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Innate and adaptive immune involvement in hemolysis, elevated liver enzymes and
low platelet (HELLP) syndrome is an understudied field, although it is of high clinical
importance. This syndrome implies a risk of serious morbidity and mortality to both
the mother and the fetus during pregnancy. It was proposed that HELLP syndrome
occurs in a circulatory inflammatory milieu, that might in turn participate in a complex
interplay between the secreted inflammatory immunomodulators and immune cell
surface receptors. Meanwhile, reported immune cell attenuation during HELLP may
consequently lead to a prolonged immunoactivation and tissue damage. In this regard,
learning more about the immune components of this syndrome should widen the
understanding of the HELLP pathophysiology and eventually enable development of
novel immune-based therapeutics. This review aims to summarize and discuss the
recent and previous findings of the innate and adaptive immune responses during
HELLP in order to update the current knowledge of the immune involvement in
HELLP pathogenesis.
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INTRODUCTION

The maternal immune system has an essential role in pregnancy maintenance and it is furthermore
in control of pregnancy development, progression and outcome (1). Pregnancy is a unique
physiological state which results in maternal immune tolerance of the developing semi-allogeneic
fetus and maternal immune activation in order to induce metabolic adaptation of the mother to
meet the increased nutrient demands of the fetus (2). Moreover, a mild systemic inflammatory
response is detected in normal pregnancy (3). Tightly controlled interactions between the immune,
endocrine, and metabolic system during pregnancy are necessary in order to establish proper
placentation, nurture and immune homeostasis (4, 5). Disbalance in these interactions is considered
to be a base of many pregnancy-associated disorders including Hemolysis, Elevated Liver enzymes,
Low Platelet (HELLP) syndrome.

Hemolysis, elevated liver enzymes, low platelet is a life-threatening, rapidly progressive
pregnancy-associated disorder that usually occurs in 1–6 women per 1000 pregnancies (6).
The clinical symptoms are non-specific and challenging for accurate and fast diagnosis. Two
major classification systems (established in the ‘80s) based on laboratory results are used to
categorize the patients. In the Tennessee classification, concentrations of lactate dehydrogenase
(LDH), aspartate- and alanine-aminotransferase (AST, ALT) and platelet counts are used to
assess the degree of hemolysis, liver damage and thrombocytopenia, respectively. With the
Mississippi Triple Class System further categorization of the disease is done based on the severity
of thrombocytopenia (7, 8). Although traditionally HELLP syndrome was considered to be
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a severe form of preeclampsia (a disorder characterized by
development of hypertension and proteinuria in pregnancy),
several research lines are counteracting to this notion mainly
because HELLP is associated with hypertension and/or
proteinuria only in 80% of the cases and shows different
cytokine activation and aggravated placental vascular lesions
(9–15). Furthermore, the etiopathogenesis of this syndrome is
complex and still not completely understood thus, additional
and more specific/sensitive laboratory criteria are needed for
up-to-date HELLP screening, diagnosis and treatment.

As mentioned, the HELLP syndrome can share some
pathophysiological traits with preeclampsia (16). The
development of preeclampsia is attributed by deficient spiral
artery remodeling and shallow trophoblast invasion. When spiral
arteries fail to remodel, either due to inefficient trophoblast
invasion and/or inadequate trophoblast induced endothelial cell
apoptosis (17), which is primed by immune cells (18), will lead to
placental ischemia. This, in turn, is accompanied by an increased
release of antiangiogenic factors and activated endothelium that
in turn will lead to development of hypertension and proteinuria.
In some cases, progress to multiorgan microvascular injury
and liver dysfunction then occurs (16, 19). In patients with the
HELLP syndrome, the fetus can also contribute to initiation
of the disease, through abnormal oxidation of fatty acids and
transfer of the subsequent metabolic intermediate into the
maternal circulation leading to liver and vascular malfunction
(20). Interestingly, these changes occur only when the fetus
has an inherited metabolic defect in mitochondrial fatty acid
oxidation, which is not the case for all HELLP pregnancies.
Moreover, HELLP syndrome is associated with leukocytosis
(21), and an excessive inflammatory response (22, 23) with
increased concentrations of proinflammatory and decreased
concentrations of anti-inflammatory cytokines (24, 25). The fact
that corticosteroid administration can halt the progression of
the disease (26), suggest that immune system might be involved
in the etiopathogenesis of HELLP. In the present review, we
aim to compare how the immune system operates during
uncomplicated pregnancies and in pregnancies complicated by
the HELLP syndrome as reported in the literature. Moreover,
we will discuss the detailed aspects of the innate and adaptive
immunity by which aberrant activation may predispose the
host to hematological and hepatic complications of pregnancy,
as seen in HELLP syndrome. In the end, we focus on the
currently available experimental models and the possibility for
immune-related HELLP research on them.

INNATE IMMUNE COMPONENT IN
HELLP

The innate immune system is the first line of defense against
pathogens and it is comprised of cellular and molecular
mechanisms that always act in a similar way against infection.
All cellular components of the innate immune system have the
ability to recognize microbial or damage-associated molecular
patterns (known as PAMPs and DAMPs) via pattern recognition
receptors (PRRs) or via specific proteins such as the complement

system (27). Knowing that in HELLP syndrome several organs
are affected and can serve as a source of DAMPs (28, 29), it is
interesting to know to what extent each of the innate immune
components are involved in its etiopathogenesis.

Neutrophils Are Mediators of Liver and
Endothelial Damage in HELLP
Neutrophils are short-lived polymorphonuclear leukocytes that
act as effector cells of the innate immunity via phagocytosis,
release of cytotoxic enzymes and neutrophil extracellular traps
(NETs) and recruitment of other effector cells (30). In addition,
neutrophils play a major role in tissue damage and repair (31) by
promotion of excessive inflammatory response.

Liver damage is one of the hallmark signs of HELLP syndrome,
however, it is still unclear why and how it occurs. The most
studied initiator for liver damage so far is the ischemic-
reperfusion injury. As a consequence of this, hepatocytes show
apoptotic and necrotic changes, just as reported in the HELLP
syndrome (32, 33). As a result of the injury, neutrophil
infiltration in the sinusoids and post-sinusoidal venules occurs
with concomitant extravasation in the liver parenchyma (34).
However, there is a limited evidence about the involvement of
neutrophils mediated liver damage in HELLP. In a study from
Halim et al. it was reported that liver tissue from HELLP patients
was infiltrated with neutrophils in comparison to controls and
liver tissue samples from acute fatty liver syndrome patients
(35). Another study reported that neutrophils-to-lymphocyte
ratio was higher in patients with HELLP syndrome majorly due
to increased neutrophils in peripheral blood samples (13). This
implicates that in HELLP patients, neutrophil counts are likely
increased in the liver and in the peripheral circulation. However,
another study reported that neutrophils isolated from peripheral
blood from HELLP patients did not show increased reactive
oxygen species (ROS) production compared to controls. On
the contrary, these neutrophils had diminished ROS production
(36), meaning that either these cells show aberrant functionality
or were completely exhausted during the course of HELLP.
In addition, incubation of neutrophils with sera from HELLP
patients show increased ROS production, suggesting that certain
factor or factors present in the serum can lead to an increased
neutrophil activation (36).

Endothelial activation occurs in HELLP and increased
active von Willebrand factor (vWF) levels can contribute to
thrombocytopenia in the HELLP syndrome (37). Hulstein et al.
hypothesized that the presence of placental debris in the
circulation may lead to this activation, which was later proven
by Shen et al. that trophoblast debris derived from preeclamptic
placentas induced endothelial cell activation (38). Moreover,
microparticles derived from placental tissue are able to efficiently
activate neutrophils in vitro to generate NETs (39). However,
it is not known whether neutrophils infiltration can also lead
to endothelial activation in HELLP. Recently, it was reported
that NETs can promote endothelial cell activation via IL-1a and
cathepsin G that in turn will lead to an increased thrombogenicity
(40), implying that neutrophils might mediate the prothrombotic
effect of endothelial activation as registered in HELLP patients.
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Monocytes and Macrophages in HELLP
Monocytes are short-lived leukocytes that elicit immune
responses via phagocytosis, antigen-presentation and cytokine
production (41, 42). When recruited to a certain tissue, they
are capable to differentiate into macrophages or dendritic cells.
Macrophages, as terminally differentiated monocytes, are able to
induce immune responses in the same way as the monocytes,
plus have an additional ability of self-renewal as observed in
Hofbauer cells in the placenta and Kupffer cells in the liver (43).
In uncomplicated pregnancies, monocyte counts are increased
toward the end of the pregnancy and they show functional
changes (44), such as increased production of ROS and decreased
phagocytic activity and cytokine production (45–47). As the
pregnancy progresses, the number of Hofbauer cells changes,
showing a peak at the second trimester and gradually declining
toward the third trimester (48).

It was reported that during HELLP syndrome the monocyte
population is decreased (49) and Hofbauer cells were significantly
increased in placentas from HELLP patients, detecting most
of the macrophages nearby the vascular area of the villus
stroma (50). These opposing findings between normal and
HELLP pregnancies suggest that monocytes and macrophages
are affected during HELLP syndrome. Moreover, monocytes have
the ability to ingest damaged erythrocytes, and via chemotactic
signaling they can get accumulated in the liver and be
transformed into macrophages responsible for iron turnover (51).
Knowing that erythrocyte destruction is increased in HELLP,
it would be interesting to know whether this contributes to
increased monocyte activation and macrophage overpopulation
in the liver. Interestingly, another study confirmed that liver
macrophages are responsible for liver damage in an experimental
model of HELLP obtained by low dose administration of
lipopolysaccharide (52). Treatment with selective inhibitor of
macrophages was indeed successful in omitting the symptoms in
this experimental model of HELLP (52).

Dendritic Cells in HELLP
As antigen-presenting cells, dendritic cells (DC) are part of the
innate immune system and are able to induce primary immune
responses or tolerance (53) by conveying the information toward
the adaptive immune system. The dendritic cells can be divided
into two subgroups; DC-1 or myeloid dendritic cells which are
the largest population in the peripheral blood system and DC-
2 cells which are lymphoid and can lead the differentiation
of T cells into Th2 cells (54, 55). In early pregnancy, the
number of DC-1 in peripheral circulation is low, but increases
as the pregnancy progresses (55), forming up to 70% of the
total circulating dendritic population (56). Moreover, a shift in
dendritic populations can be observed in the presence of different
types of cytokines such as IL-4 and TNF-alpha (55). Locally
in the placenta, DC are scattered throughout the placental bed
in relatively low numbers displaying low proliferative capacities
(57), indicating that in the placenta, mostly immature, thus
tolerogenic, DC are present. Although the role of DC in feto-
maternal tolerance is still unclear, several lines of research
propose that DC modulate the maternal immunity toward Th2

type responses in order to maintain the immune tolerance
(58, 59). Unfortunately, there are not many studies evaluating
the number or the functionality of DC in HELLP syndrome.
Scholz et al. reported an upregulation and downregulation
of certain DC markers in paraffin-embedded placental tissue
from HELLP patients (60), whereas these differences were not
observed in uncomplicated pregnancies and neither in pre-
eclamptic samples. Since, platelet count and functionality are
changed during HELLP syndrome (6, 61) and are also involved in
proper DC differentiation and activation (62, 63), it is important
to further evaluate to what extent DC play a role in the
immunomodulatory mechanisms of HELLP.

Complement System Involvement in
HELLP
The complement system as part of the innate immune system is
comprised of cell bound and free proteins that can interact in a
cascade of activation. Complement activation can occur via three
pathways depending on the trigger factors including; classical,
lectin and alternative pathway (64), resulting in inflammation,
cell death or facilitated phagocytosis with consequent clearance of
cell debris and pathogens (65). Most of the complement proteins
are produced by the hepatocytes (66), however, extrahepatic
production was detected as well (67, 68). This, in turn, might
provide necessary protection against infections in vulnerable
tissues. Moreover, the complement system interacts with the
coagulation system and can induce platelet activation via C3a and
C5a components (69).

Throughout the pregnancy, the complement system does
not only protect the organism against infections, but it also
orchestrates the optimal placental development (64). In the
last third of uncomplicated gestations, several complement
components and activation products show higher concentrations
in comparison to non-pregnant controls and increased
complement activation via the classical and lectin pathway
(70). Moreover, several complement components, among which
C1q, C3, and C4, are locally produced by cytotrophoblasts and
decidual cells (67, 71), promoting local defense mechanisms and
controlled trophoblast invasion of the placenta. Furthermore,
complement deficiencies can lead to aberrant placentation
and recurrent pregnancy loss (72, 73). Recently, several lines
of research attribute the HELLP syndrome as a complement-
amplifying condition (CAC) (74, 75), reinforcing the role of the
complement system in its pathogenesis.

Disturbances in the complement components and activity
were identified in HELLP patients, although that was not the
case in all studies. Screening of HELLP patients in several
studies, showed either increased activation of the classical
or alternative complement pathway or showed a deficiency
of proteins that regulate the complement system (76–79).
Moreover, the introduction of immunoglobulin therapy in a
limited number of patients with eculizumab, a humanized
monoclonal IgG antibody against the complement protein C5,
leads to alleviation of the hematological, hepatic and vascular
malfunctions that are present in HELLP syndrome (80, 81). On
the contrary, genetic mutations in the alternative complement
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pathway, although initially proposed as important in mediating
HELLP pathogenesis were detected only in a few patients with
HELLP (77, 82). Another study focusing on the complement
C3 component and regulatory protein complement factor H
in serum from HELLP patients and control subjects showed
no changes in the concentrations between the groups (83).
Even though the involvement of the complement system in
mediating HELLP syndrome is plausible, yet is not as crucial as
previously suspected.

Role of NK Cells in HELLP
Natural killer cells are a group of lymphocytes that have
either cytotoxic or cytokine producing properties (84). They get
activated based on ligand interaction with the surface activating
or inhibitor receptors (85). These receptors are of particular
importance in order to prevent the killing of healthy “self ” cell.
NK cells also produce a variety of chemokines and cytokines,
such as; INFg, TNFa, IL-10 and IL-8 (86, 87). In the human
endometrium and placental bed there is a special population
of uterine NK cells (uNK) that are able to produce cytokines,
but still are morphologically different than the ones present in
peripheral blood, e.g., pbNK (88). This is mainly because they
can secrete vascular endothelial growth factor C, placental growth
factor (PlGF), angiopoietin 2 (ANG2) and cytokines involved
in angiogenesis (89). They are abundant in the first trimester
of pregnancy and their number decreases from mid-gestation
onward (90). In spite of being part of the innate immune system
it was suggested that these cells might act as trained memory cells
(91). Besides, uNKs cannot kill.

So far it is known that dysregulation of either peripheral
or uterine NK cells is associated with several reproductive
conditions, including: infertility, recurrent pregnancy loss and
preeclampsia (89, 92). To the best of our knowledge, there are
no studies reporting or studying the effect of HELLP syndrome
on the number or functionality of pbNK or uNK cells. NK cells
may however emerge as important in the pathophysiology of
HELLP, because they can mediate cell apoptosis via secretion of
granzymes, and apoptosis is present in the histopathological data
from livers of HELLP patients. Furthermore, platelets interact
with NK cells, as known from recent oncological research, either
via presenting molecules or antigens such as MHC-1 that can be
recognized by the NK cells (93) or via platelet derived ectosomes
(94). Knowing that platelets can impair/reduce NK cell reactivity
either via ectosomes release and via TGF-b1 signaling, it appears
important to understand whether NK cell function is affected
when thrombocytes are depleted.

ADAPTIVE IMMUNE COMPONENT IN
HELLP

The adaptive immune system represents the most specialized
protection against pathogens and is also characterized by the
generation of memory immune cells. The immune response is
mediated via two types of responses: the cellular and the humoral
response. The cellular one is mediated by T cells, whereas the
humoral one is mediated via production of antibodies produced

by the B cells (95). Patients with HELLP syndrome have an
increased recurrence risk to develop HELLP syndrome in the
next pregnancy as well, although it reappeared in less than
6% of the subsequent pregnancies (96, 97). This implies that
the genetic implication of recurrence is subtle and might be
dependent on immune system disturbances. Below, we will
address what kind of incompetence of T and B cells are reported
in the HELLP syndrome.

T Cells in HELLP
T cells represent a large population of the adaptive immune
response and depending on their surface molecules and mode
of action, can be subdivided into cytotoxic T cells (CD8+)
and helper T cells (CD4+). CD8+ T cells directly attack target
cells and show immunosuppressive abilities by dampening the
production of antibodies by B cells (98). Taken into consideration
that CD8+ T cell proliferation increases by the end of pregnancy;
they might be involved in the maintenance of fetal tolerance
(99). The CD4+ T subset is known for its cytokine production
and subsequent activation of macrophages and B cells. Based
on their ability to produce different types of cytokines they can
be subdivided into four subgroups; including Th1, Th2, Th17,
and Treg cells (100). A delicate balance of Th1/Th2/Th17/Treg
is necessary for uncomplicated pregnancy (100).

The pivotal role of Treg cells in developing tolerance in
peripheral and transplantation tissues (101), suggested a role
for Treg in establishing pregnancy tolerance, a fact that was
first described in our laboratory (102). Thus, Treg are thought
to prevent pregnancy complications where immune tolerance
is affected such as in; infertility, miscarriage and preeclampsia
(103–105). Moreover, animal studies showed that Treg depletion
leads to an increased proinflammatory status in pregnancy
(106) that hindered implantation, altered uterine artery function
and increased fetal loss (102, 107). Knowing that most studies
including samples from patients (105, 108–110), but not all
(111, 112), report reduction in Treg cell expansion during
preeclampsia, it is interesting to know whether this is also
the case for the HELLP patients. In human studies, it was
reported that Treg cell counts and suppressive activity was
not affected in patients with HELLP syndrome (113, 114).
However, the memory T cell differentiation was altered (115),
proposing that the lower number of naïve Treg and reinforced
differentiation into memory Treg in HELLP patients might
preserve their immunosuppressive activity, however, this needs
further evaluation.

Animal studies so far propose a more important role for T
cells in HELLP pathogenesis. In an experimental HELLP model
obtained by chronic infusion of antiangiogenic factors, it was
shown that the overall concentration of CD4+ and CD8+ T
cells is increased, while Th17 and Treg concentrations were
comparable between the groups (116, 117). Later on, when
these animals were treated with Abatacept, an antibody that
blocks T cell activation, the biochemical parameters of HELLP
syndrome were improved (118). However, the factor(s) leading
to an increased T cell activation in HELLP, remains puzzling. It
is interesting to consider that Fas-Fasl system is upregulated in
HELLP syndrome (119–121) and one of its multiple roles besides
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promotion of apoptosis is also per se regulation of inflammatory
response via activation and proliferation of CD4+ and CD8+ T
cells (122, 123).

B Cells in HELLP
B cells are known to modulate the immune responses by
secretion of cytokines, autoantigen presentation and production
of antibodies. In short, B cell population can be subclassified
into B1, B2 and regulatory B (Breg) cells (124). Whereas B1
and B2 cell populations have the ability to produce polyreactive
and adaptive antibodies, respectively, Breg population possess
the ability to secrete IL-10 and IL-35 (125–128). However, a
detailed characterization of B cell populations and functionality
induced during pregnancy and pregnancy-associated disorders
is still limited. Studies in mice revealed that B cell populations
are dynamically changed in normal pregnancies by increasing
mature B cells in the bone marrow and the spleen, and
decreasing the numbers of pre/pro and immature B cells (125).
Moreover, the immunoglobulin levels of IgM, IgA, and IgG
in the peripheral circulation are also increased in murine
pregnancy in comparison to non-pregnant mice (129). Studies
in humans reported that absolute counts of B cell peripheral
compartment in the last trimester of pregnancy and in term
decidua are decreased in comparison to non-pregnant controls
(130, 131).

HELLP is not typically described as an autoimmune disorder,
however, it is highly prevalent in pregnant women with
autoimmune diseases such as acute phospholipid syndrome,
systemic lupus erythematosus and thrombotic thrombocytopenic
purpura (132–135). To what degree antibodies can play a role
in HELLP pathogenesis is still questionable. Previously, it was
reported that cytotoxic and antiplatelet antibodies occur in
the serum of HELLP patients (136). On the contrary, another
study reported that in HELLP patients there are no platelet
associated IgGs (137). Considering the wider spectrum of
autoantibodies that might be present in pregnancy-associated
disorders, Weitgasser et al. reported that 31% of the HELLP
patients have different types of autoantibodies (antinuclear
antibodies, anti-thyroid, etc.) in peripheral circulation in
comparison to only 10% in control subjects (138). In animal
studies, in an experimental model of HELLP syndrome obtained
by anti-angiogenic disbalance it was reported that there was
no difference in B cell counts in the circulation in comparison
to a control group (116). However, there is a possibility
of B cell subpopulations number variations and/or altered
activation. Our lab reported that B-1a cells contribute to the
production of autoantibodies, namely angiotensin II type 1
receptor autoantibodies AT1-AA (139), which were shown to
be present in HELLP patients (26, 140, 141). This served as a
background for the development of a novel experimental model
of HELLP. When purified IgGs (containing AT1-AA) from
HELLP patients and purified IgGs from control subjects were
introduced to pregnant rats during mid-gestation, resulted in
the development of the biochemical characteristics of HELLP
(140). This sheds a light that AT1-AA are involved in the
pathogenesis of HELLP, however to what extent and whether

there is an interplay with B and T cell dysregulation needs
further investigation.

CURRENT EXPERIMENTAL MODELS OF
HELLP

Animal models provide the distinctive opportunity to study
the immune-related mechanistic traits of HELLP syndrome.
Unfortunately, there is no uniform model so far that incorporates
all the pathophysiological traits of HELLP. Moreover, most of
the available ones were developed as models of preeclampsia
(140, 142–144) that in the end turned to have exaggerated
symptomatology, such as liver dysfunction and hematological
abnormalities which are regularly absent in preeclamptic
patients. This questions whether all models of preeclampsia in the
end can serve as preclinical models of HELLP. In addition, only
few have characterized the immunological traits in these models
(52, 116).

The preeclamptic models so far that were evaluated for
liver and hematological abnormalities (Table 1) include the
following mechanisms of action; systemic inflammation (52),
angiogenic disbalance (116), transfer of autoantibodies (140,
143), affected low oxygen sensing (144) and the combined
model of angiogenic disbalance and impaired nitric oxide
production (145). On the contrary, the model of reduced
uterine perfusion pressure (RUPP) which is regularly used
for preeclampsia research, does not show the biochemical
characteristics of HELLP (146). Thus far, only the initial
inflammation model of preeclampsia (147), was adjusted to
mirror HELLP characteristics (52). Late gestation administration
of 200 times higher LPS concentrations in rats resulted
in laboratory and histological abnormalities, as registered
in HELLP patients, including thrombocytopenia, hemolysis,
elevated liver enzymes, hepatocellular necrosis, sinusoidal fibrin
deposits and increased macrophage liver infiltration. Almost
all symptomatology, except fetal loss, was reversed when
the animals were pretreated with gadolinium III chloride
which serves as selective macrophage inhibitor, proposing
that indeed maternal immunological alterations can mediate
HELLP pathogenesis (52). Arguably, although all animal models
in one way or another depict the clinical characteristics of
HELLP, still it remains uncertain whether the entire sequence
of pathophysiological events is fully represented including the
immunological disturbances as observed in HELLP patients.

Treatment strategies for HELLP syndrome can also have
a detrimental effect on the immune system and can be easily
tested in vivo. However, this area is scarcely reported in
the literature to date. For instance, in a meta-analysis of
total of fifteen studies it was concluded that corticosteroids
significantly prevent the platelet consumption and erythrocyte
destruction (148) without tackling down the effect on the
immune cells. It is a similar situation with the eculizumab
treatment for HELLP syndrome. The study from Elabd
et al. (81) shows that platelets, white blood cells counts
and hepatological parameters are improved in HELLP
patients, but detailed analysis of the effect on immune cells
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TABLE 1 | Overview of the current experimental animal models of hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome.

Mechanism of action Strain Method HELLP traits Immune responses References

Inflammation SD rats GD 17 ↑AST, ALT and LDH Macrophage infiltration in (52)

Systemic i.v. administration
of 0.2 mg/kg LPS

↓platelets
Liver necrosis, fibrin
deposits

the liver

Angiogenic SD rats GD 12-19 ↑ALT, LDH ↑TNFa, IL-6, IL-17 (116)

disbalance i.p. chronic administration
of recombinant sFlt-1 and

↓platelets ↑ CD8+T cells in circulation
and liver

sEng via osmotic pumps ↑ CD4+ T cells in
circulation, liver and
placenta

↓ Treg/Th17 ratio in
circulation and liver

Autoantibodies SD rats GD 10 ↑ALT, LDH Plasma ↑TNFa (140)

transfer i.v. IgG (containing AT1-AA)
transfer

↓platelets
Liver necrosis

Limited lymphocyte
infiltration in the liver

Low oxygen sensing
disruption

C57Bl/6J mice GD 8
Adenoviral overexpression
of HIF-1a

↑AST, ALT, LDH
↓platelets
Fibrin deposits in the liver

Lymphocyte infiltration in
the liver

(144)

Angiogenic imbalance
and impaired NO
production

C57Bl/6J mice Adenoviral overexpression
of sFlt-1in non-pregnant
endothelial NOS −/− mice
These animals cannot
maintain pregnancy

↑AST, ALT
↓platelet
No changes in erythrocyte
counts
Liver necrosis and
apoptosis, fibrin deposits

Neutrophil infiltration in the
liver

(145)

SD = Sprague Dawley; GD = Gestational day; AST = aspartate aminotransferase; ALT = alanine aminotransferase; LDH = lactate dehydrogenase; sFlt-1 = soluble Fms-like
tyrosine kinase 1; sEng = soluble endoglin; AT1-AA = angiotensin II type 1 receptor autoantibodies; NO = nitric oxide; HIF = hypoxia inducible factor; i.v. = intravenous;
i.p. = intraperitoneal.

FIGURE 1 | Schematic representation of HELLP syndrome and the reported
alterations so far, of different immune cells and their possible contribution to
the hepatic and hematological injuries. Ne = neutrophils, Mn = monocytes,
Mc = macrophages, NK = natural killer cells, DC = dendritic cells.

is missing. Knowing that potential treatments for HELLP
syndrome are limited, identification of an appropriate one
that will consider the whole pathophysiological feature is of
major importance.

CONCLUDING REMARKS AND FUTURE
PROSPECTS

The maternal immune system plays a critical role in several
aspects of pregnancy, from defense against pathogens,
through establishment of a suitable immune milieu for embryo
implantation and placentation to specific tolerance of paternally
derived antigens. We are just beginning to understand to what
grade the immune system plays a role in the development of
HELLP. What we have summarized in this review is that isolated
reports cover all segments of the immune system as being
in one way or another involved in the pathogenesis and the
clinical course of HELLP (Figure 1). However, more conclusive
data are necessary in order to unravel which factor precedes
the other and what is the correct interplay that leads to the
development of HELLP. Most importantly, working in vitro,
ex vivo and in vivo models are necessary to tackle down the
maternal or fetal component(s) that initiate the cascade of events
leading to HELLP.

Taking into account that HELLP syndrome is a rare disorder
and that all of the studies face the same limitation, such as
having a small cohort studies, multicenter collaborations, a
large multicentric cohort study (“big data”) might overcome this
problem in future. Moreover, developing a specific translational
experimental model of HELLP that can provide extensive
inside into the immunomodulatory mechanisms underlining the
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syndrome is of vital importance. Proper identification of the
immune disturbances and strategies to target the same, can
ensure additional diagnostic and therapeutic perspectives for
the HELLP syndrome.
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