 75

Angiogenin A0A151MM94_ALLMI 1 73

N-Acetylmuramoyl-l-alanine

amidase

A0A151PH98_ALLMI 2 72

Ig-like domain-containing

protein

A0A151N4A7_ALLMI 2 72

GRIP and coiled-coil

domain-containing protein 2

A0A151NXH0_ALLMI 2 69

Fibulin-1 A0A151P794_ALLMI 2 66

Complement C2 A0A151PIR2_ALLMI 2 63

Selenoprotein P A0A151MWX0_ALLMI 2 54

Ig-like domain-containing

protein

A0A151P973_ALLMI 1 54

Ig-like domain-containing

protein

A0A151MRI0_ALLMI 1 53

Pericentrin isoform D A0A151N9S1_ALLMI 2 53

Uncharacterized protein A0A151NLI3_ALLMI 2 53

AT-rich interactive

domain-containing

protein 3B

A0A151MAK9_ALLMI 2 52

Laminin subunit beta-3

isoform A

A0A151MJP2_ALLMI 2 51

Uncharacterized protein A0A151NFR7_ALLMI 1 51

Signal transducer and

activator of transcription

A0A151PC08_ALLMI 2 51

ZZ-type zinc

finger-containing protein 3

isoform B

A0A151NJ96_ALLMI 2 50

Ig-like domain-containing

protein

A0A151NR16_ALLMI 1 49

WD repeat-containing protein

11 isoform C

A0A151NU67_ALLMI 2 48

Avidin-like A0A151MRC9_ALLMI 1 47

Complement factor B A0A151PIT0_ALLMI 1 47

Uncharacterized protein A0A151MF67_ALLMI 1 46

Complement factor H-like A0A151NLD7_ALLMI 1 46

Uncharacterized protein A0A151MT59_ALLMI 1 44

Uncharacterized protein A0A151NT34_ALLMI 1 44

Sulfhydryl oxidase A0A151MIB1_ALLMI 1 42

Exostosin-like 1 isoform B A0A151MMH5_ALLMI 1 42

Putative E3 ubiquitin-protein

ligase UBR7

A0A151P8Y0_ALLMI 2 41

Sorbitol dehydrogenase A0A151MAA7_ALLMI 1 41

Carboxypeptidase B2 A0A151MHY8_ALLMI 1 40

T-complex protein 1 subunit

eta

A0A151MYL4_ALLMI 1 40

BTB/POZ domain-containing

protein 7

A0A151P8X9_ALLMI 1 39

Citron Rho-interacting kinase

isoform B

A0A151N4K3_ALLMI 1 39

Uncharacterized protein A0A151ND16_ALLMI 1 39

Prickle-like protein 1

isoform A

A0A151PEZ2_ALLMI 1 39

Ras-related protein Rab-17

isoform B

A0A151N9P9_ALLMI 1 38

(Continued)
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TABLE 1 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

Uncharacterized protein A0A151LZX4_ALLMI 1 38

T-lymphoma invasion and

metastasis-inducing

protein 1

A0A151ME23_ALLMI 1 38

Uncharacterized protein A0A151NRI7_ALLMI 1 38

Neuronal PAS

domain-containing protein 3

isoform A

A0A151NKE6_ALLMI 1 37

Ankyrin repeat

domain-containing protein

26 isoform A

A0A151PEV8_ALLMI 1 37

Cadherin-1 A0A151P0T5_ALLMI 1 36

Ig-like domain-containing

protein

A0A151NR67_ALLMI 1 34

Uncharacterized protein A0A151M2C1_ALLMI 1 34

Zinc finger castor-like protein

1 isoform C

A0A151N3T3_ALLMI 1 34

Ubiquitin carboxyl-terminal

hydrolase 8 isoform C

A0A151M9E3_ALLMI 1 33

Uncharacterized protein A0A151P059_ALLMI 1 33

Arf-GAP with coiled coil,

ANK repeat, and PH

domain-containing protein 1

A0A151N149_ALLMI 1 33

Membrane-bound

transcription factor site-1

protease

A0A151MLJ3_ALLMI 1 33

TRAF family

member-associated

NF-kappa-B activator

A0A151M0A1_ALLMI 1 32

Pyruvate carboxylase,

mitochondrial

A0A151PCD5_ALLMI 1 32

Leukocyte receptor cluster

member 8

A0A151N898_ALLMI 1 32

Deiminated proteins in alligator plasma were isolated by immunoprecipitation using the

pan-deimination F95 antibody. The resulting F95-enriched eluate was then analysed by

LC-MS/MS and peak list files submitted to mascot. Alligator mississippiensis species-

specific peptide sequence hits are listed (ALLMI), showing number of sequences for

protein hits and total score. Blue highlighted rows indicate protein hits identified in whole

plasma only (for full details on protein hits see Supplementary Table 1).
†
Ions score is −10 × Log(P), where P is the probability that the observed match is

a random event. Individual ions scores >32 indicated identity or extensive homology

(p < 0.05). Protein scores were derived from ions scores as a non-probabilistic basis

for ranking protein hits.

The resulting F95-enriched eluate was then analyzed by
LC-MS/MS and peak list files submitted to mascot. Alligator
mississippiensis species-specific peptide sequence hits are listed
(ALLMI), showing the number of sequences for protein hits
and total score. Blue highlighted rows indicate protein hits
identified in whole plasma only (for full details on protein hits,
see Supplementary Table 1).

Protein–Protein Interaction Network
Identification of Deiminated Proteins in
Plasma and EVs
For the prediction of protein–protein interaction networks
of these deimination candidate proteins, the protein ID lists

TABLE 2 | Deiminated proteins in plasma extracellular vesicles (EVs) of alligator

(Alligator mississippiensis), as identified by F95 enrichment.

Protein name Symbol Sequences Total score

(p < 0.05)
†

Uncharacterized protein

(complement C3)

A0A151NL74_ALLMI 62 3,704

Uncharacterized protein A0A151NFJ9_ALLMI 43 2,719

Serum albumin A0A151N5S7_ALLMI 32 1,711

Fibrinogen alpha chain A0A151PBF3_ALLMI 25 1,672

Fibrinogen beta chain A0A151PC06_ALLMI 25 1,526

Alpha-2-macroglobulin-like A0A151NFQ0_ALLMI 23 1,486

Uncharacterized protein

(venom factor)

A0A151NM44_ALLMI 25 1,411

Fibrinogen gamma chain A0A151PB79_ALLMI 22 1,305

Uncharacterized protein A0A151N583_ALLMI 22 1,262

Uncharacterized protein A0A151MZ64_ALLMI 20 1,221

Kininogen-1 A0A151M678_ALLMI 19 1,213

Hemopexin A0A151NGB2_ALLMI 18 1,107

Melanotransferrin A0A151MJZ7_ALLMI 15 906

Uncharacterized protein A0A151MYS3_ALLMI 13 856

Complement receptor type

1-like

A0A151MS72_ALLMI 15 838

Uncharacterized protein A0A151MJS8_ALLMI 13 791

Carbonic anhydrase 6 A0A151N4K1_ALLMI 13 736

Uncharacterized protein A0A151NDR9_ALLMI 13 679

Uncharacterized protein A0A151MYV2_ALLMI 8 656

Uncharacterized protein A0A151PB91_ALLMI 8 637

Fetuin-B isoform B A0A151M7P5_ALLMI 10 576

Carbonic anhydrase 6 A0A151N4K1_ALLMI 10 540

Plasma kallikrein isoform B A0A151PAG7_ALLMI 11 533

Uncharacterized protein A0A151P5P7_ALLMI 10 475

CD5 antigen-like A0A151PHB7_ALLMI 6 469

Keratin, type I cytoskeletal 19 A0A151PC64_ALLMI 7 445

Keratin, type I cytoskeletal 20 A0A151PC95_ALLMI 8 425

Uncharacterized protein A0A151MAL5_ALLMI 8 407

IF rod domain-containing

protein

A0A151LYF4_ALLMI 8 391

Ig lambda chain V-1 region A0A151P8L7_ALLMI 4 347

Complement factor H A0A151NM72_ALLMI 5 336

Hemoglobin subunit beta A0A151PG12_ALLMI 5 326

Keratin, type I cytoskeletal 14 A0A151PC58_ALLMI 5 325

T-cell surface glycoprotein

CD8 beta chain

A0A151P975_ALLMI 3 292

Fibrinogen C-terminal

domain-containing protein

A0A151MF51_ALLMI 4 285

Complement C5 A0A151NUM2_ALLMI 5 281

Plasminogen A0A151M2C0_ALLMI 4 259

Complement C1q

subcomponent subunit B

A0A151MZU2_ALLMI 4 253

Complement C1q

subcomponent subunit C

A0A151N005_ALLMI 3 251

Uncharacterized protein A0A151MYZ1_ALLMI 5 248

Uncharacterized protein A0A151NDR1_ALLMI 5 236

Glutathione peroxidase A0A151MUD9_ALLMI 4 234

Uncharacterized protein A0A151MJK7_ALLMI 4 227

(Continued)
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TABLE 2 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

IF rod domain-containing

protein

A0A151LYE5_ALLMI 4 223

Uncharacterized protein A0A151MYX2_ALLMI 3 208

Complement C1q

subcomponent subunit A

A0A151MZN0_ALLMI 3 192

Hemoglobin subunit alpha-A A0A151P678_ALLMI 4 181

Alpha-1-inhibitor 3-like A0A151M7F0_ALLMI 4 180

Uncharacterized protein A0A151NSW8_ALLMI 3 154

Ig-like domain-containing

protein

A0A151P538_ALLMI 3 145

Histone H4 A0A151NSZ8_ALLMI 3 130

TED_complement

domain-containing protein

A0A151N5Z3_ALLMI 2 126

Ig-like domain-containing

protein

A0A151P518_ALLMI 2 126

Uncharacterized protein A0A151MP64_ALLMI 2 120

Antithrombin-III A0A151MIW1_ALLMI 2 113

Vitronectin A0A151NVP9_ALLMI 2 108

HATPase_c

domain-containing protein

A0A151NIG2_ALLMI 1 107

Desmin A0A151MQA4_ALLMI 2 104

Ig-like domain-containing

protein

A0A151M7S2_ALLMI 2 103

Heterogeneous nuclear

ribonucleoproteins A2/B1

A0A151MQK4_ALLMI 2 100

Ig epsilon chain C region A0A151MYW1_ALLMI 2 97

Alpha-1-antitrypsin A0A151P8P3_ALLMI 2 95

Uncharacterized protein A0A151N405_ALLMI 3 92

l-lactate dehydrogenase A0A151MCB3_ALLMI 1 87

Uncharacterized protein A0A151NG84_ALLMI 2 87

Ovostatin-like protein 1-like A0A151MRY5_ALLMI 2 83

Histone H2A A0A151LYY4_ALLMI 2 82

Heterogeneous nuclear

ribonucleoprotein U

A0A151MHH8_ALLMI 1 80

Tubulin beta chain A0A151MZH9_ALLMI 2 78

Heparin cofactor 2 isoform B A0A151MLS1_ALLMI 2 77

Olfactory receptor A0A151M3L3_ALLMI 1 73

Anionic trypsin-2-like A0A151NL42_ALLMI 1 72

Glyceraldehyde-3-phosphate

dehydrogenase

A0A151M7G4_ALLMI 2 67

Ovoinhibitor A0A151MEG6_ALLMI 2 67

Glyceraldehyde-3-phosphate

dehydrogenase

A0A151MCM1_ALLMI 2 66

Plasma protease C1 inhibitor A0A151NVG0_ALLMI 2 63

40S ribosomal protein SA A0A151P2K0_ALLMI 1 61

Triosephosphate isomerase A0A151MCS3_ALLMI 2 60

Heat-shock protein,

mitochondrial

A0A151NA12_ALLMI 1 59

Uncharacterized protein A0A151PC76_ALLMI 2 59

Actin filament-associated

protein 1-like 2 isoform D

A0A151NUD0_ALLMI 2 59

(Continued)

TABLE 2 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

Tr-type G domain-containing

protein

A0A151MMV6_ALLMI 1 59

Desmoplakin A0A151ND53_ALLMI 2 58

Uncharacterized protein A0A151NLW7_ALLMI 2 57

Ig-like domain-containing

protein

A0A151MRI0_ALLMI 1 55

Tubulin alpha chain A0A151N6Z6_ALLMI 1 53

Fibrinogen C-terminal

domain-containing protein

A0A151MF29_ALLMI 1 53

Serpin peptidase inhibitor,

clade A (Alpha-1

antiproteinase, antitrypsin),

member 4

A0A151P987_ALLMI 1 51

Vitamin D-binding protein A0A151N541_ALLMI 2 50

60S ribosomal protein L23a A0A151MUP1_ALLMI 1 47

Tropomyosin alpha-1 chain

isoform

A0A151MA07_ALLMI 1 46

Kinesin motor

domain-containing protein

A0A151M9A9_ALLMI 2 46

Selenoprotein P A0A151MWX0_ALLMI 1 45

Golgin subfamily A member

3 isoform A

A0A151NRP7_ALLMI 2 43

Serine incorporator 4 A0A151M668_ALLMI 1 42

Cleavage and

polyadenylation specificity

factor subunit 6 isoform B

A0A151PFC7_ALLMI 1 42

Protein AHNAK2 A0A151MYU6_ALLMI 1 41

Uncharacterized protein A0A151M202_ALLMI 1 40

BTB/POZ domain-containing

protein 7

A0A151P8X9_ALLMI 1 40

IgGFc-binding protein-like A0A151MJC3_ALLMI 1 40

60S ribosomal protein L11

isoform A

A0A151MML3_ALLMI 1 40

Steroid

17-alpha-hydroxylase/17,20

lyase

A0A151NV24_ALLMI 2 39

Small G protein signaling

modulator 1 isoform B

A0A151NSF2_ALLMI 1 39

Ig-like domain-containing

protein

A0A151N4A7_ALLMI 1 39

TRAF family

member-associated

NF-kappa-B activator

A0A151M0A1_ALLMI 1 38

40S ribosomal protein S26 A0A151NSA5_ALLMI 1 38

Coagulation factor XII A0A151NM16_ALLMI 1 38

Sushi domain-containing

protein

A0A151NM16_ALLMI 1 37

Complement factor H-related

protein 3-like

A0A151NBK6_ALLMI 1 36

Cadherin-1 A0A151P0T5_ALLMI 1 36

Histidine-rich glycoprotein A0A151M7M7_ALLMI 1 34

TED_complement

domain-containing protein

A0A151M7E8_ALLMI 1 34

(Continued)
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TABLE 2 | Continued

Protein name Symbol Sequences Total score

(p < 0.05)
†

Zinc finger castor-like protein

1 isoform C

A0A151N3T3_ALLMI 1 34

V-set domain-containing

T-cell activation inhibitor

1-like

A0A151MVY5_ALLMI 1 34

C4b-binding protein alpha

chain-like

A0A151MAQ5_ALLMI 1 33

Neuronal PAS

domain-containing protein 3

isoform A

A0A151NKE6_ALLMI 1 33

Arf-GAP with coiled-coil,

ANK repeat and PH

domain-containing protein 1

A0A151N149_ALLMI 1 33

Tubulin alpha-2 chain A0A151LY82_ALLMI 1 32

Deiminated proteins from EVs were isolated by immunoprecipitation using the pan-

deimination F95 antibody. The resulting F95-enriched eluate was then analyzed by LC-

MS/MS and peak list files submitted to mascot. Alligator mississippiensis species-specific

peptide sequence hits are listed (ALLMI), showing the number of sequences for protein

hits and total score. Rows highlighted in pink indicate protein hits identified in plasma EVs

only (for full details on protein hits, see Supplementary Table 2).
†
Ions score is −10 × Log(P), where P is the probability that the observed match is

a random event. Individual ions scores >32 indicated identity or extensive homology

(p < 0.05). Protein scores were derived from ions scores as a non-probabilistic basis

for ranking protein hits.

for plasma and plasma EVs, respectively, were submitted to
STRING analysis (https://string-db.org/) (Figures 4–7). Protein
interaction networks were based on known and predicted
interactions and represent all deiminated proteins identified
in plasma (Figure 4), all deiminated proteins identified in
EVs (Figure 5), as well as deiminated proteins identified in
plasma only (Figure 6) or in EVs only (Figure 7). The protein–
protein interaction (PPI) enrichment p-value for all deiminated
proteins identified in alligator plasma (based on protein identifier
sequences) was found to be p < 1.0 × 10−16, and for
all deiminated proteins identified in the plasma-derived EVs,
the PPI enrichment p-value was also found to be p < 1.0
× 10−16 (Figures 4, 5). For deiminated proteins identified
in plasma only (but not EVs), the PPI enrichment p-value
was also p < 1.0 × 10−16 (Figure 6), while for deiminated
proteins identified specifically in EVs, the PPI enrichment p-
value was p = 4.83 × 10−8 (Figure 7). This indicates that,
in all cases, the identified protein networks have significantly
more interactions than expected for a random set of proteins of
similar size, drawn from the genome. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways related to deiminated
proteins identified as deiminated in whole plasma only, related
to the adipocytokine signaling pathway (Figure 6E), based
on STRING analysis for A. mississippiensis, while deiminated
proteins identified as deiminated in EVs only belonged to
KEGG pathways for ribosome, biosynthesis of amino acids, and
glycolysis/gluconeogenesis (Figure 7E). Protein families (PFAM)
protein domains differed for deamination-specific proteins in
plasma compared to in EVs (Figures 6B, 7B), as did Simple

FIGURE 3 | Deiminated proteins identified in alligator plasma and plasma

extracellular vesicles (EVs). Species-specific hits identified for deiminated

proteins in American alligator plasma and EVs showed overall 145 proteins

identified in plasma and 100 in EVs. Of these, 69 protein hits were overlapping,

while 76 proteins were specific for whole plasma and 31 for plasma EVs only,

respectively.

Modular Architecture Research Tool (SMART) protein domains,
which for plasma showed serpin, trypsin, and complement-
related domains [von Willebrand factor (vWF) and membrane
attack complex (MAC)/perforin domains], while EVs showed
also core histone domains (Figures 6C, 7C). STRING analysis for
UniProt keywords, INTERPRO [http://www.ebi.ac.uk/interpro/;
(92)] protein domains and features are furthermore highlighted
for plasma and plasma EVs (Figures 4–7).

Phylogeny Tree for American Alligator
PADs Compared to Human PADs
A phylogeny tree for American alligator reported and predicted
PAD sequences (PAD1, 2, and 3) compared to human PADs 1, 2,
3, 4, and 6, using Clustal Omega, revealed the closest relationship
between alligator PAD2 with human PAD2 (Figure 8). This
correlates with the strongest cross-reaction detected with the
antihuman PAD2 antibody in both alligator plasma and plasma
EVs (Figure 2).

DISCUSSION

The current study is the first to profile deiminated proteins in
plasma and EVs of American alligator (A. mississippiensis), and
the first such study of a non-avian diapsid (extant reptiles). F95
enrichment revealed a range of immunological, metabolic, and
gene regulatory proteins as candidates for this posttranslational
modification, therefore indicating hitherto underrecognized
modes for protein moonlighting of these proteins in alligator
physiology and immunity. PAD proteins were identified in
alligator plasma via cross-reaction to antibodies raised against
human PAD isozymes (PAD2, 3, and 4), which were previously
shown to cross-react with PADs with diverse taxa, and such
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FIGURE 4 | Protein–protein interaction networks of all deiminated proteins identified in alligator plasma. Reconstruction of protein–protein interactions based on

known and predicted interactions in Alligator mississippiensis, using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis. (A) Colored nodes

represent query proteins and first shell of interactors. (B) Protein families (PFAM) protein domains relating to the identified proteins and reported in STRING are

highlighted for: serpin, alpha-2-macroglobulin family, sushi repeat, anaphylatoxin-like domain, trypsin, serum albumin family, C1q domain, low-density lipoprotein

(LDL)-receptor domain class A, membrane attack complex (MAC)/perforin domain, and hemopexin (see color code included in the figure). (C) Simple Modular

Architecture Research Tool (SMART) protein domains relating to the identified proteins and reported in STRING are highlighted for serine proteinase inhibitors, domain

abundant in complement control proteins, anaphylatoxin homologous domain, trypsin-like serine protease, serum albumin, MAC/perforin, Ig V-type, hemopexin-like

repeats, von Willebrand factor (vWF) type A domain, and leucine-rich repeat C-terminal domain (see color code included in the figure). (D) UniProt keywords relating to

the identified proteins and reported in STRING are highlighted for: signal, disulfide bond, sushi, secreted, serine protease, collagen, kringle, hydrolase, and protease

(see color code included in the figure). (E) KEGG pathways relating to the identified proteins and reported in STRING are highlighted as follows: red = ECM-receptor

interaction. Colored lines indicate whether protein interactions are identified via known interactions (curated databases, experimentally determined), predicted

interactions (gene neighborhood, gene fusion, gene co-occurrence), or via text mining, coexpression, or protein homology (see the color key for connective lines

included in the figure).
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FIGURE 5 | Protein–protein interaction networks of all deiminated proteins identified in plasma extracellular vesicles (EVs) of Alligator mississippiensis. Reconstruction

of protein–protein interactions based on known and predicted interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis.

(A) Colored nodes represent query proteins and first shell of interactors. (B) Protein families (PFAM) protein domains relating to the identified proteins and reported in

STRING are highlighted as follows: alpha-2-macroglobulin family, intermediate filament protein, fibrinogen chain family, anaphylatoxin-like domain, serum albumin

family, serpin, C1q domain, sushi repeat, hemopexin, and core histones (see color code included in the figure). (C) SMART protein domains relating to the identified

proteins and reported in STRING are highlighted as follows: domain abundant in complement control proteins, anaphylatoxin homologous domain, serine proteinase

(Continued)

Frontiers in Immunology | www.frontiersin.org 13 April 2020 | Volume 11 | Article 651

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Criscitiello et al. Deimination and EV Signatures in Alligator

FIGURE 5 | inhibitors, trypsin-like serine protease, intermediate filament protein, fibrinogen-related domains, hemopexin-like repeats, C1q domain,

alpha-2-macroblobulin family, and serum albumin (see color code included in the figure). (D) UniProt keywords relating to the identified proteins and reported in

STRING are highlighted as follows: intermediate filament, signal, secreted, disulfide bond, ribonucleoprotein, sushi, glycolysis, serine protease, nucleosome core,

ribosomal protein (see color code included in the figure). (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relating to the identified proteins and

reported in STRING are highlighted as follows: red = ribosome. Colored lines indicate whether protein interactions are identified via known interactions (curated

databases, experimentally determined), predicted interactions (gene neighborhood, gene fusion, gene co-occurrence), or via text mining, coexpression, or protein

homology (see the color key for connective lines included in the figure).

detection is in accordance with that PADs have previously
reported in the alligator genome (PADI1, Gene ID: 102574884;
PADI2, Gene ID: 102575591; PADI3, Gene ID: 102574651). The
antihuman PAD2 antibody showed strongest cross-reaction with
alligator plasma proteins at a predicted size of 70–75 kDa for PAD
proteins, also in the plasma EVs, and this is in accordance with
previous findings reporting PAD2 to be themost phylogenetically
conserved isozyme (14, 56, 58, 76, 77, 79), as also confirmed
by the cladogram constructed based on sequence alignment
of predicted and reported protein sequences for alligator
and human PAD isozymes (Figures 8A,B). Furthermore, the
difference detected in cross-reaction with antihuman PAD2,
PAD3, and PAD4 antibodies (note that neither antihuman PAD1
nor PAD6 antibodies were assessed here) in whole plasma
compared with plasma EVs, as PAD4 did not show positive in
the EVs, may be associated with the differences observed in
deiminated protein targets in plasma vs. plasma EVs. Preferences
for the different PAD isozymes against cellular substrates is
indeed known (93). The presence of deiminated histone H3
(citH3), which sometimes is used as a marker of NETosis was also
identified here byWestern blotting in alligator plasma, providing
the first evidence of PAD-mediated NETosis mechanisms in
reptiles, although other circulating histones have previously been
identified in crocodilian blood (94). While NETosis has been
shown to be a phylogenetically conserved mechanism from fish
to mammals (95), the only other studies on NETosis related
to reptiles have been investigations on snake venom, showing
that Indian saw-scaled viper (Echis carinatus) venom induces
neutrophil extracellular trap (NET) formation in host tissue,
through which it contributes to tissue destruction of the affected
area (96, 97). It has to be noted though that further evaluation
of NETosis in alligator plasma will need to be performed, as
the direct link between histone citrullination/deimination and
NETosis has been challenged (98).

A number of alligator species-specific deiminated protein
candidates were identified in both plasma and plasma-derived
EVs, using F95 enrichment in tandem with LC-MS/MS analysis.
This analysis revealed some key metabolic and immune-related
proteins, with 53 characterized common deiminated proteins in
plasma and EVs, while 59 characterized deiminated protein hits
were specific for plasma and 24 characterized deiminated protein
hits were specific for EVs. Upon assessment of protein–protein
interaction networks using STRING analysis, the PPI enrichment
p-value for all deiminated proteins identified in alligator plasma
and in plasma EVs, as well as for deiminated proteins identified
either in plasma or EVs only, indicated that the identified protein
networks have significantly more interactions than expected for
a random set of proteins of similar size, drawn from the genome,

and that the proteins are at least partially biologically connected,
as a group (Figures 4–7).

In plasma, deiminated protein targets identified belonged
to KEGG pathways for extracellular matrix (ECM)-
receptor interaction and adipocytokine signaling pathway
(Figures 4E, 6E). ECM-receptor interactions control both
directly and indirectly a range of cellular activities including
migration, adhesion, differentiation, apoptosis, and proliferation
and have been studied in cancer, also at the transcriptome
level (99). KEGG pathways for ECM-receptor interaction
have, for example, been previously identified to be enriched
in EVs of mesenchymal stem cells (100), but regulation via
posttranslational deimination has not been investigated. A
recent study identified enrichment of deiminated proteins
in KEGG pathways for ECM-receptor interactions in the fin
whale, also long-lived cancer-resistant animal (75). Interestingly,
deimination of KEGG pathways of ECM-receptor interactions
has also been identified by our group in the wandering
albatross (Diomedea exulans) (80), which emphasizes the
phylogenetic relationship between reptiles and birds, while
exact phylogenetic reconstructions can though vary according
to genomic or protein parameters used, partly also due to
convergent evolution (101).

The adipocytokine signaling pathway plays important roles in
metabolic regulation and is involved in a range of pathologies
including insulin resistance and type II diabetes (102, 103).
Adiponectin is one of the cytokines secreted by adipocytes and
was here identified in alligator whole plasma only. Adiponectin
has key functions in regulating glucose (104–106) and is
also linked to regenerative functions (107), longevity (108),
cancer (109), and myopathies (110). It has recently been
identified as a deimination candidate in several taxa with
unusual metabolism including the llama (Lama glama), the
naked mole rat (Heterocephelus glaber), and orca (Orcinus orca)
(75, 76, 79).

In alligator plasma EVs, F95 target proteins identified as
deiminated proteins belonged to ribosomal, biosynthesis of
amino acids, and glycolysis/glyconeogenesis KEGG pathways
(Figures 5E, 7E). Furthermore, STRING analysis was carried
out on deiminated protein hits found specifically in EVs
only as well as for those only found in plasma, excluding
overlapping protein hits (Figures 6, 7). This revealed enrichment
of deiminated proteins in plasma linked to KEGG pathways of
adipocytokine signaling (Figure 6), while in EVs, pathways
related to ribosomal, biosynthesis of amino acids, and
glycolysis/gluconeogenesis were enriched in deiminated proteins
(Figure 7). In EVs, histone pathways were also enriched,
alongside vWF and intermediate filament protein domains,

Frontiers in Immunology | www.frontiersin.org 14 April 2020 | Volume 11 | Article 651

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Criscitiello et al. Deimination and EV Signatures in Alligator

FIGURE 6 | Protein–protein interaction networks of deiminated protein candidates identified in alligator plasma only (not identified in extracellular vesicles (EVs).

Reconstruction of protein–protein interactions based on known and predicted interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) analysis. (A) Colored nodes represent query proteins and first shell of interactors. (B) Protein families (PFAM) protein domains relating to the identified

proteins and reported in STRING are highlighted as follows: sushi repeat, serpin, low-density lipoprotein (LDL)-receptor domain class A, von Willebrand factor (vWF)

type A domain, membrane attack complex (MAC)/perforin domain, thrombospondin type 1 domain, leucine-rich repeat N-terminal domain, and trypsin (see color

code included in the figure). (C) Simple Modular Architecture Research Tool (SMART) protein domains relating to the identified proteins and reported in STRING are

highlighted as follows: domain abundant in complement control proteins, serine proteinase inhibitors, anaphylatoxin homologous domain, LDL-receptor domain class

A, MAC/perforin, thrombospondin type 1 repeats, vWF type A domain, leucine-rich repeat C-terminal domain, trypsin-like serine protease, leucine-rich repeats (see

color code included in the figure). (D) UniProt keywords relating to the identified proteins and reported in STRING are highlighted as follows: sushi, signal, disulfide

bond, protease, leucine-rich repeat (see color code included in the figure). (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relating to the identified

proteins and reported in STRING are highlighted as follows: red = adipocytokine signaling pathway.
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FIGURE 7 | Protein–protein interaction networks of deiminated protein candidates identified in alligator extracellular vesicles (EVs) only (not identified in total plasma).

Reconstruction of protein–protein interactions based on known and predicted interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) analysis. (A) Colored nodes represent query proteins and first shell of interactors. (B) Protein families (PFAM) protein domains relating to the identified

proteins and reported in STRING are highlighted as follows: intermediate filament protein, TILa domain, keratin type II head, C8 domain, trypsin inhibitor-like

cysteine-rich domain, von Willebrand factor (vWF) type D domain, core histones H2A/H2B/H3/H4 (see color code included in the figure). (C) Simple Modular

Architecture Research Tool (SMART) protein domains relating to the identified proteins and reported in STRING are highlighted as follows: intermediate filament

protein, conserved cysteine residues, vWF type D domain, and vWF type C domain (see color code included in the figure). (D) UniProt keywords relating to the

identified proteins and reported in STRING are highlighted as follows: ribonucleoprotein, intermediate filament, nucleosome core, ribosomal protein, glycolysis, and

viral nucleoprotein (see color code in legend). (E) INTERPRO protein domains and features: intermediate filament protein conserved site, histone H4, TILa domain,

keratin type II, trypsin inhibitor-like cysteine-rich domain, serine protease inhibitor-like superfamily, vWF type D domain, histone H2A/H2B/H3, von Willebrand factor

type C (VWFC) domain (see color code included in the figure). (F) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relating to the identified deiminated

proteins and reported in STRING are highlighted as follows: ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis.
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FIGURE 8 | Sequence alignment and phylogeny tree for alligator peptidylarginine deiminases (PADs) compared with human PADs. (A) Multiple sequence alignment of

reported (predicted) alligator PAD sequences PAD1 (XP_006259278.3), PAD2 (XP_019355592.1), and PAD3 (XP_014457295.1) isozymes, compared with human

PAD isozyme protein sequences PAD1 (NP_037490.2), PAD2 (NP_031391.2), PAD3 (NP_057317.2), PAD4 (NP_036519.2), and PAD6 (NP_997304.3), using Clustal

Omega. (B) A neighbor joining tree is shown for phylogenetic clustering of the reported (predicted) alligator PAD1 (XP_006259278.3), PAD2 (XP_019355592.1), and

PAD3 (XP_014457295.1) isozymes, compared with human PAD isozyme protein sequences PAD1 (NP_037490.2), PAD2 (NP_031391.2), PAD3 (NP_057317.2),

PAD4 (NP_036519.2), and PAD6 (NP_997304.3), using Clustal Omega.

and PFAM domains relating to the complement pathway,
fibrinogen, serpins, anaphylatoxins, hemopexin, and serum
albumin (Figures 5B–E, 7B–E).

KEGG ribosomal pathways are linked to cancer-associated
processes (111), and putative regulation of these networks via
deimination may therefore be of importance. Furthermore, in
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relation to KEGG pathways for biosynthesis of amino acids,
deimination-mediated changes may be of considerable interest
for comparative metabolic studies, particularly as amino acid
assessment for mammalian metabolism and for research into
aging and disease has received some attention (112). Glycolysis
is of high relevance in metabolism and cancer, and pathways
for glycolysis/gluconeogenesis, identified here in alligator plasma
EVs, have previously been identified in cancer cells (27) and in
several species of whale (75), which are long lived and cancer-
resistant sea mammals. Interestingly, in the naked mole rat, also
an animal with lowmetabolic rate, cancer resistance, and unusual
longevity, deiminated proteins relevant to glycolysis were also
found to be enriched in plasma EVs specifically (79). Whether
deimination in these pathways identified here in alligator is of
some relevance for the low metabolic rate and cancer resistance
found in alligator (10) will remain to be further investigated.

Deiminated protein candidates involved in immune pathways
for antipathogenic defenses, including complement related
proteins, were found both in whole plasma and enriched in the
plasma EVs, indicative of EV-mediated transport of deiminated
protein components. This coincides with previous findings of
unusual antimicrobial defenses of alligator, much higher than
in human sera and likely to be complement dependent (113).
Furthermore, alligator sera has also been found active against
multidrug resistant bacteria such as Acinetobacter baumanii and
Klebsiella pneumoniae (8), as well as amoeba (114).

A range of proteins from the complement cascade was indeed
identified here as deiminated in alligator, and this has also
recently been found in other species by our group (58, 73–79),
including in avian species (80). The complement system bridges
innate and adaptive immunity, participates in the clearance
of necrotic and apoptotic cells, and forms part of the first
lines of immune defenses against invading pathogens (115–
119). Interestingly, properdin was here identified as deiminated
in alligator plasma for the first time in any species, as
this has not been shown to be a deimination candidate in
other taxa studied so far. Properdin is a positive regulator
of the alternative complement pathway (AP) and linked to
multifaceted roles in inflammation and disease (120, 121). It
is a plasma glycoprotein that stabilizes C3 and C5 convertases
and initiates and positively regulates AP activity (120, 122,
123). Properdin-mediated complement activity contributes to
innate and adaptive immune responses and tissue damage, and
properdin has therefore also been a target for modulation in
disease pathologies (120, 124). While properdin is a known
glycoprotein, deimination of properdin is here described for the
first time in any species and may shed a novel light on how
properdin can take on itsmultifaceted roles, possibly also via such
posttranslational changes.

The properdin target C3 was the most identified deiminated
protein in the alligator plasma and EVs. C3 has recently been
identified to be deiminated in our studies in a range of taxa (76,
77, 80). Furthermore, an abundance of deiminated complement
components identified to be deiminated both in plasma and
plasma EVs included, besides C3, complement receptor type-1,
complement factor H, complement factor I, complement C1q
subcomponent subunits A and C, C4b-binding protein-like,

while C2, C7, factor B, and properdin were deiminated in
whole plasma only. Deimination of the various complement
components, except properdin, has recently been identified by
our group in teleost and cartilaginous fish (58, 76, 78), camelids
(77), cetaceans (75), and birds (80). These findings indicate
hitherto understudied roles for posttranslational deimination
in the known diversity of complement function throughout
phylogeny (125–129). Indeed, as some of the antibacterial
effects of crocodile serum have been linked to the complement
system (5, 113), our findings suggest that protein deimination
may play hitherto unidentified roles in the known unusual
antimicrobial and anti-inflammatory function of alligator (5,
130, 131), including via EV transport in cellular communication,
also playing roles in complement function in homeostatic
processes. Ficolin-3 was furthermore identified to be deiminated
in whole alligator plasma only and is a sugar pattern recognition
molecule, which forms part of mammalian immune systems
(132). Ficolin-3 can activate the complement system via the
lectin pathway (133), plays roles in bacterial defenses (134,
135) and autoimmunity (136, 137) and is modulated in viral
infections including HIV (138). Ficolin-3 has been associated
with metabolic diseases including gestational, prediabetes, and
type 2 diabetes (139, 140), and identified as biomarkers in
axial spondyloarthritis (141) and as a prognostic biomarker for
esophageal cancer (142). Studies on ficolins in reptiles are limited,
besides putative roles for veficolins in reptile venom systems
(143, 144) and for ficolin superfamily proteins as snake venom
metalloproteinase inhibitors (145). Deimination of ficolin-3 has
been previously identified only in the naked mole rat (79), a
cancer- and hypoxia-resistant animal with unusual immunity
and longevity. The roles of posttranslational deimination in
regulation of ficolin-mediated mechanisms may therefore be of
considerable interest, including in relation to inflammatory and
oncogenic pathways.

Alpha-2-macroglobulin (alpha-2-M) was found to be
deiminated in alligator plasma and plasma EVs and was
identified as a PFAM protein domain in both. It clears active
proteases from tissue fluids and forms part of innate immunity
(146). A range of protease inhibitors and proteases were
furthermore identified in both plasma and plasma EVs including
plasma protease C1 inhibitor (in plasma and plasma EVs)
and protein Z-dependent protease inhibitor (in plasma) and
membrane-bound transcription factor site-1 protease (in
plasma). Alpha-2-M is conserved throughout phylogeny from
arthropods to mammals and closely related complement proteins
C3, C4, and C5, which are also thioester-containing proteins
(115, 147, 148). Crocodilian alpha-2-M is homologous to human
alpha 2-M or chicken ovomacroglobulin and has been assessed
in Cuban crocodile (Crocodylus rhombifer) (149), while its
structure has furthermore been assessed by electron microscopy
in Crocodylus siamensis (150). While structural changes of
alpha-2- and ovomacroglobulin have been assessed to some
extent (151), including the identification of three intramolecular
thiol ester bonds in crocodilian ovomacroglobulin, which
display differential stability against external perturbations (152),
structural or functional changes mediated via posttranslational
deimination have not been assessed. The deimination of
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alpha-2-M has recently been identified by our group in camelid
and birds (77, 80).

Serpin (serine proteinase inhibitor) PFAM and SMART
domains were identified as deiminated both in alligator plasma
and EVs, with specific targets identified being serpin peptidase
inhibitor. Such deimination may provide a novel insight
into utilizing serpin-based peptides as antimicrobials against
multidrug resistant pathogens (6, 7). Deimination of serpin
may also be important in the human rheumatoid arthritis
citrullinome, where deimination has previously been shown
to modulate protease activity, resulting in downstream effects
on serpin-regulated pathways (29). Furthermore, a range of
apolipoproteins was identified to be deiminated in alligator
whole plasma. Apolipoproteins have antimicrobial activity
against a range of pathogenic bacteria (153–156), including
in alligator, and have been tested for use against several
multidrug-resistant bacteria (6, 7). Various apolipoproteins have
recently been identified as deimination protein candidates by
our group in a range of taxa (56, 58, 77), including in pelagic
seabirds (80).

Hemoglobin, which was identified here as being deiminated
in alligator plasma, has, alongside crude leukocyte extract and
plasma, been found to have antioxidant and anti-inflammatory
activities in Chinese crocodile (Crocodylus siamensis) (131).
Furthermore, viral nucleoprotein was identified as a UniProt
keyword connected to deiminated proteins specific to EVs only,
which may be of relevance in the light of antiviral activity
of alligator serum against enveloped viruses, including human
immunodeficiency virus type 1 (HIV), West Nile virus (WNV),
and herpes simplex virus type 1 (HSV-1) (9). Interestingly, serine
incorporator 4 was identified as deiminated in alligator plasma
EVs only, and serine incorporator proteins have recently been
identified as novel host restriction factors implicated in HIV-
1 replication (157). This highlights a hitherto unrecognized
posttranslational control mechanism of various proteins involved
in antiviral responses.

The presence of deiminated histone H2A and H4 was
identified in alligator EVs only. This may be of some interest,
as extracellular histones H2A and H4 in crocodile blood have
indeed been identified to act as inhibitors of viral (HIV) infection
in vitro (94). While some studies in reptiles have assessed histone
deacetylation, methylation, and histone variants (158–160), as
well as linking histone methylation to anoxia survival in turtles
(161), studies on posttranslational deimination of histones is
lacking in non-avian reptiles. Histone H3 deimination has been
previously identified inked to inflammatory responses during
CNS regeneration in the chicken (Gallus gallus) (40) and in
hypoxic responses during CNS repair (41). Histone deimination
is also known to be involved in epigenetic regulation involved in
cancer (17, 20). Interestingly, a similar EV export of deiminated
histones as observed in alligator plasma here was recently
identified in the naked mole rat, also an unusually long-lived and
cancer-resistant animal (79). Indeed, the use of non-mammalian
model organisms in epigenetic research has been highlighted,
including in reptiles (162), and roles for histone modifications,
including deimination identified here, may be of interest, as
crocodilians are also long lived, cancer and hypoxia resistant, and

furthermore show unusually resistant antipathogenic responses
(4, 163).

AHNAK2 is a nucleoprotein and was identified to be
deiminated in alligator plasma EVs only. AHNAK is a
multifaceted proteins with roles in cell architecture and
migration, blood–brain barrier formation, regulation of cardiac
calcium channels, and repair of muscle membranes (164).
Furthermore, roles in cancer are implicated, and AHNAK has
been shown to facilitate EV release in mammary carcinoma cells
(165), therefore playing critical roles in EV communication in the
tumor environment. AHNAK has been identified as a biomarker
in several, including metastatic, cancers (166–169) and linked to
drug resistance in cancer in association with viral infection (170).
AHNAK has been is also related to stress-induced secretion of
FGF1—a growth factor regulating carcinogenesis, angiogenesis,
and inflammation (171) and to inherited peripheral neuropathy
(172). AHNAK was previously identified to be deiminated
in aggressive glioblastoma cells by our group (27, 61). The
deimination of AHNAK identified here specifically in alligator
plasma EVs may play some roles in antipathogenic resistance
but will remain to be further investigated, also in relation to
human pathologies.

Protein adrenomedullin binding protein-1 (AMBP) was
identified as deiminated in whole alligator plasma only. AMBP
is a plasma protein that binds adrenomedullin and acts
as an important modulator in the biphasic septic response,
including during the progression of polymicrobial sepsis (173,
174). Insights into posttranslational regulation of AMBP via
deimination may therefore be of importance for the management
of sepsis and is of great interest in the light of the unusual
antimicrobial properties of alligator plasma.

Various Ig proteins and Ig superfamily members were
identified here to be deiminated in alligator plasma and
plasma EVs, confirming that Igs can be exported via EVs.
Ig proteins identified common in whole plasma and plasma
EVs were IgGFc-binding protein-like, Ig lambda light chain
variable region, Ig epsilon chain constant region, and Ig-like
domain-containing protein, while Ig heavy chain variable region
was identified as deiminated only in whole plasma. Several
studies have assessed Igs in crocodilians including IgH subclass-
encoding genes and IgM subclass switching (175), IgA evolution
(176), and analysis of Ig light (L) chains, revealing a highly
diverse IgL gene repertoire (3). Posttranslational modifications
and such contribution to Ig diversity remains though to
be studied. We have previously confirmed posttranslational
deimination if Igs in several taxa, including shark, camelid,
and birds (76, 77, 80), and furthermore reported EV-mediated
transport of Igs in shark and camelid (76, 77). Igs play
key roles in adaptive immunity and have been extensively
studied in diverse taxa. Posttranslational deimination of Igs
and downstream roles in Ig function have though received
little attention, until recent studies in teleosts and cartilaginous
fish (56, 58), camelids (77) and cetaceans (75). In human
patients with rheumatoid arthritis (RA) and bronchiectasis, it
has been reported that the IgG Fc region is posttranslationally
deiminated (177). In the light of growing interest in elucidating
Ig diversity throughout the phylogenetic tree (178–183), our
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finding of deimination of crocodilian Igs in the current study
highlights a novel concept of diversification of Igs via such
posttranslational deimination.

T-lymphoma invasion and metastasis-inducing protein 1
(TIAM1) was here identified as deiminated in alligator plasma. It
is important in the regulation of cell membrane dynamics (184),
involved in the regulation of phagocytosis (185) and bacterial cell
invasion in the host (186). TIAM1 has also been shown to play
roles in neuronal responses to oxygen and glucose deprivation
(187) and has been linked to mitochondrial dysfunction in
diabetic retinopathy (188, 189) as well as to retinoblastoma
(190). TIAM1 promotes chemoresistance and tumor invasiveness
(191), and its expression levels are positively correlated to
with poor prognosis in solid cancers (192). It is associated
with histone methyltransferases in epigenetic regulation for
cancer progression (193). TIAM1-mediated networks are also
implicated in neuroblastoma, and therefore, strategies to regulate
TIAM1 have been highlighted (194). TIAM1-regulated pathways
have furthermore been highlighted as targets in autoimmunity
(195), including in islet β cells in health and diabetes (196,
197). While phosphorylation of TIAM1 has been studied in
relation to neurological disease (198), the posttranslational
deimination of TIAM1 identified here in alligator has not
been identified in any species so far to our knowledge. Such
deimination-mediated changesmay indicate regulatory pathways
of this protein with respect to hypoxia tolerance, cancer, and
autoimmune pathologies as well as host–pathogen interactions.
Furthermore, posttranslational deimination of TIAM may be of
some relevance in the context of utilizing TIAM pathways for the
generation of optogenetic tools (184).

Exostosin-like-1 (EXTL-1) was here deiminated in
whole alligator plasma only. It belongs to a family of
glycosyltransferases, involved in heparin sulfate and heparin
biosynthesis as well as acting as tumor suppressors (199, 200).
EXTL-1 has furthermore been found to have important functions
in regulation of tau uptake in relation to neurodegeneration
(201). The deimination of EXTL-1 identified here in whole
alligator plasma may therefore be of some relevance regarding
regulation of its function via such posttranslational change and
has not been described in any species so far to our knowledge.

Selenoprotein P (Sepp1) was identified to be deiminated
in whole alligator plasma only. It is a plasma glycoprotein,
secreted mainly from liver, as well as other tissues, and it
contains most of mammalian plasma selenium (202, 203). It
has antioxidant properties (202). Sepp1 has roles in homeostasis
and in the distribution of selenium (203). Sepp1 is believed
to have phylogenetically appeared in early metazoan species,
as terrestrial animals have fewer selenoproteins than marine
animals, and this may partly be reflected in different functions
(204). Selenoproteins have been studied in a range of non-
mammalian vertebrates including agnathans and birds (205), but
no studies in particular have been carried out in alligator. While
Sepp1 is known to be glycosylated, its deimination has not been
studied besides being recently identified in whales (75).

L-Lactate dehydrogenase was found deiminated in EVs
only, and lactate dehydrogenase has previously been identified
to be a hepatic biomarker in American alligator (206).

L-Lactate controls apoptosis and autophagy in tumor cells (207)
and plays important roles in the tumor microenvironment,
including under hypoxic conditions, and lactate dehydrogenase
metabolism has been identified as a target to overcome resistance
to immune therapy of tumors (208). L-Lactate dehydrogenase
has previously been identified by our group to be deiminated
in glioblastoma cells (27) and in plasma of naked mole rat
(79) and in minke whale (75), both long-lived and cancer-
resistant animals. Whether posttranslational deimination may
play roles in the regulation of lactate dehydrogenase metabolism,
and therefore affect pro- or anticancerous responses, remains to
be investigated.

Stanniocalcin-2 (STC2) was identified as deiminated in
alligator whole plasma and has not been identified as a
deimination candidate in other taxa studied so far. Stanniocalcin
is a secreted glycoprotein, originally studied in fish as hormone
regulator of serum calcium levels (209). It is expressed in a
wide range of tissues and regulates various biological processes
including lipid and glucose metabolism (210, 211), the growth
hormone-insulin-like growth factor axis (212), as well as cellular
calcium and phosphate homeostasis (213, 214). STC2 is related to
growth restriction (209) and organomegaly when overexpressed
at the genetic level (215). It is upregulated in response to
metabolic stresses, including hypoxia conditions (216), and forms
part of the unfolded protein response (217). STC2 is also a
tumor marker for several cancers as well as possibly involved in
metastasis (218, 219). Studies on STC2 have not been performed
in reptiles, while expression patterns have been assessed in avian
muscle and joint development (220). Roles for posttranslational
deimination of STC2 remain to be understood both in reptile
physiology as well as in relation to human pathologies.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was here identified as deiminated in alligator plasma EVs
only. GAPDH is important in glycolysis, where it has key
metabolic functions, while it also has pleiotropic non-metabolic
functions including in mitochondrial regulation in apoptosis,
in axonal transport, and in transcription activation (221–224).
Furthermore, a range of moonlighting functions has been
identified for GAPDH, including roles in iron metabolism
(225), while it is also associated to various pathologies (223).
In crocodilians, GAPDH has been studied in the muscle of
caiman (226). GAPDH has been shown to be regulated via
some posttranslational modifications (224, 227, 228) and was
recently identified as a deimination candidate by our group
in cancer (61), as well as in whales (75) and to form part of
deiminated protein EV cargo in naked mole rat plasma (79).
Deimination of GAPDH may contribute to its multifaceted
physiological functions, and the identification of its deimination
in several taxa with unusual metabolism and cancer resistance is
of considerable interest.

Desmoplakin was found deiminated in alligator plasma EVs
only in the current study. It is an important component
of desmosomal cell–cell junctions and also involved in the
coordination of cell migration as well as in maintaining integrity
of the cytoskeletal intermediate filament network (229). In the
Xenopus laevis embryo, it is required for morphogenesis and
for epidermal integrity (230). A range of allergies have been
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linked to mutations in desmoplakin, as well as metabolic wasting
(SAM) syndrome and severe dermatitis (231). Desmoplakin has
also roles in Carvajal syndrome, relating to hair abnormalities
and altered skin (232). It is furthermore related to heart
diseases, including cardiomyopathies (233), and found to interact
with desmin, which is related to cardiomyopathies (234, 235).
Other roles for desmosomal proteins relate to both tumor-
suppressive and tumor-promoting functions, which depends
on the type of cancer, and they can furthermore regulate cell
migration, differentiation, proliferation, and apoptosis, as well as
impacting sensitivity to treatment in different types of cancers
(236). Interestingly, desmoplakin has recently been identified in
deiminated form in camelid EVs (77), therefore indicating that
enrichment of deiminated desmoplakin in EVs is found across
taxa. As the functions of desmosomal proteins are not fully
understood in cancer or metastasis, the current identification of
deimination in alligator EVs here may be of considerable interest,
also due to important roles of EV-mediated communication in
the preparation of the metastatic niche. This may further current
understanding of the diverse functional ability of desmoplakin,
via such posttranslational modification.

Heat-shock protein mitochondrial was found to be
deiminated in alligator plasma EVs only. Heat-shock proteins
are phylogenetically conserved chaperone proteins involved
in protein folding, protein degradation, and the stabilization
of proteins against heat stress (237, 238). Heat-shock proteins
are involved in mitochondrial metabolic reprogramming and
therefore of importance in pro- and antioncogenic pathways
(239). Heat-shock proteins are also involved in inflammation,
can act as damage-associated molecular patterns (DAMPs)
(240), and have furthermore been identified to be deiminated
in human autoimmune disease (241). Previously, some heat-
shock proteins have been verified as deimination candidates by
our group in teleost fish, camelid, and cetaceans (56, 75, 77),
as well as in plasma EVs of naked mole rat (79). Finding
posttranslational deimination of heat-shock proteins throughout
phylogeny supports translational investigations between species
to further current understanding of their diverse physiological
and pathobiological functions.

In the current study, we report for the first time deimination
signatures of plasma and plasma-derived EVs of American
alligator. Posttranslational deimination of major key immune
and metabolic factors was identified and related to pathways
ECM-receptor interaction, ribosome, adipocytokine signaling,
biosynthesis of amino acids, and glycolysis/gluconeogenesis.
The reported findings highlights posttranslational deimination
as an important factor in protein moonlighting, including via
EV-mediated transport. Our findings furthermore contribute
to a growing body of research investigating posttranslational
regulation of antipathogenic and anticancerous, as well as
metabolic and inflammatory pathways via posttranslational
deimination and EV-mediated transport of such modified
proteins. EV research in comparative animal models is an
understudied but recently growing field, and this is, to our
knowledge, the first characterization of EVs and associated
deiminated protein cargo in a reptile. As PADs have been
identified as a major player in the regulation of EV release

(59–61) including in host–pathogen interactions (62, 82), such
PAD-mediated contributions to cell communication remain to
be further investigated both in response to physiological and
pathophysiological changes, as well as in zoonotic diseases.

CONCLUSION

This is the first study to assess protein deimination profiles in
plasma and EVs of a non-avian reptile, using A. mississippiensis
as a model organism. KEGG pathways identified to be
specific to deiminated proteins in whole plasma related to
adipocytokine signaling, while KEGG pathways of deiminated
proteins specific to EVs included ribosome, biosynthesis
of amino acids, and glycolysis/gluconeogenesis pathways,
as well as core histones. This highlights roles for EV-
mediated export of deiminated protein cargo functioning
in metabolism and gene regulation, also related to cancer.
The identification of posttranslational deimination and EV-
mediated communication in alligator plasma revealed here
contributes to current understanding of protein moonlighting
functions and EV-mediated communication in these ancient
reptiles, providing novel insight into their unusual immune
systems and physiological traits. Comparative studies in
long-lived animals with unusual immune and metabolic
functions, including cancer, antiviral and antibacterial
resistance, may be of translational value for furthering current
understanding of mechanisms underlying such pathogenic
pathways, including via the diversification of protein function by
posttranslational deimination.
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