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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid
progenitor and precursor cells at different stages of differentiation, which play an
important role in tumor immunosuppression. Glioma is the most common and
deadliest primary malignant tumor of the brain, and ample evidence supports key
contributions of MDSCs to the immunosuppressive tumor microenvironment, which
is a key factor stimulating glioma progression. In this review, we summarize the
source and characterization of MDSCs, discuss their immunosuppressive functions, and
current approaches that target MDSCs for tumor control. Overall, the review provides
insights into the roles of MDSC immunosuppression in the glioma microenvironment
and suggests that MDSC control is a powerful cellular therapeutic target for currently
incurable glioma tumors.
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INTRODUCTION

Glioma is the most common primary malignant tumor of the brain, and is characterized by
high proliferation rates, and migration and invasion abilities. Comprehensive treatment includes
surgical resection combined with radiotherapy and chemotherapy; however, such approaches
are generally ineffective. The median survival time of patients with the most malignant glioma
is approximately 1–2 years despite aggressive therapy, including surgery, radiotherapy and
chemotherapy (1). Hence, development of more effective treatments is urgently required. Recently,
immunotherapeutic approaches have been developed for cancer therapy, with exciting progress for
some cancers; however, there are specific challenges for glioma immunotherapy (2). Many factors
may contribute to these difficulties, including the blood-brain barrier (BBB), antigenic and genetic
heterogeneity, and the tumor microenvironment (TME).

THE IMMUNE MICROENVIRONMENT IN GLIOMA

The TME is the dynamic milieu of a tumor, including the extracellular matrix (ECM), signaling
molecules, stromal cells, and immune cells, which influence the growth and evolution of tumor
cells. The glioma microenvironment differs from other solid tumors, because gliomas are located
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in the brain, which is an immune privileged organ, protected
by the BBB, where cells of the peripheral immune system are
prevented from entering under normal conditions. However,
inflammation and tumor growth can disrupt the BBB (3,
4). The strong immunosuppressive TME of gliomas has led
them to be referred to in the literature as “cold tumors” (5).
Many studies have demonstrated that cytokines, chemokines,
and regulatory immune-suppressive cells (6, 7), such as TGF-
β, IL-10, prostaglandin E2, NKT cells, T/B regulatory cells
(T/Breg), tumor-associated macrophages/microglia (TAMs), and
myeloid-derived suppressor cells (MDSCs) (8), create a specific
immunosuppressive TME, which is important for anti-tumor
responses and glioma progression. All these proved that MDSCs
are powerful inhibitors of anti-tumor immune responses in
glioma, hence targeting MDSCs will be beneficial for patients
with these tumors. Here, we review the phenotypic characteristics
of MDSCs, as well as their mechanisms of development and
activation, and strategies for MDSC-depletion.

SOURCE AND CHARACTERIZATION
OF MDSCS

Myeloid-derived suppressor cells are a heterogeneous group
of myeloid progenitor and precursor cells, comprising
macrophages, granulocytes, and dendritic cells (DCs) at
different stages of differentiation. In healthy individuals,
immature myeloid cells (IMCs) quickly differentiate into
mature macrophages, granulocytes, or DCs (9); however, under
pathological conditions, such as in patients with cancer, chronic
inflammatory conditions prevent IMC differentiation into
mature myeloid cells, resulting in MDSC accumulation (10).
In cancer patients, MDSCs are defined as cells that co-express
the myeloid differentiation markers, CD11b and CD33, while
lacking markers of mature lymphoid and myeloid cells, such
as the MHC class II molecule, HLA-DR (11). There are three
main types of MDSCs: granulocytic or polymorphic nuclear
MDSCs (G/PMN-MDSCs), mononuclear MDSCs (M-MDSC),
and early-stage MDSCs (eMDSCs). In humans, M-MDSCs are
characterized as CD11b+CD14+CD33+HLA-DRlow/−CD15−,
PMN-MDSCs as CD11b+CD14−CD33+HLA-DRlow/−CD15+
(or CD66+), and eMDSCs as Lin− (i.e., CD3−, CD14−, CD15−,
CD19−, CD56−, HLA-DR−, and CD33+. In mouse, MDSCs
are defined as cells that co-express CD11b and Gr-1 (12), where
Gr-1 is a cell surface antigen, and can be divided into Ly6C and
Ly6G. Hence, M-MDSCs are characterized as CD11b+, Ly6C+,
Ly6G−, according to their relative expression levels of Ly6G and
Ly6C, whereas PMN-MDSCs are CD11b+, Ly6C−, Ly6G+, and
eMDSCs have yet to be defined.

In humans, M-MDSCs can be distinguished from monocytes
base on the expression of the MHC class II molecule HLA-
DR (13). The PMN-MDSCs and neutrophils can be separated
on the base of their low-density properties when using a
standard Ficoll gradient. Recently, Condamine T. et al. identified
that lectin-type oxidized low-density lipoprotein receptor-1
(LOX-1) as a potential marker of human PMN-MDSC (12).
Moreover, the M-MDSCs and PMN-MDSCs also display specific

cell-death-associated program. Haverkamp et al. demonstrated
that the anti-apoptotic molecules c-FLIP [cellular FLICE
(FADD-like IL-1β-converting enzyme)-inhibitory protein] is
required for monocytic MDSC development (14). Fiore et al.
reported that c-FLIP can activate many transcription of several
immunosuppression-related genes in part through nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB)
activation, and then plays an important role in re-programming
monocytes into MDSCs without affecting cell survival, but not
affects the conversion from neutrophils into PMN-MDSCs (15).

As we known, the basic functional characteristic of MDSCs
is suppressing immune cells, mainly T-cells and lesser B and
NK cells (16). Groth et al. reported that M-MDSCs showed a
higher immunosuppressive capacity compared to PMN-MDSC,
which directly suppress T cell function or induce the generation
of Treg cells by secreting TGF-β and IL-10 (17). Trovato et al.
showed that M-MDSCs are the most potent myeloid subset
to halt T cell proliferation in patients with pancreatic ductal
carcinoma (18). Moreover, plasticity and function of MDSCs are
strictly regulated by the activation of specific molecular pathways
(13), preferentially driven by signal transducer and activator of
transcription 3 (STAT3), and CCAAT/enhancer binding proteinβ

(C/EBPβ). Upregulation of STAT3 is a hallmark of MDSCs,
which plays a central role in regulating MDSC expansion and
tolerogenicity (19). Upregulation of C/EBP-β is also associated
with the expansion of MDSCs populations (19). Furthermore,
C/EBP-β controls the controls the immunosuppressive activity of
MDSC through regulating the expression of arginase (ARG1) and
inducible nitric oxide synthase (iNOS) (20, 21).

MYELOID-DERIVED SUPPRESSOR
CELLS IN GLIOMA

Glioma is a central nervous system (CNS) tumor, and the
immunosuppressive TME of glioma likely depends on depressed
T cell function, through accumulation of immunosuppressive
leukocytes, such as MDSCs and regulatory T-cells (Tregs).
MDSCs number is usually relatively larger in the spleen,
blood, and tumors, and correlates with the tumor stage and
chemotherapy response (22). In glioma patients, the intratumoral
density of MDSCs also increases during glioma progression and
correlates with patient survival (23). Gielen et al. reported that
MDSCs increased in blood samples from patients with glioma
compared with healthy donors. (24) and Raychaudhuri et al.
found that patients with glioblastoma multiforme (GBM) had
elevated levels of MDSCs in their peripheral blood (25), and
the majority of the MDSCs were neutrophilic CD15+ CD14−
(PMN-MDSC, 82%), followed by lineage-negative (eMDSCs,
15%), and monocytic (M-MDSC, 3%). Gielen et al. showed
that MDSCs were significantly increased among peripheral
blood mononuclear cells from patients with GBM, but only
slightly and non-significantly increased in patients with grade
II or III glioma, and MDSCs found in tumor material are
almost exclusively CD15-positive (24). Dubinski et al. also
revealed that the frequency of CD14highCD15pos M-MDSCs
and CD14lowCD15pos PMN-MDSCs was significantly higher
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in peripheral blood of GBM patients compared with healthy
donors (26). These studies indicate the expansion of PMN and
M-MDSC subtypes in patients with glioma, and M-MDSCs
were the most abundant MDSC subpopulation in the blood,
while PMN-MDSCs were dominant in glioma tissue. Further,
Raychaudhuri et al. found that MDSCs represented 5.4 ± 1.8%
of total cells in human GBM tumors; the majority were lineage
negative (CD14−CD15−) eMDSCs, followed by PMN-MDSC
(CD15+CD14−), and M-MDSC (CD15−CD14+) subtypes. In
murine GBM tumors, MDSCs comprised 8.06 ± 0.78% of
total cells, of which more were M-MDSC than G-MDSC (27).
Hence, it is established that the types of MDSCs differ in
tumor tissues compared with the circulation (blood), while
detection of the predominant MDSC type in glioma requires
further research, since the TME may impact MDSC migration
or differentiation.

MDSC EXPANSION AND RECRUITMENT

Myeloid-derived suppressor cells are present at relatively
low levels under normal conditions, but are recruited and
differentiate in various pathologic situations, such as during
autoimmune encephalitis, bacterial infections, and tumors.
Jennifer et al. reported that the healthy donor human CD14+
monocytes could acquire MDSC phenotypes (reduced CD14
but not CD11b expression) and immunosuppressive properties
(increased immunosuppressive interleukin-10, transforming
growth factor-β (TGF-β), and B7-H1 expression) when cultured
with human glioblastoma cell lines (28). Kumar et al. also
found that normal human monocytes could become M-MDSCs
when cultured in glioma-conditioned media under hypoxic
conditions (29).

A variety of inflammatory mediators can induce MDSC
expression and recruitment (Figure 1). Jiang et al. reported
that interleukin-6 (IL-6) can promote the amplification and
immunosuppressive function of breast cancer MDSCs in
vitro and in vivo, by inducing dysfunction of SOCS3 and
activation of signal transducer and transcription activator 3
(STAT3)-signaling (30). Gielen et al. reported that STAT3 also
regulates MDSC amplification through expression of S100A8/9
in gliomas (31). Tumor-derived granulocyte macrophage colony-
stimulating factor (GM-CSF) has an important role in the
expansion of MDSCs, both in vitro and in vivo (32–34).
Importantly, Marigo et al. found that GM-CSF and IL-6 allowed
rapid and efficient generation of MDSCs from precursors present
in mouse and human bone marrow (35). Moreover, various other
tumor-derived factors, such as prostaglandin-E2 (PGE2) (36), IL-
10 (37), VEGF (38), and TGF-β (39–41), have been suggested to
contribute to the induction and expansion of MDSCs (36), and
these factors are also derived from glioma cells. Albulescu et al.
showed that IL-6, IL-1β, TNF-α, IL-10, VEGF, FGF-2, IL-8, IL-
2, and GM-CSF were upregulated in gliomas (42). Further, many
studies have shown that PGE2 is overexpressed in glioma (43).
Together, these data suggest that glioma cells can stimulate the
expansion of MDSCs by secreting numerous well-studied factors
(IL-6, IL-10, VEGF, PGE-2, GM-CSF, and TGF-β 2).

Chemokines are a family of 8–14 kDa chemoattractant
cytokines secreted by cells, which have important roles in
regulating cells trafficking (44). Multiple chemokines are
involved in recruiting MDSCs in different cancer models
(45–47). Chemokine (C-C motif) ligand (CCL) 2 and its
receptors, chemokine (C-C motif) receptor (CCR) 2, 4,
and 5, have key roles in attraction of M-MDSCs (48, 49).
In particular, microenvironment-derived CCL-2 can recruit
MDSCs to cancer sites via CCL2-CCR2 interaction (50).
Furthermore, Vakilian et al. reviewed the CCL2/CCR2 signaling
pathway in glioma and found that it plays a dual role in
mediating early tumor immunosurveillance and sustaining
tumor growth and progression (51). IL-8 (CXCL8) is a
pro-inflammatory chemokine produced by many cell types,
including glioma, and can promote MDSC trafficking into
the tumor microenvironment through the IL-8/IL-8R axis (52,
53). CXC chemokine ligand 2 (CXCL2), also referred to as
macrophage inflammatory protein-2 (MIP-2), has a pivotal
role in recruiting MDSCs to tumor stroma (54). Kammerer
et al. found that CXCL2 was an immune response gene in
glioma; however, whether expression of this gene is altered
in tumor cells or cells in the TME was not determined
(55). Interestingly, Bruyère et al. found that inhibition of
CXCL2 expression in Hs683 glioma cells using siRNA markedly
impaired cell proliferation (56). Overall, these results suggest
that high levels of CXCL2 expression are important for
glioma progression; however, the mechanism regulating MDSC
recruitment requires clarification.

MDSC-INDUCED
IMMUNOSUPPRESSION IN GLIOMAS

Myeloid-derived suppressor cells indisputably induce
immunosuppression and promote tumor development.
Numerous mechanisms by which MDSCs inhibit immune
responses have been reported, inducing inhibition of the anti-
tumor activity of cytotoxic T cells, suppression of NK cell,
macrophage, and dendritic cell (DC) function, and induction of
Tregs and Bregs. In this section, we summarize the function of
MDSCs in glioma development in detail (Figure 1).

Inhibition of T Cell Function
T cells, particularly cytotoxic T cells, have important roles in
tumor-inhibition, and there is substantial evidence that MDSCs
can inhibit T cell function via multiple mechanisms. MDSCs
are well known to induce oxidative stress by secreting ROS and
nitrogen species (RNS). The main pathways of ROS production
are related to the NADPH oxidases (NOX) (57), and RNS are
produced by the activation of ARG1 or iNOS (NOS2) in different
MDSC subsets (58). These reactive species can inhibit T cell
growth through interfering with the expression of the CD3ζ chain
and induction of apoptosis (59, 60). Moreover, intratumoral RNS
production can inhibit the T cell migration by inducing the CCL2
chemokine nitration (61). MDSC can also deplete metabolites
and factors which are critical for T cell functions. MDSCs
deplete L-arginine which inhibits T cell growth and induce
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FIGURE 1 | MDSC recruitment and activation in glioma microenvironment. In the bone marrow, MDSCs originate from immature myeloid cells (IMC), and then
expand and migrate to the glioma site through the interaction between CCR and respective chemokines (CCL). In the tumor microenvironment, MDSCs play
immunosuppression role by inhibiting the anti-tumor activity of cytotoxic T cells, suppressing the NK, Macrophage and Dendritic cells (DCs) function, expansion, and
promoting Tregs and Bregs.

apoptosis from the microenvironment by enhancing the activity
of ARG1, inducible iNOS and increase the uptake mediated by
the CAT-2B transporter (62, 63). Tryptophan (Trp)-catabolizing
enzymes such as Indoleamine 2,3-dioxygenase (IDO) have been
shown to be involved in tumor immune escape. Upregulation
of IDO1 in MDSC and tumor cells leads to Trp depletion that
impairs cytotoxic T cell responses and survival (64–66). HIF1-α is
produced in response to hypoxia in the TME and can induce PD-
L1 expression on MDSCs. Further, blockade of PD-L1 can inhibit
MDSC-mediated T cell suppression, through modulating MDSC
cytokine production (67).

Inhibiting NK Cell Function
NK cells are a critical component of innate immunity and
can eradicate gliomas without T cell cooperation (68). Fortin

et al. found that the MDSCs can suppress the function of
NK cells via reactive oxygen species (ROS) production (69),
while Li et al. showed that membrane-bound TGF-β1 on
MDSCs can induce NK cell anergy (70). Further, Hoechst
et al. reported that MDSCs suppress NK cell cytotoxicity and
cytokine release through contact with the NK cell receptor,
NKp30 (71). Bruno et al. recently reviewed the interactions
of MDSCs and NK cells and determined that cross-talk
between these types of cells can impact tumor progression and
angiogenesis (72).

Inhibiting Macrophage and DC Function
Microglia/macrophages are among the most common cells
in brain tumors (73), and MDSCs can modulate functions of
macrophages (74). Sinha et al. proved that cross-talk between
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MDSCs and macrophages skews macrophages toward an M2
phenotype by cell-cell contact, and decreasethe production
of IL-12 of macrophage (75). The downregulation of IL-
12 is further exacerbated by the macrophages themselves,
because the production of IL-10 of macrophages is also
promoted by MDSCs (76). Interestingly, Pinton et al. found that
the bone marrow-derived macrophages (BMDM) exerted
a strong immunosuppression in center of the glioma,
but brain-resident microglial cells (MG) showed little
or no suppression (77). So, the relationship between the
MDSC and macrophages need further research in tumor
especially glioma. DCs are the most powerful antigen-
presenting cells and a DC vaccine has potential to improve
clinical outcomes of patients with glioma (78, 79). Hu
et al. proved that MDSCs can inhibit IL-12 production
and suppress T cell stimulation of DCs through IL-10
production (80). These results suggest that MDSCs can
modulate the functions of macrophages and DCs through
different mechanisms.

Treg Expansion and Differentiation
Tregs are suppressor T cells, which can inhibit the induction
and proliferation of cytokine-secreting effector T cells (81).
Induction of Treg activity is important for the evasion of
immunosurveillance by malignant gliomas and correlates with
glioma progression (82–84). Huang et al. found that MDSCs
can induce Treg generation, dependent on soluble factors,
such as IL-10, TGF-β, and IFN-γ (85, 86). In addition,
Hoechst et al. showed that MDCSs can catalyze the trans-
differentiation of Th17 cells into Tregs, dependent on MDSC-
derived TGF-β and retinoic acid (87). These data demonstrate
that MDSCs can regulate Treg expansion and induce Th17 cells
to differentiate into Tregs.

Promotion of Immunosuppressive
B Cells
Regulatory B cells (Bregs) are a population of
immunosuppressive cells that support immunological
tolerance (88). Recently, glioma-infiltrating B cells were
shown to have strong immune suppressor functions in
suppressing CD8+ T cells and inducing Tregs (89). Lee-
Chang et al. found that MDSCs produced numerous
microvesicles (MV) containing PD-L1. Bregs can take up
these MVs via receptor-mediated endocytosis, followed by
endocytic recycling toward the plasma membrane. These
results indicate that MDSCs can promote Breg-mediated
immunosuppressive functions, at least in part via transfer of
membrane-bound PD-L1.

Besides, MDSC can also directly support tumor (or cancer
stem cells) growth through impacting on angiogenesis, invasion
and metastasis, and promote cancer cell stemeness (74). MDSCs
can produce angiogenic factors such as VEGF and basic fibroblast
growth factor (bFGF) to promote tumor angiogenesis (90, 91).
Moreover, Li et al. even found that MDSCs directly incorporated
into tumor endothelium through acquiring endothelial cell (EC)
properties (91). Furthermore, MDSCs promote tumor invasion

and metastasis by two mechanisms: (i) increasing the production
of multiple matrix metalloproteinases (MMPs), which play
an important role in matrix degradation, and chemokines
to create a pre-metastatic environment, and (ii) fusing with
tumor cells to promote the metastatic process (92, 93). Several
studies showed that MDSCs promote cancer cell stemness
through inducing miRNA (94), production of IL-6 and NO
(95), inducing piRNA-823 expression and DNMT3B activation
(96) (Figure 1).

TARGETING MDSCs IN GLIOMA
THERAPY

Myeloid-derived suppressor cells are established as a central
immunosuppressive factor, which promotes tumor progression.
Therefore, control of the number and/or function of MDSCs
would be a powerful anti-tumor therapy. Below, we summarize
current targeting approaches for MDSC control (Figure 2).

Elimination of MDSCs
Elimination of MDSCs inhibits tumor progression by enhancing
antitumor responses, and there are many reports that
chemotherapy drugs can eliminate MDSCs. Suzuki et al.
first proved that the chemotherapeutic drug, gemcitabine, can
specifically reduce MDSCs, with no significant reductions in
other immune cells, such as T cells, B cells, macrophages, or NK
cells, in tumor-bearing animals (97). This immunomodulating
capacity of gemcitabine could be useful to treat glioma (98).
Otvos et al. showed that gemcitabine and 5-FU were selectively
cytotoxic to MDSCs, with 5-FU showing greater efficacy in
depleting MDSCs and inducing MDSC apoptosis in vivo and
in vitro (99). Ugel et al. proved that gemcitabine and 5-FU
mainly target M-MDSCs (100). Furthermore, low dose 5-FU can
selectively deplete MDSCs, resulting in prolonged survival in a
glioma mouse model (101). Recently, David et al. found that the
orally bioavailable 5-FU prodrug, capecitabine in combination
with bevacizumab can reduce the circulating levels of MDSC in
GBM patients (102). Many studies support a role for NF-related
apoptosis-induced ligand receptors (TRAIL-Rs) act as potential
targets for selective elimination of MDSCs (103). Dominguez
et al. proved that DS-8273a, an agonistic TRAIL-R2 (DR5)
antibody, could eliminate MDSCs without affecting lymphoid
or mature myeloid cells (104), and Nagane et al. found that
anti-DR5 mAb treatments significantly suppressed growth of
subcutaneous glioma xenografts until complete regression (105).
Murat et al. found that glioma patients with high expression
of S100A8 and S100A9 are related with short survival (106).
Recently, Qin et al. proved that S100A9 peptide-Fc fusion (pepti-
body) reagents can deplete blood and splenic MDSCs in mouse
tumor models (107, 108). Further, many researches proved
that anti IL-6 therapy showed potential benefits for treating
various human cancers including glioma (109, 110), Sumida
et al. found that an anti-IL-6 receptor monoclonal antibody
(mAb) could eliminate MDSCs and inhibit tumor growth by
enhancing T-cell responses, and that its therapeutic effect was
enhanced by combination with gemcitabine (111). Together,
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FIGURE 2 | Strategies for targeting MDSC. The MDSC modulation could be achieved by elimination of MDSCs (blue box), inhibition of MDSC migration/expansion
(orange box), inactivation of MDSCs (green box), and promoting MDSC differentiation (gray box). Examples for each therapeutic approach are shown.

these data suggest that MDSCs can be directly depleted using
various agents, including chemotherapy drugs, peptides, and
mAbs; however, the mechanisms underlying MDSC elimination
require further elucidation.

Inhibition of MDSC Migration
and Expansion
Inhibiting MDSC migration and expansion is another strategy
for tumor therapy. Glioma cells are known to secrete factors
important for MDSC migration and expansion. Zhu et al. proved
that systemic administration of neutralizing anti-CCL2 mAbs
can block recruitment and decrease the number of MDSCs
in the TME, providing significant survival benefits in mouse
GL261 glioma and human U87 glioma xenograft models (112).
Chen et al. reported that anti-VEGF antibody can effectively
decrease the recruitment of MDSCs to tumor tissue (113),
while anti-VEGF treatment has been proposed to enhance the
survival and quality of life in glioma patients (114, 115). Many
studies proved the protective effect of COX-2 inhibitors on
glioma (116, 117), and the use of non-steroidal anti-inflammatory
drugs was significantly associated with a lower risk of glioma
(118, 119). Obermajer et al. demonstrated that inhibition of
cyclooxygenase (COX-2) activity and PGE2 production can
reduce the accumulation of human MDSCs in the ovarian cancer
environment (45, 120). Sinha et al. proved that the COX-2

inhibitor, SC58236, delays primary tumor growth and reduces
MDSC accumulation in spontaneously metastatic BALB/c-
derived 4T1 mammary carcinoma mouse (121).The chemokine
receptor CXCR2 is a receptor of CXCL2 which was highly
expressed in PMN-MDSC, andplay an important role in MDSCs
recruitment (122). SX-682, a CXCR1/2 inhibitor, could block
tumor MDSC recruitment and enhance T cell activation and
anti-tumor immunity through various forms of immunotherapy
(123, 124).

Inactivation of MDSCs
Once MDSCs migrate into the TME, they suppress anti-tumor
responses via various mechanisms, hence impairment of MDSC
activity is another strategy to target these cells. Increased
production of NO and ROS facilitates MDSCs to suppress CD8+
T cell responses. The ROS scavenger, N-acetylcysteine (NAC), can
inhibit MDSC function (108), while the NO scavenger, carboxy-
PTIO (C-PTIO), can reduce the immunosuppressive activity
of MDSCs and restore impaired CTL function by inhibiting
the NO production (125). Activation of iNOS and ARG-1
also has key roles in MDSC activation. Phosphodiesterase-5
(PDE5) inhibitors includesildenafil, tadalafil, and vardenafil, they
are emerged as a promising approach to inhibit proliferation,
motility and invasion of certain cancer cells including glioma
(126). These inhibitors are reported to suppress both iNOS
and ARG-1 activities in MDSC, thereby decrease MDSC
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immunosuppressive functions (127, 128). Moreover, COX-2
is required for the production of PGE2 (129) and correlates
positively with ARG-1 expression in MDSCs (130); hence, COX-
2 inhibitors, such as celecoxib or acetylsalicylic acid, can suppress
gliomagenesis by MDSC activation (131, 132). Entinostat (MS-
275), a class I HDAC inhibitor in pre-clinical testing for
glioblastoma, can inhibit MDSC function and exhibit antitumor
effect in murine models of lung and renal cell carcinoma
(133, 134).

It has been reported that the glutaminolysis contributes
to MDSC function (135), this means glutamate metabolism
(maintaining optimal glutamine or glutamate levels) is critical
in MDSC-mediated immunosuppression phenomenon. As we
know, glutamate is one of the main excitatory neurotransmitters
in the central nervous system (CNS) (136). And in glioma
microenvironments, the glutamate concentration is 400 times
that of normal brain tissue (137). This high glutamate
concentration is benefit for glioma cell growth and affects MDSCs
function, so nhibition of glutamine metabolism is suggested as an
attractive and druggable therapeutic target especially in glioma
(138). The glutamine dehydrogenase inhibitor, epigallocatechin
gallate (EGCG), which has been proved to induce apoptosis
and inhibit proliferation of glioma cell (139), also could reverse
MDSC activity (140).

Promotion of MDSC Differentiation
Promotion of MDSC differentiation into mature myeloid cells
is a simple approach to inhibition of the immune-suppressive
functions of MDSCs. All-trans retinoic acid (ATRA), a natural
oxidative metabolite of vitamin A, can promote differentiation
of MDSCs into mature myeloid cells (141). Mirza et al. reported
that patients with cancer treated with ATRA exhibit improved
myeloid/lymphoid DC ratios and immune responses (142).
Further, Nefedova et al. found that the ATRA can active ERK1/2
MAPK signaling pathway, which increases the production of
glutathione and reduces ROS levels, thus promoting MDSC
differentiation (143). Recently, wang et al. proved that ATRA
can induce asymmetric division of GSCs from the U87MG cell
line, suggesting a therapeutic potential for glioma (144, 145).
Similar to ATRA, vitamin D3 can induce immature MDSCs
to be differentiated into dendritic and macrophages cells, and
then displays anti-proliferative effects in a wide variety of
cancer types including glioblastoma multiforme (GBM), (146–
148). Moreover, Pan et al. proved that stem-cell factor (SCF),
which is secreted by various cancers, including glioma (149), can

decrease MDSC differentiation, resulting in MDSC expansion,
while inhibiting SCF expression using siRNA can reduce MDSC
accumulation (150).

CONCLUSION AND FUTURE
PROSPECTS

To date, immunotherapeutic strategies have proven to be
effective against various tumors, and researchers are increasingly
focusing on immunotherapy for patients with glioma. Although
significant progress has been made, some challenges must be
overcome (7). There is substantial evidence that MDSCs are
important immunosuppressors (11), hence targeting MDSC
immune suppressive features has potential as an anti-tumor
therapy approach in glioma (151); however, the mechanisms
underlying MDSC activity in glioma require further elucidation.
In recent years, several strategies have been investigated, such
as elimination of MDSCs, inhibition of MDSC migration and
expansion, inactivation of MDSCs, and promotion of MDSC
differentiation. In summary, control of MDSCs is a powerful
cellular therapeutic target for patients with glioma; nevertheless,
further basic and clinical research is required in this field.
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