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β-Glucans are a heterogeneous group of glucose polymers with a common structure

comprising a main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with

side chains with various branches and lengths. β-Glucans initiate immune responses

via immune cells, which become activated by the binding of the polymer to specific

receptors. However, β-glucans from different sources also differ in their structure,

conformation, physical properties, binding affinity to receptors, and thus biological

functions. The mechanisms behind this are not fully understood. This mini-review

provides a comprehensive and up-to-date commentary on the relationship between

β-glucans’ structure and function in relation to their use for immunomodulation.

Keywords: β-glucans, structure-function relationship, immunomodulation, molecular structure, molecular weight,

solubility

INTRODUCTION

β-Glucans are a group of naturally occurring polysaccharides which are widely distributed in
bacteria, fungi, algae, and cereals, in which they are part of the cell wall structure and have many
other biological activities (1). Structurally, β-glucans are long or short-chain polymers of β-(1,3) or
β-(1,4) linked glucose subunits which may be branched, with the side chains branching from the
six-position of the backbone (2, 3). For example, β-glucans of mushrooms have short β-(1,6)-linked
branches whereas those of yeast have β-(1,6)-side branches with additional β-(1,3) regions (4).
Supplementary Figure 1 summarizes different chemical structures of β-glucans (5). Furthermore,
β-glucans could also form secondary structures and the possibility of various structural forms
could lead to differences in the mechanisms behind the immunomodulating activities (6, 7). The
literature on immune responses to glucans can be quite confusing as what is observed for one
preparation of glucan is often inappropriately extrapolated to all glucans. When discussing the
immune-modulator functions of glucans, here we mostly considered β-1,3-glucan purified from
fungal cell walls.

The immunomodulatory properties of β-glucans have long been recognized (8). The activation
of the immune system through modulation by β-glucans is rather complex and depends on many
factors that have not yet been fully revealed. β-Glucan is a key pathogen-associated molecular
pattern (PAMP) that is detected upon fungal infection to trigger the host’s immune responses
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in both vertebrates and invertebrates (9). The induction of
cellular responses by β-glucans is a result of their specific
interaction with several pattern recognition receptors (PRRs),
such as Dectin-1, complement receptor 3 (CR3), selected
scavenger receptors, and lactosylceramide (LacCer). Receptor
binding triggers a signal transduction in monomorphonuclear
phagocytes (e.g., macrophages, monocytes, dendritic cells, and
natural killer cells) and neutrophils (10–12). The activity of
these β-glucan receptors seems to be highly dependent on the
cell types. Research demonstrated that neutrophil modulation
by β-glucan is predominantly CR3 dependent while Dectin-
1 is the most important β-glucan receptor on macrophages
(13–15). Upon β-glucan binding to the lectin site of the CR3
on phagocytes and NK cells, the receptor was activated to
enhance the cytotoxicity against iC3b-opsonized target cells,
including tumors (16, 17). Recognition of β-glucan by Dectin-
1 on macrophages activates the downstream signaling pathway.
As a consequence of these signaling activations, Dectin-1 triggers
phagocytosis, ROS generation, microbial killing, and cytokine
production (18, 19). Moreover, recent studies demonstrated
that pre-administration of β-glucans resulted in innate immune
memory, protecting the mice against re-infection with a
lethal Escherichia coli (20). Increased protection was related
to the function of “trained” monocytes (21). Innate immune
memory is defined as a heightened response to a secondary
infection that can be exerted toward both homologous and
heterologous microorganisms. For the underlying mechanisms,
epigenetic modifications and metabolic reprogramming do play
crucial roles (22–24). It is acknowledged that particulate β-
glucans may be the optimal preparation to induce innate
immune memory, whereas low molecular weight β-glucans (e.g.,
laminarin) do not favor a high response (25, 26). Figure 1

presents the different consequences of β-glucan recognition by
monomorphonuclear phagocytes.

Previous reports indicate that immunomodulatory effects of
glucans could be influenced by differences in their structural
characteristics such as branching frequency, solubility, molecular
weight, polymer charge, and conformation in solution (7, 28,
29). It is still unclear how structural differences of glucans
might affect their biological functions. This is partly due
to the use of β-glucan polymers with different structural
characteristics. Research studies on β-glucan have continued
to grow since the 1950s when studies on these biomolecules
began to be published. According to the Scopus Database
(see Supplementary Figure 2), as of 2019, 9,652 papers had
been related to immunological activities of β-glucan while <1
fifth of the papers included the term “structure” in the title
and/or abstract. Systematic studies providing structure-function
relationships for immunostimulation by β-glucans are generally
lacking. Different immunological effects have been described
and this might be related to the use of untreated, denatured,
and renatured β-(1,3)-D-glucans which all differ in their
structure. Thus, incorrect conclusions can be easily drawn when
comparing results obtained by using such diverse β-glucans.
In Table 1, the relationship between β-glucan structure and
observed immunomodulatory properties has been summarized.
This mini-review will try to summarize up-to-date information

on the structure-functional relationship of β-glucans in relation
to immunomodulation.

MOLECULAR WEIGHT

Some evidences suggest that the immunomodulating activities of
glucans are related to their molecular weight (MW), with higher
MW glucans having more effect on the immune system. This is
perhaps not so surprising as, in general, antigens with a higher
MW are more immunogenic. However, maybe glucans with a
high MW have a more stabilized structure and can be recognized
directly by specific receptors on the surface of immune cells (43).
Another influencing factor is the retention time in the intestinal
system, where glucans are degraded and metabolized slowly.
Differences in uptake from the intestinal lumen are dependent
on their MW (44).

β-Glucans with a low MW and a short side chain (<5,000–
10,000 MW) are commonly regarded as inactive (45). Besides,
Brown and Gordon (44) demonstrated that immune cells
can be directly activated by β-glucans with a high MW
(such as zymosan), stimulating their phagocytic, cytotoxic, and
antimicrobial activities, while low MW β-glucans need cytokines
to modulate the immune response. The biological activities of
a β-(1,3)-glucan isolated from Grifola frandosa changed with
its MW, with the highest MW glucan always showing the
most potent immunomodulatory effect (46). The same can
also be applied to polysaccharide-K (Krestin, PSK,), a protein-
bound polysaccharide obtained from basidiomycetes showing
the strongest immunestimulating activities for PSK with the
highest MW (>200 KDa) (47). However, controversial data
on immunomodulating capacities of high molecular weight
β-glucans vs. low molecular weight β-glucans still exist. For
example, lentinan and schizophyllan, both pure β-(1,3)-glucans
extracted from Lentinus edodes and Schizophyllum commune,
respectively, exhibit the same antitumor activity against a murine
cancer cell (Sarcoma 180) regardless of the use of a high or low
MW form (48). Lei et al. (49), reported that a yeast β-glucan
with lowMWwas better as an antioxidant and immunostimulant
compared to the high MW form.

MOLECULAR STRUCTURE

Backbone
In vitro, the murine Dectin-1 binding capacity of glucans in
relation to their structural features was investigated by Adams
et al. (50). It was demonstrated that the β-(1,3)-D-glucopyranosyl
backbone of the glucans is essential for Dectin-1 recognition.
Dectin-1 cannot recognize non-β-linked glucans (e.g., mannan or
pullulan) and glucans isolated from plants (e.g., oats, barley, and
wheat) who have a backbone of linear D-glucopyranosyl residues
with a mixture of β-(1,3) and β-(1,4) linkages (51). Also, Dectin-
1 did not interact with linear β-(1,3)-D-glucan oligosaccharides
shorter than seven glucose subunits and β-1,3-glucans without
any side chains (branches). Summarized, the minimal glucan
subunit structure for Dectin-1 activation is a β-(1,3)-D-glucan
oligosaccharide containing a backbone with at least seven glucose

Frontiers in Immunology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 658

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Han et al. Glucan Structure Matters

FIGURE 1 | Model presenting the different consequences of β-glucan recognition by monomorphonuclear phagocytes in the context of antitumoral activities, fungal

infection recognition, or the creation of innate immune memory. DCs, dendritic cells; M2, alternatively activated macrophages; TAM, tumor-associated macrophages;

M1, classically activated macrophages. Reproduced from Camilli et al. (27) with permission and under the terms of the Creative Commons Attribution License (https://

creativecommons.org/licenses/by/4.0/).

subunits and a single (1,6)-β-linked side-chain branch at the
non-reducing end (50).

Sidechain
The side chain length and branching frequency are also crucial
for the immunomodulating ability of β-glucans (45). A previous
study showed that glucans with only one single glucose molecule
in the side chain had a lower macrophage activating ability
than glucans extracted from the same yeast but with more
glucose in the side chain (52). It has been reported that β-
glucans with a branching ratio between 0.2 (1:5 branching)-
−0.33 (1:3 branching) are most potent immunomodulators
(9, 53). However, exceptions do exist as the binding affinity
for CR3 between schizophyllan and scleroglucan differs greatly
although they have a similar branching frequency. Also, when
comparing the binding affinity of laminarin (1:10 branching) and
schizophyllan (1:3 branching) for CR3, an insignificant difference
was observed (21µM vs. 11µM) (1). Moreover, a branched β-
glucan named pachyman, obtained from Poria cocos, has no anti-
tumor activity, while debranched pachyman exhibits significant

anti-tumor activity (54). A possible explanation might be that the
glucans with a higher degree of branching could stereochemically
interfere with each other, leading to less binding by specific
receptors (15). The discrepancy of these results remains to
be clarified.

Conformation
Glucans can also form secondary structures, and this depends
on the conformation of sugar residues, MW, and the inter-
and intra-chain hydrogen-bonding (6). β-glucans exist in
three conformations: single helix, triple helix and random
coil. Whether a single helix or triple-helix β-(1-3)-D-glucan
conformation has the highest biological activity is still an
unresolved issue. The literature data appear inconsistent and
are often contradictory. However, a single helix conformation
is usually less stable than the triple helix conformation. In
vivo, β-1,3-glucan assumes a triple-helical structure in which
one β-1,3-glucan chain forms inter-strand hydrogen bonds with
two other strands perpendicular to the axis of the triple helix.
Thus, the triple helix conformation is the main structure in
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TABLE 1 | Relationship between β-glucan structure and observed immunomodulatory properties.

Source Structure MW/DB/Conformation Solubility Animal/Cell type Immunostimulatory Activity References

Aureobasidium pullulans (1-3)-β-D-Glucan backbone with

(1-6)-β-linked side chains

– Water-soluble Rats/ Peyer’s patch (PP) cells ↑̄ IL-5, IL-6, and IgA production,

reduction in blood hemoglobin and

hematocrit concentrations in rats

Tanioka et al. (30)

Agaricus bisporus,

Agaricus brasiliensis

(1-6)-β-D-Glucan 2.9 × 104 g/mol/ 4.5 ×

104 g/mol

Insoluble Human THP-1 macrophages ↑̄ Gene expression IL-1β, TNF-α, and

proinflammatory control

Smiderle et al. (31)

Antrodia camphorate (1-3)-β-D-dextran main chain

having (1-6)-β-dextran side

branches

10–103 kDa/ Helical

structure

Water-soluble Human leukemic U937

cells/Sarcoma 180-bearing

mice

↓̄ proliferation of cancer cells; NK activity Liu et al. (32)

Pleurotus ostreatus (1-3)-β-D-glucan, heteroglucans 2200–2900 kDa/ 0.25 Soluble/

Insoluble

Lymphocyte ↑̄ proliferation of lymphocyte Synytsya et al. (33)

Chemically synthetized Oligo-(1-3)-β-D-glucan-mannose 0.83-0.99 kDa/ Not helical

structures

– BALB/c mice ↑̄ influx MO into the peritoneal cavity,

phagocytic activity of peritoneal MO; ↓̄ %

of lymphocytes, intra-peritoneal

Descroix et al. (34)

Dictyophora indusiata (1-3)-β-D-Glucan backbone with

(1-6)- β-linked side chains

480 kDa/ Triple-helix Water-soluble Kunming (KM) mice

inoculated with S180 cells

↑̄ Thymus and spleen indexes; ↑̄ serum

IL-2, IL-6, and TNF-α

Deng et al. (35)

Flammulina velutipes (1-3)-β-D-glucan 200 kDa/ Single helix Sarcoma 180 tumor cell ↑̄ expression of cytokines Leung et al. (36)

Sclerotium rolfsii (1-3)-β-D-Glucan substituted

with single (1-6)-d-Glcp residues

1100 kDa/ 0.33/ Triple

helix

– Human monocytes ↑̄ TNF-α in monocytes Falch et al. (37)

Schizophyllum commune (1-3)-β-D-glucan main chain with

(1-6)-β-D-glucopyrano branch at

every three repeating

102-104 kDa/

0.33/Random coil

conformation in

dimethylsulfoxide

– Human peripheral blood

mononuclear cells

↑̄ Expression of cytokines; ↑̄ NK cells’

activity, etc

Yoneda et al. (38)

Lentinus edodes (1-3)-β-D-Glucan backbone with

(1-6)-β-linked side chains

1490 kDa/ Triple helix Insoluble BALB/c mice inoculated with

S-180 cells

↑̄ antitumor activity Zhang et al. (39)

Ganoderma lucidum (1-3)-β-D-Glucan (highly

branched)

8 kDa Water-soluble CHO cells RAW264.7 cells;

murine peritoneal MO;

↑̄ MAPKs- and Syk-dependent TNF-α

and IL-6; ↑̄ antitumor activity

Guo et al. (40)

Poria cocos mycelia (1-3)-β-D-Glucan 26–268 kDa/ 0.39-0.96/

Single helix

Insoluble Sarcoma 180 tumor cell ↑̄ expression of cytokines Lin et al. (41)

Saccharomyces

cerevisiae

Liner-β-(1-3)-glucan 3.8 × 104 g/mol Water-insoluble,

DMSO-soluble

Macrophage-like RAW264.7

cells

↑̄ production of TNF-α and MCP-1 Zheng et al. (42)

MW, molecular weight; DB, degree of branching; IL, interleukin; IgA, immunoglobulin A; TNF-α, tumor necrosis factor α; MO, macrophage; NK cell, natural killer cell; MCP-1, monocyte chemoattractant protein-1; ↑̄ increase, ↓̄ decrease.
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the cell wall of most fungi and recognition of the triple-
helical β-1,3-glucan by an immune receptor is important
for immune signaling (1, 55). Glucans with a single helix
conformation showed a lower ability to suppress tumor growth
(37) than glucans with a triple helix conformation. On the
other hand, Saitô et al. (56), verified that β-(1–3)-D-glucans
with a single strand chain showed a higher bioactivity than
the β-glucans with a helix structure. The relationship between
conformation and immunomodulatory properties of β-glucans
suggest the existence of a biological system which can recognize
the different conformations in the host’s body. Hence, the
relationship between glucan conformation and bioactivity still
needs further study.

SOLUBILITY

The physical properties of β-glucan, such as solubility, can also
be impacted by molecular features, such as linkage pattern and
molecular weight (57). Both soluble and particulate glucans
have been reported to stimulate the immune response. For
example, human whole blood incubated with soluble glucan
isolated from yeast (Biotec Pharmacon ASA, Tromsø, Norway)
showed an increased production of tumor necrosis factor alpha
(TNF-α), Interleukin-6 (IL-6), the chemokine CXCL8 and the
monocyte tissues factor (TF) (58). To date, soluble glucans, for
their ease of delivery in vivo, have been widely used in clinical
applications, whereas particulate glucans may be more effective
in a local rather than systemic immunomodulatory effect (59).
The difference can be explained by the use of different receptors
by soluble and particulate β-glucans. Particulate β-glucans
directly stimulate immune cell activation through Dectin-1
pathways while soluble glucans require a complement and CR3-
dependent pathway activation for their antitumor activities (60).
Moreover, Goodridge et al. (25) demonstrated that Dectin-1,
in contrast to other PRRs, discriminates between soluble and
particulate β-glucans. Phagocytosis and cytokine production by
macrophages are only induced when Dectin-1 is bound to
particulate β-glucan through the formation of a “phagocytic
synapse” and the exclusion of regulatory phosphatases. This
process represents a unique mechanism to discriminate PAMPs
associated with a microbial surface.

PARTICLE SIZE

Particulate β-glucans can also be used as adjuvants for
chemotherapy as well as adjuvants in vaccines for their additional
effects on the immune system (61, 62). They could enhance
hematopoietic responses in animal models under chemotherapy,
by increasing interleukin-6 levels (63). Particulate β-glucans
isolated from yeast are hollow, porous 2–4µm spheres with
an outer shell capable of mediating uptake by phagocytic cells.
Therefore, the high payload of therapeutic agents, such as
DNA, siRNA, protein/ peptide, and small molecules could be
reduced by encapsulating these agents into the particles using
a core-polyplex and layer-by-layer synthetic strategies and be
applied to optimize the tumor microenvironment for cancer

immunotherapy (64). For example, an in situ layer-by-layer
syntheses of DNA-caged yeast β-glucan particles was shown to
not only effectively protect the caged DNA from degradation
but also facilitate the systemic delivery of the DNA content
to macrophages in vivo (65, 66). The particle size of glucan
matters and its generally known that nanoparticles with a
diameter 1–2µm are better absorbed by macrophages than
large-size particles (67). However, a recent study showed that
large (curdlan, up to 0.2mm diameter) β-glucan-stimulated
human dendritic cells (DCs) generate significantly more IL-
1β, IL-6, and IL-23 compared to those stimulated with the
smaller β-glucans (glucanmicroparticles; 1–5µmdiameter) (68).
Additional studies are needed to investigate how the β-glucan size
mediates the immune response.

CONCLUSIONS AND PERSPECTIVES

The structural and physical features of β-glucans determine
their way of acting on the immune system. So, while describing
the results of different experiments on the immunomodulatory
properties of glucans, one should ideally provide a thorough
description of the structural features of the glucans under
study. Information on solubility, particle size, molecular weight,
sidechain branching frequency and conformation should be
provided. Also, we need well-characterized (1,3)-β-glucan
polymers with varying structural characteristics when studying
the influence of carbohydrates on the biological activity of
glucans. Synthetic glucans could provide a unique opportunity to
investigate the immunomodulating activities of glucans (50, 69).
Also, a standardized commercial glucan with assured quality
control (such as for instance a commercial glucan extracted
from Saccharomyces cerevisiae) could be systematically used as
a positive control, to compare the immunomodulatory activities
with experimental glucans being tested. In addition, differences
in reactivity of β-glucans in individuals and between different
strains of test animals should also be taken into consideration
when comparing studies (70).

It should also be noted that the isolation method may
influence the characteristics of β-glucans and differences can be
expected when glucans are isolated from the same sources (71).
The most appropriate isolation method, dependent on the source
of the β-glucan and the extraction procedure, must not affect
the molecular integrity of the glucan and needs to guarantee
product purity and optimal yield (72). Furthermore, chemical
modification could be an effective way to enhance the biological
activities of glucans. Several methods have been applied to change
the physical properties of β-glucans (e.g., solubility) in order to
improve their functional properties via chemical and physical
cross-linking effects (such as carboxymethylation, sulfidation,
and oxidation) (73, 74).
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