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Hemophagocytic lymphohistiocytosis (HLH) is a heterogeneous hyperinflammatory
syndrome with different pathways of pathogenesis resulting in similar clinical
presentations. It is best defined and understood if presenting in the context of
genetic immunodeficiencies associated with defects of lymphocyte cytotoxicity. In
these “primary” forms of HLH, cellular and soluble immune effectors are relatively well
characterized. While etoposide-based broad cell-directed therapies remain standard
of care, more specific therapies targeting these effectors individually are increasingly
available. Anti-CD52 as a cell-directed therapy and anti-IFN-gamma, IL-18BP, and
JAK-inhibition as cytokine-directed therapies are expected to broaden the therapeutic
options, but the precise role of these drugs in first-line and rescue treatment indications
remains to be defined. A number of additional inborn errors of immunity are associated
with episodes of immune activation fulfilling the clinical criteria of HLH. Impaired
pathogen control is a key driver of hyperinflammation in some conditions, while
others are characterized by a strong autoinflammatory component. This heterogeneity
of disease-driving factors and the variable severity in disease progression in these
conditions do not allow a simple adaptation of protocols established for “primary” HLH
to HLH in the context of other inborn errors of immunity. Cytokine-directed therapies
hold significant promise in these increasingly recognized disorders.

Keywords: hemophagocytic lymphohistiocytosis, inborn errors of immunity, pathogenesis, therapy, cytokine,
inflammation, HSCT

PRIMARY HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS

Hemophagocytic lymphohistiocytosis (HLH) is a highly inflammatory syndrome with
uncontrolled, excessive immune activation. HLH is the key manifestation in a range of autosomal-
recessive genetic diseases defined as familiar forms of HLH (FHL). FHL includes FHL1 to FHL5
(OMIM #267700, #603553, #608898, #603552, and #613101) caused by defects in lymphocyte

Abbreviations: APC, antigen-presenting cell; ATG, antithymocyte globulin; CMV, cytomegalovirus; CNS, central nervous
system; CSA, cyclosporine A; EBV, Epstein-Barr virus; FHL, familial hemophagocytotic lymphohistiocytosis; HLH,
hemophagocytotic lymphohistiocytosis; HSCT, hematopoietic stem cell transplantation; JAK, janus kinase; MRI, magnetic
resonance imaging; NK, natural killer cell; RIC, reduced-intensity-conditioning; VOD, veno-occlusive disease; XLP, X-linked
lymphoproliferative syndrome.
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cytotoxicity affecting perforin or proteins involved in the
exocytosis of perforin-containing lytic granules (degranulation
deficiencies) (Table 1). It was first described in 1952 as familial
hemophagocytic reticulosis (1). In FHL2 patients with “null”
mutations, the first manifestation of disease symptoms is in most
cases observed in the first 6 months of life, but may already
be present in utero or at birth (2). HLH tends to occur later
in patients with other FHL variants (3, 4) and in patients with
biallelic “hypomorphic” mutations and an initial HLH episode
has been reported as late as 63 years of age (5). The incidence
of FHL is estimated at 1:50,000–1:100,000 (6, 7). Some genetic
immunodeficiency diseases associated with pigment dilution
such as Griscelli syndrome type II (GS-II; OMIM # 607624)
and Chediak-Higashi syndrome (CHS; OMIM #214500) are also
caused by degranulation defects (8). The similar pathogenesis and
the frequent occurrence of HLH in these conditions allow their
classification as “primary” HLH (Figure 1A).

PATHOPHYSIOLOGICAL BASIS OF
“PRIMARY” HEMOPHAGOCYTIC
LYMPHOHISTIOCYTOSIS

FHL2-5, GS-II, and CHS all affect the cytotoxic granule-mediated
cell death pathway (8, 9). Under physiological conditions,
immune stimulation such as a viral infection leads to priming
of cytotoxic T-lymphocytes by APC, followed by their activation
and proliferation. These activated T cells and NK cells can
recognize virus-infected target cells and subsequently eliminate
these through polarized release of perforin- and granzyme-
containing granules (10, 11). Entry of granzymes into target-cells
by membrane-pores established by perforin activity mediates
apoptotic cell death. Notably, this cytotoxic activity is also
directed against APC, providing an important negative feedback-
loop that limits T cell activation (12).

In “primary” HLH, deficient cytotoxic activity of CTL
and NK cells impairs the timely elimination of APCs.
Their persistence leads to continuous T-cell stimulation.
Incessantly activated T-cells infiltrate tissues and release various
pro-inflammatory mediators, in particular interferon-gamma,
a potent macrophage-stimulating cytokine (13). Continuous
macrophage activation, in turn, further fuels release of a broad
range of inflammatory cytokines such as IL-1, IL-6, IL-18,
and TNF-alpha (14–16) and leads to tissue infiltration of
macrophages and hemophagocytosis. Since in the course of an
immune response, T cells themselves can also become targets
of the cytotoxic activity of NK cells and T cells, lack of this
control mechanism may further impair immune homeostasis (17,
18). Clinical manifestations of HLH are mainly a result of tissue
infiltration by T cells and macrophages and the accompanying
excessive cytokine storm.

This model of “primary” HLH pathophysiology has mainly
been established in key studies in cytotoxicity deficient mice
that develop all clinical features used for the diagnosis of HLH
in patients upon persistent wide-spread systemic infection with
lymphocytic choriomeningitis virus (19). In most patients with
“primary” HLH, no persistent systemic viral infection can be

demonstrated (2), asking for a note of caution whether this model
really explains all aspects of the human disease.

OTHER INBORN ERRORS OF IMMUNITY
PREDISPOSING TO HLH:
PATHOGENETIC HETEROGENEITY

In a group of additional inborn errors of immunity, HLH occurs
less frequently, although it can still be the presenting clinical
manifestation. In these diseases, HLH pathogenesis is variable
and mostly different from that of “primary” disease (Table 1).
A brief review of current understanding of pathogenesis of these
diseases is relevant for the discussion of therapeutic approaches.

Two X-linked genetic diseases predispose to HLH
predominantly in the context of EBV infection (20) (Figure 1B).
XLP1 (OMIM #308240) is caused by defects in SAP, a small
adaptor protein that regulates signaling in T and NK cells
by binding to the SLAM family of signaling receptors (21).
Many aspects of XLP1 pathogenesis can be explained by
impaired T/NK-B cell interaction. As a consequence, affected
patients frequently suffer from hypogammaglobulinemia and its
infectious consequences due to impaired T cell help to B cells
and lymphomas due to impaired control of malignant B cells
(22). Cerebral vasculitis and aplastic anemia can also be life-
threatening manifestations. Poor T/NK-cell mediated control of
EBV-infected B cells, in part linked to impaired activation of 2B4
(a SLAM receptor) mediated cytotoxic function, is the basis of
HLH, that develops in about 30% of XLP1 patients (23).

XLP2 (OMIM #300079) is caused by defects in XIAP, a
protein with antiapoptotic functions, regulatory functions for
autophagy and control functions for inflammasome activity
(24, 25). It also modulates the NOD1/NOD2 pathways which
contribute to intracellular sensing of bacterial infection. A link
to lymphocyte cytotoxicity has not been established. Important
clinical manifestations of XLP2 are early onset inflammatory
bowel disease, splenomegaly and periodic fever (26). The
pathogenesis of mostly EBV-induced HLH, which occurs in more
than 30% of patients, is unclear. However, an autoinflammatory
component due to dysregulated NLRP3 inflammasome activation
is reflected by excessive levels of free serum IL-18 and is more
prominent than in “primary” HLH (27). Notably, some, but
not all biological activities of IL-18 are mediated by IFNγ

(28). The frequency of HLH in XLP1 and XLP2 has led to
their inclusion in the classification of “primary” HLH and the
therapeutic principles of FHL have also been successfully used
to treat HLH in XLP (20, 29). However, both XLP variants have
a pathophysiology that is clearly different from “primary” HLH
and this may offer different treatment options. This is particularly
relevant for treatment of manifestations different from HLH in
these conditions.

TIM3 deficiency (OMIM #618398) caused by HAVCR2
mutations is another autosomal-recessive inborn error of
immunity that predisposes to HLH in a particular context,
i.e., in subcutaneous panniculitis T cell lymphoma (SPTCL)
(30). TIM3 is an inhibitory molecule expressed mainly on T
cells and NK cells, but also on myeloid cells. TIM3 mutations
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TABLE 1 | Genetically determined forms of hemophagocytotic lymphohistiocytosis (HLH).

Primary HLH Gene Protein Pathophysiology Functional testing

Familial HLH (FHL)

FHL-1 Unknown Unknown

FHL-2 PFR1 Perforin Lack of perforin expression in lytic granules Perforin expression

FHL-3 UNC13D Munc13-4 Deficiency in fusion of lytic granule with plasma membrane Degranulation

FHL-4 STX11 Syntaxin11 Deficiency in fusion of lytic granule with plasma membrane Degranulation

FHL-5 STXBP2 Munc18-2 Deficiency in fusion of lytic granule with plasma membrane Degranulation

Other immunodeficiency syndromes with defect in degranulation

GS-II RAB27A Rab27a Deficiency in docking of lytic granule to the plasma
membrane

Degranulation hair
microscopy

CHS LYST Lyst Defect in maturation of vesicles into secretory cytotoxic
granules

Degranulation hair
microscopy

—

Other inborn
errors of
immunity

Gene Protein Pathophysiology Functional testing

Immunodeficiency syndromes with HLH as a frequent manifestation

XLP-1 SH2D1A SAP Defective killing of EBV infected B-cells by CD8 and NK
cells

SAP expression

XLP-2 BIRC4 XIAP Impaired inhibition of inflammasome activity XIAP expression
L18MDP assay

TIM3 deficiency HAVCR2 TIM3 Persistent T cell activation and increased production of
inflammatory cytokines

TIM3 expression

Immunodeficiency syndromes with HLH as an occasional manifestation

Chronic
granulomatous
disease (CGD)

CYBB, CYBA,
NCF1, NCF2,
NCF4

Components of
NADPH oxidase

Excessive inflammatory responses due to altered
inflammasome regulation by NADPH oxidase?

Oxidative Burst

(S)CID >50 genes various Lack of pathogen control Lymphocyte
phenotyping

Wiskott-Aldrich
syndrome

WAS WASP Lack of pathogen control
Impaired cytoskeleton-inflammasome interaction?

WASP expression
(FACS)

CD27 deficiency CD27 CD27 Impaired co-stimulation of T cells
Lack of EBV control

CD27 expression

ITK deficiency ITK ITK Impaired TCR mediated signaling
Lack of EBV control

ITK expression

IFNγ receptor
deficiency

IFNGR1 IFNGR2 IFN-gamma
receptor

Lack of pathogen control (mycobacteria, salmonella) STAT1
phosphorylation

ALPS FAS (het)
FASLG

FAS
FASLG

Defects in Fas ligand-mediated elimination of activated
lymphocytes

TCR DNT Vitamin
B12, soluble FasL

Autoinflammatory diseases with HLH as a frequent manifestation

NLRC4 gain of
function

NLRC4 (het) NLRC4 Constitutive inflammasome activation IL-1β/IL-18
production

Genetic testing

CDC42 mutations CDC42 (het) CDC42 Impaired cytoskeleton-inflammasome interaction? Genetic testing

causing aberrant protein folding and lack of surface expression
lead to an autoinflammatory and autoimmune phenotype with
hyperactivated myeloid cells producing high levels of IL-1 and IL-
18 and uncontrolled CD8 T cell proliferation (31). This promotes
SPTCL formation and its association with HLH.

Heterozygous NLRC4 gain-of-function mutations (OMIM
#606831) lead to constitutive activation of the NLRC4
inflammasome resulting in enterocolitis and macrophage
activation associated with a clinical picture of HLH. It is
characterized by excessive levels of free IL-18 and IL-1beta (32,
33). Heterozygous mutations in CDC42 affecting amino acids
186, 188, or 192 also lead to a hyperinflammatory syndrome

including neonatal cytopenias, hepatosplenomegaly, recurrent
febrile episodes and urticaria-like rashes that can fulfill HLH
criteria. This autoinflammatory disease is also characterized by
very high levels of IL-18 and IL-1beta, suggesting dysregulated
inflammasome function (34). The mutations are postulated
to interfere with actin assembly, thus affecting signaling,
cytoskeletal rearrangement and cell migration. All three
conditions are characterized by a significant autoinflammatory
disease component that calls for treatment approaches different
from primary HLH (Figure 1B).

Finally, immune activation fulfilling the clinical criteria
of HLH occasionally occurs in several additional primary
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FIGURE 1 | (A) Pathogenesis of “primary” HLH (simplified). Impaired
cytotoxicity (red) leads to uncontrolled T cell activation by APC. T cell secreted
IFNg is the key driver of macrophage activation. Cellular and cytokine targets
of therapy are indicated in green. (B) Pathogenesis of HLH in the context of
impaired inflammasome homeostasis (simplified). Inborn errors of immunity
shown (NLRC4, XIAP) or assumed (Cytoskeletal disorders, CGD) to be
involved in inflammasome homeostasis are indicated in red. Cytokine targets
of therapy are indicated in green. Macrophages are the key cells involved, T
cells play a less prominent role. Cell-directed therapies are rarely used.
(C) HLH pathogenesis in the context of inborn errors of immunity with
impaired pathogen control (simplified). Inborn errors of immunity impairing
virus control (mainly EBV) and/or bacterial/fungal control are indicated in red.
Subsequent immune stimulation leads to hypersecretion of variable cytokines.
Macrophage activation can occur in the absence of T cells, but T cells can be
involved depending on the genetic defect and the trigger. Cell-directed
therapies further impair pathogen control and should only be used in
exceptional cases.

immunodeficiencies, including SCID, some combined
immunodeficiencies such as Wiskott-Aldrich syndrome, CD27
deficiency and ITK deficiency, chronic granulomatous disease
(CGD) and IFNγ receptor deficiency (35, 36) (Figures 1B,C).
The examples of SCID and IFNγR deficiency illustrate that
the clinical syndrome of HLH as defined by the HLH-2004
clinical criteria requires neither T cells nor IFNγ, illustrating
that this form of HLH is different from “primary” HLH. In fact,
the HLH-like immune activation in these diseases is in most
cases due to impaired pathogen control and rather represents
an infection-induced HLH. Additional factors such as altered
inflammasome regulation by NADPH oxidase in CGD (37) and
potentially impaired cytoskeleton – inflammasome cross-talk in
patients with WAS, DOCK8 deficiency and CDC42 mutations
likely also contribute (38–40). Overall, these examples illustrate
that also in familial HLH cases, a careful characterization of
the genetic disorder underlying HLH is required as it allows to
choose treatment targeted at the specific pathogenesis.

THERAPEUTIC STRATEGIES

The heterogeneity in pathophysiology of “primary” HLH caused
by cytotoxicity defects versus HLH associated with other inborn
errors of immunity makes it obvious that there is no “one fits
all” therapeutic strategy. Treatment must be targeted to the
pathophysiology and results from treatment studies obtained
in one group of diseases cannot simply be transferred to
another. Therapeutic regimens in primary HLH are either
directed at the immune cells involved, i.e., APC, T cells and
macrophages, or at the cytokines secreted by these cells. The goal
is to disrupt ongoing immune stimulation and to limit severe
hyperinflammation and tissue damage. The implementation of
broad cell-directed therapies was critical to improve survival
in this life-threatening condition (41). However, more specific
anti-cellular therapies and therapeutic targeting of particular key
cytokines and their downstream effects are currently evaluated in
clinical trials. In the absence of published data on several of these
novel approaches, this review can only point out the therapeutic
principles and indicate which trials to watch as they have the
potential to impact on standard-of-care within the next 5 years.

Overall, the therapeutic approach to primary HLH can be
divided into four main phases:

(1) Induction of remission.
(2) Control of triggers.
(3) Maintenance of remission and salvage therapy.
(4) Curing the underlying condition.

INDUCTION OF REMISSION

Timely treatment of HLH is essential for prognosis. Untreated
patients with active “primary” HLH show a survival of
approximately 2 months due to progressive organ failure (42).
Delayed initiation of therapy increases the risk of neurological
complications. In most cases, initial decisions must be made in
the absence of a confirmed genetic diagnosis, but tests of protein
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expression and degranulation are rapidly available and have high
sensitivity and specificity for “primary” HLH (43–45). Important
differential diagnosis requiring different treatment approaches
such as malignancy or metabolic disease should be considered
(46, 47). Leishmaniosis must be ruled out in all patients with a
plausible risk (48).

TARGETING CELLS

For decades, first-line therapy for primary HLH has been
centered on cell-oriented approaches. The widely used standard-
of-care is based on the dexamethasone/etoposide-based HLH-
94 and HLH-2004 studies. A consensus statement addressing
various aspects of its use in detail has recently been published by
the HLH Steering Committee of the Histiocyte Society (49).

Etoposide-Based Protocols
The HLH-94 protocol is based on immuno-chemotherapy
including dexamethasone, etoposide and CSA to achieve
remission of the hyperinflammatory state and to maintain
remission until HSCT can be performed (41). Functionally, all
agents target lymphocytes, macrophages and antigen presenting
cells. The cytostatic agent etoposide induces cell death mainly in
activated T cells (50), but also in macrophages and dendritic cells.
The use of the calcineurin inhibitor CSA leads to an inhibition of
the transcription factor NFAT (nuclear factor of activated T-cells)
and thus to a reduced activation and proliferation of T cells.
Steroids slow down inflammation by reducing cytokine secretion,
but in addition, they have a moderate cytotoxic effect on activated
T cells. It is recommended to treat patients with CNS involvement
also with intrathecal methotrexate (51), although there is no
clear evidence of benefit. The protocol has a 2-week intensive
phase with dexamethasone and twice weekly administration
of etoposide, followed by 6 weeks of weekly etoposide and
steroid tapering. In this second phase, CSA is used to prevent
reactivation (49). Rapid immunological testing followed by
genetic confirmation of the underlying genetic disease is required
in all patients and should provide the basis for HSCT within
these 8 weeks (Figure 2). In the international multicenter
registry-based HLH-2004 study, 5-year probability of survival
for children with genetically verified familial HLH treated
with this protocol was 59% (52). Dexamethasone/etoposide-
based protocols have been successfully used in XLP or patients
with TIM3 deficiency. It remains an ultimate choice also
in other inborn errors of immunity, but the toxicity and
immunosuppression associated with etoposide asks for more
targeted therapies in these conditions.

Antithymocyte Globulin (ATG)
Antithymocyte globulin directly targets T cells and other
lymphocytes, to a minor extent also granulocytes and monocytes
(53). In a retrospective single-center analysis of 38 patients with
familial hemophagocytosis, a protocol consisting of steroids,
CSA and first-line ATG resulted in a higher initial remission
rate compared to the HLH-94 protocol (active disease in 26%
of patients versus 53%, after 2 months of therapy) but was

associated with a higher percentage of relapses before HSCT
(32% versus 13%) (54). In an attempt to combine advantages of
both protocols, a trial combining ATG and etoposide has been
performed (55), but the results have not yet been reported. There
is no clear role for ATG beyond “primary” HLH.

Alemtuzumab (Anti-CD52)
More recently, the humanized monoclonal anti-CD52 antibody
alemtuzumab has been used in patients with “primary” HLH
(56). It is directed against the CD52 antigen (CAMPATH 1)
which is a surface protein on mature lymphocytes and APCs.
First promising results have been achieved when used in a
bridging to transplant setting (57). Excellent initial results have
been orally reported from a trial evaluating Alemtuzumab as
first-line treatment for “primary” HLH (in combination with
methyl-prednisolone and CSA) (58). The profound and long-
lasting immune suppression and limits this drug to “primary”
HLH, where induction of remission is rapidly followed by HSCT.
The problem of viral (re-)activation is an important caveat when
using alemtuzumab in XLP.

TARGETING CYTOKINES

In a disease associated with excessive production of a large
number of cytokines, it is not self-evident that blockade of
a single cytokine should have significant therapeutic effects.
However, pivotal studies in mouse models of “primary” HLH
have indicated that some key cytokines, in particular IFN-
gamma, are drivers of the immune dysregulation (60) and
that their neutralization can interrupt the inflammatory circle
and restore immune homeostasis (52, 59). As a consequence,
therapeutic approaches targeting IFN-gamma, its induction
and its downstream effects have emerged as promising
strategies that are at different stages of evaluation in clinical
trials of primary HLH.

Interferon-Gamma
Emapalumab is a recombinant human monoclonal antibody
against interferon gamma (60). It has received FDA approval in
November 2018 for the treatment of pediatric and adult patients
with primary HLH with refractory, recurrent, or progressive
disease or intolerance to HLH therapy (see section salvage
therapy). An international multicenter follow-up study to further
assess the efficacy and safety of emapalumab is still ongoing
(61). This trial will also provide data on its use as first-line
therapy in “primary” HLH. Serum levels of CXCL9 emerge as an
interesting biomarker for increased IFNγ activity (62) and may be
particularly helpful when considering the use of emapalumab in
first-line treatment of HLH in the context of other inborn errors
of immunity. Notably, a patient with CDC42 mutation who did
not respond to steroids, CSA, and anakinra was successfully
treated with emapalumab (34).

JAK-Inhibition
Janus kinase inhibitors represent interesting therapeutic
compounds in the context of HLH, since they not only inhibit
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FIGURE 2 | 2018 consensus statements by the HLH Steering Committee of the Histiocyte Society recommending the use of HLH-94. The HLH-94 protocol is based
on immunochemotherapy including dexamethasone, etoposide, and cyclosporine A (CSA). After an intensive phase of 2 weeks with high doses of dexamethasone
and twice weekly administration of etoposide, dexamethasone is tapered until week nine. Cyclosporine A is used from week three onward to prevent reactivation.
Intrathecal therapy with methotrexate is recommended in patients with CNS involvement. Immunological testing and genetic confirmation of the underlying genetic
disease is required in all patients and should provide the basis for HSCT within 8 weeks. Copyright Clearance Center’s RightsLink R© service/Elsevier.

signaling downstream of IFN gamma, but also of several other
pro-inflammatory cytokines. In the mouse-model of LCMV-
induced “primary” HLH, the disease manifestations, including
CNS involvement, were reduced upon JAK1/2 blockade by
ruxolitinib (63, 64). The successful individual use of ruxolitinib
reported in single cases of secondary HLH (65–67) has resulted
in its prospective evaluation for this indication (68). Preliminary
results of a single-center phase 2 pilot study on the efficacy
of ruxolitinib in secondary HLH demonstrate good tolerance
to ruxolitinib in a small cohort of five patients (69). However,
“primary” HLH is excluded in these studies. A trial investigating
the benefit of JAK inhibition in first-line treatment of human
“primary” HLH is in preparation. We are not aware of reports on
the use of JAK inhibitors in HLH in the context of other inborn
errors of immunity, but this is a plausible pathway to explore.

Targeting IL-18
IL-18 is released by activated macrophages and can induce IFN-
gamma and other pro- inflammatory cytokines (28). Several
reports have found elevated free IL-18 concentrations (i.e., IL-
18 not bound to its binding protein IL-18BP) in the serum of
patients with both “primary” and secondary HLH as well as in
animal models and IL- 18 levels correlated with the presence of
HLH-criteria and disease progression (70). In a murine model
of “primary” HLH it was shown that treatment with IL-18BP
can reduce severe organ damage, but does not improve survival
(71). An ongoing multicenter, double-blind, placebo-controlled,

randomized withdrawal trial evaluates efficacy and safety of IL-
18BP (tadekinig alfa) in pediatric patients with NLRC4 associated
hyperinflammation including HLH or XIAP deficiency, diseases,
in which IL-18 levels are particularly elevated (73). While this
treatment seems promising to attenuate the autoinflammatory
manifestations of XIAP deficiency, it remains to be seen whether
it also has a role in acute EBV-induced HLH in this disease.

IL-1, IL-6, and TNF Alpha Blockade
The pro-inflammatory cytokines elevated in “primary” HLH also
include IL-1, IL-6, and TNF alpha, which can be targeted by
monoclonal antibodies and other blocking agents. They have
been used successfully in the context of secondary HLH (72, 74)
and related conditions associated with a “cytokine storm” such
as hyperinflammation associated with CAR-T cell therapy (75).
Moreover, case reports have illustrated a partial effect of IL-1
blockade in patients with NLRC4 or CDC42 mutations (32, 34)
and in patients with CGD (76). Anecdotal reports have reported
efficacy of IL-6 blockade in manifestations of XIAP deficiency
different from acute EBV-induced HLH (77). However, efficacy of
IL-1, IL-6, or TNF alpha blockade in “primary” HLH has not been
clearly documented, neither in first-line nor in rescue therapy.

CONTROL OF TRIGGERS

Infections should be diagnosed and treated aggressively in
all forms of HLH. When active EBV infection is present,
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rituximab (anti-CD20 antibody) can help controlling the
immune stimulation by eliminating EBV infected B cells (78,
79). However, in some states of persistent EBV replication,
EBV has been demonstrated in T or NK cells leading to
resistance against rituximab treatment (80). Cell-targeted therapy
results in significant immunosuppression, such that reverse
isolation, aspergillus-effective antifungal and PCJ prophylaxis
should be administered (81). Weekly monitoring for infection
or reactivation of latent pathogens (EBV, CMV, adenovirus,
aspergillus antigen) is recommended (49).

MONITORING TREATMENT RESPONSE

Monitoring response to therapy and detecting early signs of
reactivation is crucial in patients with “primary” HLH (79,
82). The response of cytopenia is a sensitive parameter to
judge treatment response (83). Since neutropenia frequently
occurs treatment-related, thrombocytopenia is the more valuable
parameter. Bone marrow puncture can be of some help in
distinguishing between the activity of HLH and the myelotoxic
side effect of therapy. Ferritin usually shows a significant decrease
in the first days of successful treatment. However, complete
normalization of ferritin can take weeks and can be even further
delayed by the transfusion of erythrocytes (84). sCD25 is more
dynamic, but it may still take a few days until a substantial
decrease can be observed. In patients with initially low fibrinogen,
this parameter can be used together with transaminases and
coagulation studies to assess the treatment response (83). Other
biomarkers for disease activity such as free IL-18 or CXCL9 are
being explored. If more rapid turnaround times can be achieved,
they might be valuable for guiding therapy in the future.

SALVAGE THERAPY IN REFRACTORY
HLH

Early mortality of acute HLH remains a major concern. 25–
50% of patients with acute “primary” HLH fail to achieve rapid
and sustained initial remission after etoposide-based therapy. If
cytopenia [in particular thrombocytopenia <40 G (G/L)] and
ferritin and/or sCD25 fail to respond after 2 weeks, the risk for an
adverse outcome increases, justifying consideration of alternative
(salvage) therapy (49). There are no standard recommendations
for the treatment of relapsing or refractory HLH. The salvage
therapies published so far include alemtuzumab, anakinra, ATG,
and regimens consisting of liposomal doxorubicin, etoposide,
and dexamethasone (85). In an observational study reporting on
treatment of 22 patients with refractory HLH with alemtuzumab,
86 percent of patients showed partial response, and 77 percent
were able to receive HSCT (86). Notably, CMV and adenovirus
viremia occurred in 23–32% of patients.

Emapalumab, a neutralizing antibody against INFγ, has
recently been licensed as the first drug for the treatment patients
with “primary” hemophagocytic lymphohistiocytosis (HLH) with
refractory, recurrent or progressive disease or intolerance with
conventional HLH therapy (87). The recommended starting

dose is 1 mg/kg twice per week with dexamethasone as a
background treatment, but doses can be increased up to 10 mg/kg
based on clinical response (88). Due to the risk of serious
infections (frequent during therapy of primary HLH patients
and observed in 32% of patients in the trial) patients should
receive prophylaxis for Herpes Zoster, Pneumocystis jirovecii,
and fungal infections and should be monitored for tuberculosis,
adenovirus, EBV and CMV.

The study included 27 patients with a mean age of 1 year
(range: 0.1 to 13 years), with a “primary” HLH in 82%
of patients. Patients had received various combinations of
dexamethasone, etoposide, CSA, and anti-thymocyte globulin
prior to emapalumab. Full response was defined as normalization
of all, while partial response was defined as normalization of
≥3 HLH parameters and HLH improvement was defined as ≥3
HLH abnormalities improved by at least 50% from baseline.
Twenty patients completed the 8-week study, while seven were
prematurely withdrawn. Seventy percent (19/27) of patients
proceeded to HSCT. The overall response rate was 63%, the
median time to response was 8 days. A complete response
was achieved in 7 patients, partial response in 8 patients and
HLH improvement in 2 patients (88, 89). Since refractory
primary HLH has a dismal prognosis, these data are encouraging.
However, the exact place of this drug in the context of existing
and emerging therapies remains to be defined.

DEFINITIVE THERAPY

Hematopoietic Stem Cell Transplantation
(HSCT)
To prevent recurrences, allogenic stem cell transplantation
should be carried out as soon as possible after achieving initial
remission in the “primary” HLH (49, 90). It remains the only
curative option. The timing of HSCT has to balance the risks
between achieving full remission versus reactivation. Although
active disease at conditioning remains a risk factor, full remission
of all clinical symptoms is not required for successful HSCT. In
particular, active neurological disease should prompt aggressive
management including early HSCT (51).

Allogeneic HSCT is also the definitive treatment of choice for
HLH in the context of several other inborn errors of immunity,
including XLP1 or XLP2 and patients with TIM3 deficiency (91,
92). Furthermore, HSCT has been successfully performed in a
patient with a CDC42 mutation (34). However, there has been
no report of HSCT in NLRC4 deficiency, where it is unlikely to
impact on IL-18 hypersecretion by intestinal epithelial cells (93).
Careful and broad genetic and functional evaluation is therefore
mandatory before proceeding to HSCT based on clinical grounds
in rare cases of familial or recurrent HLH without detection of
a genetic cause.

In cases with suspected “primary” HLH, donor search and
pretransplantation diagnostics should be carried out promptly
during the initial presentation. Bi-allelic mutations should be
ruled out in potential related donors. In autosomal-recessive
disease, heterozygous carriers are in most cases appropriate
donors. In the X-linked conditions, skewed X-inactivation
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should be excluded in potential female carrier donors (94).
Conditioning regimes for HSCT in “primary” HLH have been
discussed elsewhere.

Gene Therapy
For genetic diseases manifesting in hematopoietic cells,
hematopoietic stem cell gene therapy is an important option
(95). Preclinical murine studies in a perforin knock-out mouse
showed a correction of the HLH phenotype after lentiviral gene
therapy of autologous hematopoietic stem cells (96). However,
high levels of expression were necessary to fully correct the HLH
phenotype (97). Successful gene transfer into hematopoietic stem
cells has also been demonstrated in a mouse model (98) and in
patient T cells with MUNC13-4 deficiency (99). Furthermore,
correction of cellular and humoral immune function was
achieved by gene therapy in the murine model of XLP1 (100).
Since these mice do not develop HLH, the question of whether
the gene therapy can fully control the risk of HLH could not
be addressed. These preclinical proof-of-concept studies show
the therapeutic potential of gene therapy in “primary” HLH and
it will be important to see them further investigated in clinical
trials in the future.

SPECIAL SITUATIONS IN “PRIMARY”
HLH

CNS Involvement and Isolated CNS-HLH
Central nervous system involvement is a common complication
in “primary” HLH (30–73%) and leads to increased morbidity in
long-term survivors (51, 101). Irritability, seizures, meningisms,
focal deficits, or reduced level of consciousness are observed
in active HLH. Diagnostic parameters of CNS involvement
include variable combinations of elevated protein or cell count
(>5 cells/µl), lymphocytic pleocytosis, activated monocytes
and hemophagocytosis in the CSF. MRI brain morphology
can demonstrate cerebral atrophy, diffuse white matter
irregularities and multiple focal lesions (102–104). Delayed start
of treatment for “primary” HLH increases the risk of neurological
complications and is associated with worse CNS outcomes (105).

“Primary” HLH can also present as isolated CNS disease in the
absence of any systemic manifestations. These occur particularly
in older patients with hypomorphic mutations (106–110),
most commonly in patients with FHL2 or Griscelli syndrome
(111). Isolated CNS disease has also been documented in
patients post-transplant with partial donor chimerism (112, 113).
Systemic HLH-directed therapies can improve CNS-HLH unless
irreversible damage has already occurred (51). Considering its
value in other inflammatory brain diseases, alemtuzumab may
provide an interesting option. In the further course, patients

with isolated CNS-HLH are at risk for developing full-blown
systemic HLH. Allogeneic HSCT is therefore also recommended
in patients with isolated CNS disease (111).

Pre-emptive HSCT
Unless transplanted, all patients with “primary” HLH have a
risk of developing life-threatening HLH at any time throughout
their life. This risk has to be weighed against the risk of HSCT
on an individual basis. In any case, genetic testing of family
members, particularly of siblings should be offered promptly after
diagnosis of the index case. In a recent analysis of 64 children
with primary HLH (index cases), 32 asymptomatic carriers were
identified. 16 of 22 asymptomatic carriers received pre-emptive
transplantation, of which 15 are alive and in complete remission
after 39 months of median follow-up. Eight-year probability
of survival was significantly higher than that in index cases
and survival in asymptomatic carriers receiving HSCT before
disease activation was significantly higher than in those receiving
HSCT after HLH activation (93% versus 64%) (114). Hence,
most experts recommend pre-emptive HSCT for FHL unless
mutations are very mild.

OUTLOOK

In the last few decades, significant progress has been made
in understanding the genetic basis and pathogenesis of HLH
in the context of inborn errors of immunity. This has set
the stage for rapid diagnosis and a more targeted therapy
of this serious clinical condition. The outcome of “primary”
HLH has significantly improved with cell-targeted therapies.
New cytokine-directed treatments will increase the therapeutic
flexibility, but it remains to be seen whether they will show
enough efficacy to fully replace this aggressive approach. In the
emerging field of HLH associated with other inborn errors of
immunity, established and novel cytokine-directed therapies are
expected to become the treatment of choice.
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