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Scleroderma (SSc) is an autoimmune connective tissue disease characterized by
immune dysregulation, vasculopathy, and fibrosis. We have previously demonstrated
that low Fli1 expression in SSc fibroblasts and endothelial cells plays an important role
in SSc pathogenesis. Cells of myeloid and lymphoid origin also express Fli1 and are
dysregulated in patients with SSc, playing key roles in disease pathogenesis. However,
the role for immune Fli1 in SSc is not yet clear. Our aim was to elucidate whether Fli1
contributes to the immune dysregulation seen in SSc. Comparison of the expression
of Fli1 in monocytes, B- and T-cell fractions of PBMCs isolated from SSc patients
and healthy controls (HC), showed an increase in Fli1 levels in monocytes. We used
siRNA transfected human myeloid cells and mouse peritoneal macrophages obtained
from Fli1flox/floxLysMCre+/+ mice, and found that markers of alternative macrophage
activation were increased with Fli1 deletion. Coculture of Fli1-deficient myeloid cells
and primary human or mouse fibroblasts resulted in a potent induction of collagen
type I, independent of TGFβ upregulation. We next analyzed global gene expression
profile in response to Fli1 downregulation, to gain further insight into the molecular
mechanisms of this process and to identify differentially expressed genes in myeloid
cells. Of relevance to SSc, the top most upregulated pathways were hallmark IFN-γ and
IFN-α response. Additionally, several genes previously linked to SSc pathogenesis and
fibrosis in general were also induced, including CCL2, CCL7, MMP12, and CXCL10.
ANKRD1, a profibrotic transcription co-regulator was the top upregulated gene in our
array. Our results show that Fli1-deficient myeloid cells share key features with cells
from SSc patients, with higher expression of profibrotic markers and activation of
interferon responsive genes, thus suggesting that dysregulation of Fli1 in myeloid cells
may contribute to SSc pathogenesis.
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INTRODUCTION

Scleroderma (SSc) is an autoimmune connective tissue disease characterized by immune
dysregulation, vasculopathy, and fibrosis. There is no cure for SSc and therapies are at best modestly
effective. Immune cell dysregulation occurs early in the course of the disease and it involves both the
innate and adaptive systems (1, 2). Despite significant advances in the field, the exact mechanism
by which immune dysregulation contributes to vasculopathy and fibrosis is currently unclear.
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Depending on the environment, macrophages (Mø)
can acquire distinct functional phenotypes: classical,
proinflammatory Mø (C-Mø), and alternative, pro-fibrotic
Mø (A-Mø), which are just extremes on a continuum of
activation states (3). In response to Th1 cytokines, including
IL-1 and IFNγ, Mø secrete proinflammatory cytokines IL-12,
IL-23, IL-1, and TNFα. In contrast, Th2 type cytokine (IL-4/13)
stimulation leads to differentiation into the profibrotic Mø
phenotype, with expression of the CD163 and CD204 markers
and secretion of the IL-10, TGFβ, and CCL18, followed by tissue
fibrosis (4). Flow cytometry analysis of SSc-PBMCs (peripheral
blood mononuclear cells) revealed a higher proportion of
monocytes (Mo), which showed expression of CD163 and
CD204, while these markers were not present in PBMCs from
healthy controls (HC) (5). CD163+/CD204 + cells were also
identified in SSc skin biopsies, not only in the perivascular
regions, but also between thickened collagen bundles (5).
When SSc Mo from ILD patients were stimulated in vitro
with LPS (lipopolysaccharide), which normally induces
differentiation into C-Mø, there was increased expression
of CD163 compared to control Mo (6). A comprehensive
meta-analysis of transcriptomic data sets from skin biopsies
of three large independent SSc patient populations identified
a conserved set of genes across the SSc patients, with one
subset containing genes characteristic of alternative Mø
activation (7).

Monocytes derived from SSc patients may contribute
to fibrogenesis via secretion of profibrotic factors, elevated
in the skin and serum of SSc patients, is expressed by
fibroblasts in SSc and plays an active role early in the
disease pathogenesis by recruiting Mo and fibrocytes into
tissues. Blockade of CCL2 prevented fibrosis in several
animal models of SSc, including sclerodermatous graft-
versus-host disease and bleomycin induced skin fibrosis (8,
9). Monocytes also secrete CCL2, which in turn may act as
a profibrotic stimulus on fibroblasts, leading to secretion
of TGFβ and extracellular matrix production (10). TGFβ

further enhances CCL2 production, leading to a complex
cascade of feedback regulation. CCL7/MCP-3 (monocyte
chemoattractant protein-3), a chemotactic protein closely
related to CCL2, is overexpressed by mononuclear cells and
fibroblasts in SSc. Apart from promoting the recruitment
of immune cells, CCL7 also has direct profibrotic effects on
fibroblasts, and its expression is stimulated by TGFβ (11).
Another characteristic of SSc Mo is enhanced migration.
SSc-interstitial lung disease Mo express higher levels of
CCR2 (receptor for CCL2) and lower levels of caveolin-1,
both proven to increase the Mo migratory capacity (12, 13).
Up-regulation of CCL2 and CCR2 was also reported on
macrophages in the skin of early diffuse SSc (14). While all
these studies strongly support a role for the mononuclear
phagocytic system in SSc, their pathogenetic mechanism
is far from clear.

Fli1, a member of the Ets family of transcription factors,
is expressed in endothelial cells, fibroblasts and immune
cells. Fli1 knockout mice die during embryogenesis due to
a defect in vessel maturation (15). Abnormal expression

of Fli1 is seen in autoimmune diseases, including systemic
lupus erythematosus and SSc, where it plays important roles
in pathogenesis (16, 17). Fli1 plays a key role in repressing
collagen genes in healthy tissues and its deficiency likely
contributes to the upregulated matrix production in SSc
(18). Recent studies also suggest that Fli1 is critical for
vessel maturation and stabilization. Mice with a conditional
knockout of Fli1 in endothelial cells displayed abnormal
skin vasculature, with greatly compromised vessel integrity
and markedly increased vessel permeability, similar to SSc
vasculopathy (19). Fli1 plays an important role in regulating
mononuclear phagocyte cell development. Monocytes, Mø
and dendritic cells populations were increased in the
Fli11CTA/1CTA mice (lacking the C-terminal regulatory
domain) compared with wild-type littermates, via de-
repression of the Flt3L promoter (20). Additionally,
Fli1 deficiency induced CXCL13 expression in murine
peritoneal macrophages (21). Given the important role
that it plays in SSc pathogenesis, our aim was to elucidate
whether Fli1 contributes to the immune dysregulation seen
in this disease.

MATERIALS AND METHODS

Cell Isolation and Culture
Informed consent was obtained from all subjects, and the
study was conducted in compliance with Institutional Review
Board guidelines. PBMCs from SSc and HC were isolated
by Ficoll Paque gradient centrifugation. CD14+ monocytes
were isolated via positive selection from fresh PBMCs using
EasyStep human monocyte isolation kit (Stem Cell Technologies,
Cambridge, MA catalog # 18058) according to manufacturer’s
instructions. B cells were then isolated from remaining PBMCs
using EasySep Human CD19 positive selection kit II (Stem Cell
Technologies, Cambridge, MA catalog # 17754), and T cells
through negative selection (CD14-/CD19- cells). Human dermal
fibroblasts were isolated from the forearm of HC and cultured
as previously described (22). Cells in passages 2–5 were used
for experiments. For experiments using mouse cells, dermal
fibroblasts were isolated from the back of the mice after shaving
and overnight collagenase digestion. Mature quiescent resident
mouse peritoneal macrophages were isolated according to a
previously published protocol (23). For coculture experiements,
THP1 cells, or mouse peritoneal macrophages were either directly
seeded on top of fibroblasts or inside cell inserts with 0.4 µm
membrane pore size (Corning, NY, product number 353493).

Generation of Myeloid-Cell Specific
Fli1-Knockout Mice
All experimental procedures were approved by the Boston
University Animal Care and Use Committee and conducted
in accordance with the guidelines of the National Institutes
of Health. The floxed Fli1 mice was generated using a Fli1
targeting vector purchased from the KOMP repository (UCDavis,
Sacramento,CA, Clone name: HTGR06010_A_1_C02, Figure 1).
129 agouti embryonic stem cell lines harboring an insertion with
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FIGURE 1 | Monocytes isolated from SSc patients have low levels of Fli1. (A) Monocytes, T and B lymphocytes were isolated from healthy controls (HC) and SSc
patients (diffuse-dcSSc or limited-lcSSc) and mRNA levels of Fli1 were analyzed using quantitative RT-PCR. One way ANOVA (GraphPad Prims 7) was used to
compare SSc to control. (B) Isolated peripheral blood mononuclear cells (PBMCs) from SSc and healthy controls (HC) were stained with CD14 for monocytes (red)
and Fli1 (green) antibodies, and DAPI was used to counterstain the nuclei. Representative images and quantification are shown (n = 3 each). **p < 0.01.

the KOMP vector were generated at the Transgenic Mouse Core
at Harvard Medical School (Boston, MA, United States) and used
for blastocyst injection to generate chimeric mice, which were
then selected for germline transmission. Heterozygous mice with
the targeted gene mutation were then crossed with transgenic
C57BL/6J mice expressing FLP1 recombinase (FlpE) in all
tissues, under the human β-actin promoter (transgenic B6.Cg-Tg
(ACTFlpE)9205Dym/J, available from The Jackson Laboratory,
United States, Stock number 005703). The resultant Fli1flox/flox

mice were further crossed to C57BL/6 mice for 10 generations.
For the generation of Fli1 conditional knockout mice,

mice expressing the Cre recombinase under the control of
the myeloid-specific Lyz2 promoter were purchased from the
Jackson Laboratory (B6.129P2-Lyz2TM1(cre)Ifo/J, Bar Harbor, ME,
United States) and crossed with Fli1flox/flox mice.

Six to eight-week-old homozygous mice were used for all
experiments. The genotyping primers suggested by Jackson
Laboratory were used for the Cre mice and for the Fli1flox/flox

mice the following primers were used: gactcaaaccagggaaagttgc
(3′ loxP site, forward), ttgggaaggtggaatctagcag (3′ loxP
site, reverse), acctttgctccacacatctga (5′ loxP site, forward),
accttggttacaggactgagtg (5′ loxP, reverse).

Isolation of Peritoneal Macrophages
From Mice
Mice were euthanized following an IACUC approved animal
protocol, then 5 cc germ-free PBS was flushed into the peritoneal

cavity and the peritoneal lavage fluid was collected. Cells were
centrifuged (350 g for 5 min at 4◦), and plated in RPMI media
for 2 h, then unattached cells were washed twice with sterile PBS.
Attached macrophages were then harvested using trypsin.

Immunofluorescence
Cells were washed twice with 1 × PBS and fixed in
acetone:methanol 1:1 for 15 min at room temperature, followed
by three washes in PBS. Cells were permeabilized with 0.25%
Triton X-100 for 15 min followed by three washes in PBS and
1 h blocking in 3% bovine serum albumin (BSA) in PBS at
room temperature. Cells were incubated with anti- Fli1 (mouse
anti-human, BD Bioscience #554266), CD14 (rabbit monoclonal,
Abcam, Cambridge, MA, United States) and Collagen type I
(Southern Biotech, #1310-01), and CD163 (mouse antihuman
#MCA1853, BioRad, hercules, CA, United States) primary
antibodies (1:100 in 1% BSA in PBS) at 4◦C overnight followed
by three washes in PBS. The bound antibody was detected using
anti-rabbit (Alexa Fluor 594, Invitrogen) and anti-mouse (Alexa
Fluor 488, Invitrogen) secondary antibodies (1:500 each) for
1 h. Coverslips were washed three times in PBS in the dark
and then mounted on glass slides using Vectashield mounting
medium with DAPI (Vector Laboratories Inc, Burlingame, CA,
United States). Slides were blinded, and ten random fields were
examined using an Olympus microscope attached to a digital
camera. Semi-quantitative evaluation of staining results for Fli1
expression in CD14 positive cells from SSc patients and controls
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PBMCs was independently assessed in a blind manner by two
experienced investigators. Staining was scored using 7 scores: 0,
0.5, 1, 1.5, 2, 2.5, and 3, according to the intensity, with results
expressed as the mean± standard deviation.

Inhibition of Protein Expression by Small
Interfering RNA (siRNA)
For the inhibition of Fli1 expression using siRNA, THP1 cells or
dermal fibroblasts were grown to 80% confluence and transiently
transfected with 50 nm Fli1 siRNA (Dharmacon, Fli1 ON-
TARGETplus SMARTpool – a mixture of 4 siRNAs provided as
a single reagent for enhanced potency and specificity), or the
corresponding concentration of scrambled non-silencing siRNA
(Scr, Dharmacon, On-TARGETplus Non-targeting Control Pool)
for 48 h. Cells were then serum starved overnight and
treated as indicated.

Quantitative RT-PCR
Total RNA was extracted using TRI Reagent and 1 µg was
converted to cDNA as previously described (22). Quantitative
real time RT–PCR was performed using SYBR Green mixture
(Applied Biosystems, Carlsbad, CA, United States) on a
StepOnePlus Real-Time PCR system using 1 µl of cDNA in
triplicate with beta actin as internal control. The sequences of the
primers used are provided in Supplementary Table S1.

Global Gene Expression Profile
THP1 cells were grown in RPMI media and Fli1 expression
was inhibited using siRNA as described above. Cells were
then converted to M0 macrophages 24 h later using 10 ng/ml
PMA (Phorbol 12-myristate 13-acetate) for 4 h, then media
changed and cells treated with 100 ng/ml M-CSF (macrophage
colony stimulating factor) for 48 h. Cells were lysed using
TRIzol and RNA was then extracted using Zymo Research
kit and integrity analyzed using Agilent Bioanalyzer. Purity
of the RNA samples was confirmed using a NanoDrop
spectrophotometer.100 ng of high quality RNA (RIN > 9.0)
with Biotin labeling was performed using the WT Plus reagent
kit (Affymetrix, Santa Clara, CA, United States) according
to the manufacturer’s protocol. The labeled, fragmented DNA
was hybridized to the Affymetrix Human Gene 2.0 ST
Array for 18 h in a GeneChip Hybridization oven 640
at 45◦C with rotation (60 rpm). The hybridized samples
were washed and stained using an Affymetrix fluidics station
450. Raw Affymetrix CEL files were normalized to produce
Entrez Gene-identifier-specific expression values using the
implementation of the Robust Multiarray Average (RMA)
in the affy Bioconductor package (version 1.36.1), using R
version 2.15.1 and the Brainarray hugene20sthsentrezgcdf R
package (version 23.0.0). Raw and processed microarray data
have been deposited in the Gene Expression Omnibus (GEO),
Series GSE144625.

Statistical Analysis
One-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparisons test was used for comparisons of

differences between three or more groups. Unpaired t-test was
used when only two groups were compared. All statistical
analyses were performed using GraphPad Prism 8 software
(La Jolla, CA, United States). A p value of <0.05 was
considered significant.

RESULTS

Monocytes Isolated From Scleroderma
Patients Have Low Levels of Fli1
To investigate whether Fli1 contributes to immune abnormalities
in SSc, we first evaluated the expression levels of Fli1 in
T cell, B cells and monocytes isolated from SSc patients
and healthy controls (HC). The mRNA levels of Fli1 were
decreased in monocytes isolated from both limited and
diffuse SSc patients, compared to HC (Figure 1A). The
levels of Fli1 were not significantly different in T or B
cells, except for B cells from limited SSc patients, which
had lower Fli1 compared to controls. The protein levels
of Fli1 were then investigated in patient’s monocytes by
immunofluorescence staining using CD14 and Fli1 specific
antibodies and PBMCs, confirming the downregulation in SSc
patients (Figure 1B).

Conditioned Media From Fli1 Deficient
Mø Has Profibrotic Effects on Fibroblasts
Scleroderma monocytes can contribute to fibrosis and fibroblast
activation via several mechanisms, including enhanced
differentiation into alternatively activated macrophages
and secretion of profibrotic molecules. We next treated
human dermal fibroblasts with conditioned media from Fli1
depleted THP1 cells to assess whether low levels of Fli1
contributes to their ability to enhance fibrosis. As seen in
Figure 2A, conditioned media from Mø with low Fli1 induced
periostin and type I collagen gene expression in human dermal
fibroblasts, supporting a profibrotic role for Fli1 deletion in Mø.
Interestingly, CCL2 was upregulated in fibroblasts treated with
Fli1 siRNA, suggesting that Fli1-deficient fibroblasts could recruit
monocytes in early disease stages (Figure 2B). In turn, a soluble
factor secreted by Fli1-deficient Mø may induce expression of
profibrotic genes in fibroblasts, thus potentially contributing
to SSc fibrosis.

Expression of the Alternative
Macrophage Activation Markers Is High
in Fli1 Deficient Cells
To assess whether low Fli1 seen in SSc monocytes skews them
toward differentiation into A-Mø, we next used Fli1-depleted
THP1 cells, and treated them with 10 ng/ml phorbol-12-
myristate-13-acetate (PMA) for 4 h to induce transdifferentiation
into Mø (24). Downregulation of Fli1 in these cells resulted in an
induction of the mRNA levels of CD163, MRC1, both linked to
A-Mø (Figure 3A).

While wildly used for the study of the myeloid cell
functions in vitro, THP1 cells are secondary, immortalized
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FIGURE 2 | (A) Conditioned media from Fli1 deficient Mø has profibrotic effects on fibroblasts. Confluent, serum starved human dermal fibroblast were treated with
conditioned media from scr and siFli1 treated THP1 cells, and after 6 h cell pellets were collected and mRNA levels of Collagen (COL1A1) and POSTN (periostin)
were analyzed via RT-PCR. (B) Downregulation of Fli1 in fibroblasts induces CCL2/MCP1 mRNA levels. Confluent, serum starved human dermal fibroblast were
treated with scr and siFli1 for 48 h then cell pellets were collected and mRNA levels of CCL2 were analyzed via RT-PCR. Mean ± SD.

cells, phenotypically, and functionally different from
primary Mo. To validate these findings, we asked whether
deletion of Fli1 in primary mouse Mø would skew them
toward an alternative activation phenotype and influence
development of fibrosis.

Targeted Ablation of the Fli1 Gene in
Mouse Myeloid Cells
Fli1 knockout mice die during embryogenesis due to a defect
in vessel maturation (15), precluding assessment of the function
of Fli1 in myeloid cells in these mice. To examine the
function of Fli1 in mouse myeloid cells, we generated mice
with Fli1 gene selectively ablated in cells of myeloid origin.
Fli1flox/flox mice were generated as described in section “Materials
and Methods,” and crossed with LysMCre transgenic mice
that express the Cre-recombinase under the transcriptional
control of the myeloid-specific Lyz2 promoter. Cre-mediated
recombination in the resultant Fli1flox/floxLysMCre+/+ mice
results in excision of exon 3 from the Fli1 gene (Figure 3B).
To confirm that excision of the exon 3 of Fli1 results in a
corresponding loss of Fli1 protein, we performed western blot
analysis on protein extracts from peritoneal Mø harvested from
the Fli1flox/floxLysMCre+/+. Figure 3B (right, bottom) shows
that Fli1 was significantly downregulated in the transgenic mice
compared to wild types.

Next, we compared the expression of A-Mø
markers in peritoneal Mø isolated from wild type and
Fli1flox/floxLysMCre+/+mice. Similar to results in THP1 cells, the
mRNA levels of CD163 and the mouse specific A-Mø marker
FIZZ1 were significantly induced in mice with conditional Fli1
deletion (Figure 3C).

Collectively, these results suggest that decreased expression
of Fli1 in SSc monocytes may directly contribute to
fibrogenesis via imparting cells a selective bias toward
alternative macrophage activation and secretion of soluble
profibrotic mediators.

Depletion of Fli1 in Myeloid Cells Does
Not Induce TGFβ Gene Expression
TGFβ is a central mediator of fibrosis and a key molecule
involved in SSc pathogenesis (25, 26). Secretion of TGFβ

by myeloid cells has been implicated in the induction of
fibrogenesis (27). As an initial step to test whether these
molecules mediate the profibrotic phenotype induced by Fli1
downregulation in myeloid cells, we measured the mRNA levels
after siRNA mediated depletion of Fli1 in THP1 cells and
in peritoneal Fli1flox/floxLysMCre+/+ macrophages compared
to wild type mice. No significant changes in the levels of
TGFβ were found (Figure 4A). TGFβ patway activation can
be a result of either increased TGFβ protein levels, enhanced
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FIGURE 3 | Expression of the A-Mø markers is high in Fli1 deficient cells. (A) Human THP1 cells were treated with Fli1 and scr siRNA and then 24 h later with 10 ng
PMA for 4 h, then mRNA extracted after total 48 h, and relative mRNA levels of CD163 and MRC1 were quantified by RT-PCR (n = 4). Mean ± SD. (B) Generation of
myeloid specific Fli1 knockout mice (Fli1flox/floxLysMCre+/+, Fli1 CKO). Schematic outline of the Fli1 KOMP targeting construct and Fli1 floxed allele. Neo: neomycin
resistance gene. Flippase: FLP recombinase to remove the Neo cassette. The structures of the mutant allele after in vivo Cre-mediated recombination in myeloid
cells lacks exon 3. Upper right panel shows relative mRNA levels of Fli1 in peritoneal macrophages isolated from wt and Fli1CKO mice, and bottom right panel
shows protein levels of Fli1 in wt and Fli1CKO. Two mice were pooled for protein levels in each group. Beta actin was used as control for loading. (C) Peritoneal
macrophages were collected from wt and Fli1 CKO mice and mRNA extracted and RT-PCR used to quantify levels of CD163, and FIZZ1. Individual mice used for
each sample. ****p < 0.0001.

activation of latent TGFβ, or enhanced receptor expression. To
further explore a potential contribution of the TGFβ pathway
in this process, we next assessed phosphorylation levels of its
main downstream target, Smad2. There was no induction in

P-Smad2 in fibroblasts cocultured with Fli1-depleted THP1 cells
(Figure 4B). Collectively, these results suggest that a TGFβ-
independent mechanism may be responsible for the fibrogenic
effects of low Fli1 in myeloid cells.
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FIGURE 4 | Fli1 downregulation in myeloid cells does not induce TGFβ pathway. (A) THP1 cells were transfected as described with scr and Fli1 siRNA and levels of
TGFβ isoforms 1, 2, and 3 were measured at the mRNA levels 48 h later using RT-PCR. n > 3 each, not statistically significant. (B) THP1 monocytes were
transfected with siRNA and 48 h later they were plated directly over confluent, serum starved human dermal fibroblasts. After 24 and 48 h, cells were washed and
cell layers collected and protein extracted. Levels of P-Smad2 (Ser465/467) and total Smad2/3 were assessed by Western Blot, with TGFβ as positive control.

Coculture of Myeloid Cells and
Fibroblasts Enhances the Profibrotic
Effects Seen With Low Fli1
Isolated cell cultures do not reflect the complexity of cell-cell
interaction in vivo, and direct contact of myeloid cells and
fibroblasts may be required to fully achieve the profibrotic
phenotype. To better assess paracrine and juxtacrine effects of
myeloid-fibroblast cell-cell signaling, we used an experimental
model of both non-contacting and direct contact co-culturing. To
study the paracrine effects of myeloid-fibroblast co-cultures, we
used transwell inserts that provided physical separation of the two
cell types while allowing free cytokine transport between them.
When cells were co-cultured in direct, physical contact with each
other, there was a potent induction of collagen (Figure 5A, right
panel). Similar, but less pronounced upregulation of collagen was
seen when the two cells types were not in direct contact with
each other (Figure 5A, left panel). In a separate experiment, we
assessed the expression of CD163 on THP1 cells with low Fli1

in coculture with fibroblasts, and confirmed at the protein levels
by immunofluorescent staining that this marker of alternative
macrophage activation is induced under these experimental
conditions as well (Figure 5B). Altogether, these results indicate
that direct cell-cell contact between activated macrophages and
fibroblasts may be required for the full fibrogenic effect of Fli1
depletion in myeloid cells.

Global Gene Expression Profile in
Fli1-siRNA Treated THP1 Cells Reveals
Upregulation of Pro-Inflammatory and
Migration-Related Genes
Identification of molecular pathways and genes that are
significantly associated with Fli1 downregulation might help
unravel the mechanisms of myeloid-induced fibrosis. We next
downregulated Fli1 expression via siRNA in PMA-treated THP1
monocytes (24), then performed microarray analysis using the
Affimetrix GeneChip human 2.0 ST gene array. The expression
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FIGURE 5 | (A) Effects on collagen deposition in indirect (inserts) and direct coculture of human dermal fibroblasts and siRNA-treated THP1 cells. THP1 monocytes
were transfected with siRNA and 48 h later they were plated either inside inserts or directly over confluent, serum starved fibroblasts. Cells were washed and
immunofluorescent staining using specific anti-Collagen type I antibodies was done on day 5. DAPI was used to counterstain the nuclei. Representative images
sown, n = 3 each. (B) Chamber slides were used for direct coculture experiments as described above and cells were stained with CD163 for A-Mø (red) and
Collagen type I (green) antibodies, and DAPI was used to counterstain the nuclei. Representative images are shown (n = 3 each).

of Fli1 was reduced approximately 3.7-fold in the samples treated
with siFli1 compared to the scrambled controls. A total of 778
genes were identified as significantly differentially expressed in
cells with low Fli1 (p < 0.005). The top twenty most up and
down-regulated genes (p > 0.001) are shown in Figure 6A.
Gene ontology analysis revealed multiple biological functions
that were significantly enriched with siRNA treatment. Notably,
several pathways related to activation of inflammatory programs
(hallmark IFN-γ & IFN-α response, and hallmark TNFα

signaling via NFKB), as well as pathways related to immune cell
migration, were among the top upregulated biological pathways
(Figure 6B). Amongst the alternative activation markers only
CD163 was significantly upregulated in the microarray analysis
(1.5 fold, p = 0.00073). Detailed heatmaps of the leading edge
genes of all gene sets with FDR q < 0.25 are available in
Supplementary Data Sheet S1.

Validation of the Differentially Expressed
Genes by Real-Time PCR
In order to assess the validity of the microarray results, we
used QRT-PCR to compare the expression of top genes of
interest that had significant expression changes in the microarray
analyses. The following genes were selected: ANKRD1, CCL2,
CCL7, CCL8, CXCL10, HMOX1, and MMP12. Results are
presented in Figure 7A. The top differentially expressed gene
in the microarray was ANKRD1, which was induced by 11-
fold in cells with low Fli1. This upregulation was confirmed
by quantitative RT-PCR analysis, and analysis of CT values
revealed that ANKRD1 is expressed at very low levels in primary
Mo, and not expressed in quiescent human dermal fibroblasts
(data not shown). Next, we used peritoneal macrophages
from Fli1flox/floxLysMCre+/+ mice and validated our microarray
results for the genes presented in Figure 7B. Of note, several
interferon response genes, including CCL7, CCL2, and CXCL10

were upregulated in these mice, similar to published results in
SSc patients. Our microarray data identified multiple Fli1 targets
in myeloid cells that had differential expression compared to
controls and that are relevant to SSc, thus potentially mediating
the altered phenotype of myeloid cells with low Fli1 expression
seen in our study.

DISCUSSION

We show here that monocytes from patients with systemic
sclerosis have decreased levels of the transcription factor Fli1, and
provide new evidence for an antifibrotic role for Fli1 in these cells.
SiRNA mediated downregulation of Fli1 in human myeloid cells,
and via Cre mediated targeted disruption in mouse myeloid cells
resulted in key changes in their phenotype, with acquisition of
alternative, profibrotic features and activation of key interferon
regulated genes, similar to what has been described in SSc
patients. This suggested that decreased levels of Fli1 in Mo/Mø
in SSc patients may contribute to fibrosis via alternative Mø
activation and secretion of pro-fibrotic and pro-inflammatory
cytokines, with paracrine activation of fibroblasts.

The mononuclear phagocytic system in SSc is central to
fibrogenesis, and may contribute to fibrosis via enhanced
Mo migration into injured tissues, differentiation of Mo into
fibrocytes or A-Mø, and secretion of various pro-fibrotic
mediators (28).

It is challenging to elucidate the diverse role of myeloid cells
in driving fibrosis, due to their vast plasticity and functional
diversity, all depending on a multitude of variables, including
tissue environment, injury specific co-signals, and particular
disease etiology. Alterations in Mø polarization may contribute to
SSc pathogenesis, with a higher proportion of CD163 and CD204
positive Mo reported in SSc blood and skin biopsies (5, 7, 29).
However, the mechanism that drives this phenotypic change is
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FIGURE 6 | Global gene expression profile in Fli1-siRNA treated myeloid cells. (A) The top twenty most up and down-regulated genes after Fli1 deletion in myeloid
cells (p > 0.001). (B) Heatmap of gene-expression of IFN-γ and monocyte migration pathways. Blue indicates repressed mRNA levels and red elevated levels.

still elusive. We found low levels of Fli1 in SSc monocytes and
increased expression of A-Mø markers in cells with low Fli1, both
in human and mice. Our observations thus identify Fli1 as one
of the factors that possibly orchestrates the changes described in
SSc myeloid cells.

While helpful to appreciate the heterogeneity and functions
of Mø, characterizing them as classical vs. alternatively activated
based on the initial stimulus or a mere handful of markers is not
ideal and does not reflect the complex in vivo microenvironment.
There are likely differences in Mø phenotype that span beyond
this classification. While this study shows that the expression of
alternative activation markers is elevated in cells with low Fli1, the
observation that cells have a profibrotic phenotype is of particular
relevance, as it implies that decreased Fli1 in myeloid cells has
distinctive consequences on cell function.

Myeloid cells derived from SSc patients may contribute to
fibrosis via secretion of profibrotic factors, including TGFβ (25).
Although we found that conditioned media from Mo with
low Fli1 induced fibrosis via direct stimulation of fibroblasts,
we failed to find an increase in mRNA levels of TGFβ in
Fli1-depleted myeloid cells, and there was no activation of
the TGFβ/Smad2 pathway, suggesting that other factors might
mediate their profibrotic effects on fibroblasts. Based on the
microarray analysis, we identified further potential candidates.
To that extent, CCL2 and CCL7 were among the top upregulated
genes after Fli1 downregulation in Mø in our study. Earlier
reports showed that both these chemokines are increased in
SSc serum and can enhance collagen synthesis, but a direct
role for CCL2 on fibroblasts is controversial (9–11). Using
quantitative RT-PCR analysis, we were unable to find expression
of the CCL2 receptor CCR2 in human dermal fibroblasts (data
not shown), suggesting that secretion of CCL2 by myeloid
cells with low Fli1 does not directly contribute to collagen
upregulation. This is in agreement with previously published
studies that found no expression of CCL2 receptors and no
direct effect of CCL2 stimulation or CCL2 blocking on collagen
production by fibroblasts (30, 31). However, indirect fibrogenic
effects of CCL2 may still contribute to SSc tissue fibrosis, and
there is abundant published evidence to support this notion
(32). Fibroblasts serve as a source of cytokines and chemokines

that influence the microenvironment, and earlier studies have
shown that coculture of myeloid cells and fibroblasts enhances
fibrosis (33). SSc fibroblasts are known to secrete CCL2, which
attracts monocytes to the site of injury. In our study deletion
of Fli1 in both myeloid cells and fibroblasts enhanced CCL2
mRNA levels, thus potentially creating an unbalanced cytokine
response that could lead to tissue damage and fibrosis. While
the profibrotic phenotype of myeloid cells in SSc may be
due to a combination of factors, our finding suggest that the
increased CCL2 and CCL7 levels in SSc patients (31, 34–36)
may be in part due to Fli1 downregulation in Mo and could
contribute to fibrosis.

Of relevance to SSc, CXCL10 and CXCL11 are IFN-γ
inducible chemokines that are upregulated in SSc (37, 38)
and that showed a twofold induction in response to Fli1
deletion in our study. Interestingly, it was previously found that
CXCL10 is expressed early in the disease and associated with a
worse outcome, including more severe pulmonary fibrosis (39).
Whether overexpression of or CXCL11 contributes to fibrosis
remains to be determined.

MMP12 is a matrix metalloproteinase produced at high levels
by IL-4- and IL-13- alternative-activated macrophages, and has
been implicated in development of fibrosis. MMP-12 deficiency
reduced myocardial fibrosis following myocardial infarction and
angiotensin II infusion, liver, and lung fibrosis after Schistosoma
mansoni infection and lung fibrosis after bleomycin infusion
in mice. Proposed mechanisms are via suppression of specific
ECM-degrading MMPs and decreased matrix degradation,
induction of alternative-macrophage infiltration and PDGF
production, and activation of TGF-β signaling pathway (40–
43). Importantly, MMP-12 was increased in the serum,
alveolar macrophages and dermal inflammatory infiltrates in
SSc patients, and its expression correlated with the severity
of skin and lung fibrosis (44). MMP12 was induced in
response to Fli1 downregulation in myeloid cells, suggesting
that MMP12 may contribute to the profibrotic effects we
observed in our system. However, MMP12 expression was not
enhanced in mice with deletion of Fli1, suggesting there are
differences the response to Fli1 downregulation between mice
and human cells.
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FIGURE 7 | Validation of differentially expressed genes via quatitative RT-PCR. Results in THP1 cells treated with siRNA in (A) or peritoneal macrophages isolated
from Fli1CKO mice and wt mice in (B). mRNA levels of selected genes of interest were analyzed by RT-PCR in ≥3 separate experiments and the results are
presented as bar graphs with controls arbitrarily set at 1. scr, scrambled.

We also found elevated expression of HMOX1, a stress-
inducible protein upregulated by various oxidative and
inflammatory signals, with immunomodulatory and anti-
inflammatory properties. It has been reported that HMOX-1
induction drives the phenotypic shift to M2 macrophages,
however, a previous study found that HMOX-1 was expressed at
lower levels in SSc compared to controls.

Interestingly, the top, most highly expressed gene in
our microarray was ANKRD1 (ankryn repeat domain 1),
a transcription co-regulator expressed predominantly in
cardiac muscle, with roles in heart and skin fibrosis (45,
46). Very little is known about the role of ANKRD1 in

immune cells. We found that ANKRD1 is expressed in
cells with low Fli1, but is found at very low levels or
not expressed in primary monocytes. This is consistent
with previous studies showing that ANKRD1 was sharply
and dramatically induced in immune cells during wound
healing, but mostly absent in intact skin (47). Interestingly,
the profibrotic molecule TGFβ was also shown to induce
ANKRD1 expression in vascular smooth muscle cells (48).
Given the importance of ANKRD1 in regulating fibrosis and
cardiac hypertrophy, further studies are required to assess if its
induction in response to low Fli1 in Mo/Mø contributes to their
fibrogenic effects.
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A number of studies looking at transcriptional profiling of
peripheral blood cells from SSc patients revealed significantly
increased expression of both type I and type II IFN-inducible
genes (49, 50). High levels of both IFN-regulated genes and
alternative Mo/Mø activation markers were shown in SSc PBMCs
and fibrotic lung tissue (51, 52). It has been suggested that
IFN-γ may play a role in the early stages of SSc, in which
inflammation and vasculopathy are predominant features (53,
54). Our microarray data shows that downregulation of Fli1
in myeloid cells resulted in induction of numerous interferon-
regulated genes, with both type I and type II interferon
responses being recorded. Significantly, mice with targeted
deletion of Fli1 in myeloid cells showed similar response in the
interferon related genes CCL2, CCL7, and CXCL10, confirming
microarray data.

Beyond regulating the expression of alternative activation
markers and other profibrotic genes, we recorded Fli1 regulation
of migration-associated genes, which may control the migratory
properties of monocytes in vivo, allowing infiltration of
tissues and thus potentially contributing to the inflammatory
infiltrates seen in the lesional skin in SSc and to exaggerated
tissue fibrosis.

Our study has several limitations. Firstly, THP1 cells
were used for the experiments involving the effects of
Fli1 downregulation in human myeloid cells. While widely
used in published studies, these are immortalized cells
and may not accurately reflect what occurs in primary
cell lines. Nevertheless, we were able to reproduce our
results in macrophages from mice with conditional deletion
of Fli1, suggesting that findings in human cells could
be accurate. Moving forward, it will be of interest to
characterize the in vivo consequences in loss of Fli1 in
myeloid cells, however, this was beyond the scope of this
paper. Secondly, while we provide solid evidence that the
loss of Fli1 in myeloid cells is profibrotic, we failed to
unravel the exact mechanism that leads to this outcome.
Our results however, suggest that a number of genes could
contribute to this effect, including CCL2, CCL7, MMP12,
CXCL10, and ANKRD1.

In summary, myeloid cells with low Fli1 reproduce key
features with myeloid cells from SSc patients, with higher
expression of profibrotic markers and activation of interferon
responsive genes, thus suggesting that Fli1-deficient Mø may
contribute to SSc fibrosis. Further work will be required to
establish the exact mechanistic details of these findings, but
microarray analyses suggests that a combination of factors could
be responsible for the modulation of the observed profibrotic
effects of myeloid cells with low Fli1 on fibroblasts.
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