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Natural killer (NK) cells have a central role within the innate immune system, eliminating

virally infected, foreign and transformed cells through their natural cytotoxic capacity.

Release of their cytotoxic granules is tightly controlled through the balance of a large

repertoire of inhibitory and activating receptors, and it is the unique combination of

these receptors expressed by individual cells that confers immense diversity both

in phenotype and functionality. The diverse, yet unique, NK cell repertoire within an

individual is surprisingly stable over time considering the constant renewal of these

cells at steady state. Here we give an overview of NK cell differentiation and discuss

metabolic requirements, intra-lineage plasticity and transcriptional reprogramming during

IL-15-driven homeostatic proliferation. New insights into the regulation of NK cell

differentiation and homeostasis could pave the way for the successful implementation

of NK cell-based immunotherapy against cancer.
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NK CELL DEVELOPMENT

Natural killer (NK) cells are granular lymphocytes able to unleash stored cytotoxic potential to
kill foreign, transformed or infected cells. Compared to other cytotoxic cells, NK cells are not
restricted by the need for prior sensitization and can further orchestrate the early phase of the
adaptive immune response. NK cells are found in significant numbers in blood, bone marrow,
liver, lymphoid organs, lung, and uterus (1) and develop from common lymphoid progenitors
in the bone marrow (2). Identification of NK cell precursors outside the bone marrow, namely
fetal thymocytes (CD34+CD3−CD4−CD8−) and fetal liver cells (CD34+CD38+) suggests that
NK development is not restricted to the bone marrow (3–5). Commitment to the NK cell lineage
requires the transcription factors ID2 and E4BP4 along with IL-15 signaling (6–11). The search
for an NK-restricted precursor identified CD34+CD38+CD45RA+CD7+CD10+CD123−CD127−

cells which can give rise to T-bet+ and Eomes+ NK cells, two transcription factors central for
NK cell maturation in mice (12, 13). Expression of T-bet and Eomes induces CD122 (encoded
by IL2RB) expression on NK cells, a component of both the IL-2 and IL-15 receptor allowing for
survival and effector function signaling to occur (12, 14). Although NK cells belong to the innate
immune system, many aspects of T cell biology share a striking similarity with NK cells (15).

NK CELL DIFFERENTIATION AND FUNCTIONAL SPECIALIZATION

In humans, NK cells are characterized as CD56+CD3− cells. They can be broadly divided into
CD56bright and CD56dim subpopulations based on clear functional and phenotypic differences
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(16–18). CD56bright NK cells are highly responsive to cytokine
priming and fulfill an immunomodulatory role. Expression
of CCR7, CD62L, CXCR3, CCR5, CCR2, and CXCR4 allows
CD56bright cells to home to secondary lymphoid tissues, the liver,
skin and bone marrow, where they represent the dominant NK
cell subset (1, 19–22). Conversely, cytotoxic CD56dim NK cells,
which prioritize activating and inhibitory receptor input, mainly
express CX3CR1 and CXCR1 (22), and account for the majority
of peripheral blood NK cells (23).

CD56bright NK cells have been suggested as precursors
of CD56dim NK cells based on combinatorial approaches
including transcriptional studies (24–27). CD56bright NK cells
can acquire CD16 expression, effectively transitioning into
CD56dim NK cells (18) and CD16+CD56bright NK cells exist
as functional intermediates (28). Furthermore, CD56bright NK
cells are the first lymphocyte population to reconstitute after
stem cell transplantation, with CD16 acquisition, decreased
surface expression of CD56 and cytotoxic effector functions
following at a later time point (29–31). Conversely, in response
to cytokine stimulation CD56dim NK cells can adopt a “bright-
like” phenotype via upregulation of CD56 (32). CD56bright NK
cells also have longer telomers compared to CD56dim NK cells,
evidence for having undergone fewer cell divisions (18), and have
an increased proliferative capacity compared to CD56dim NK
cells (33).

Within the CD56dim NK cell population, further distinctions
of individual subsets based on phenotypic and functional
characteristics can be made (Figure 1) (34). Cells expressing the
inhibitory receptor NKG2A are found on the immature end of
the spectrum, whereas acquisition of killer cell immunoglobulin
like receptors (KIR) gives rise to more differentiated educated
and uneducated NK cells with varying functional potential (35).
The inhibitory signal strength between self-MHC and NKG2A
and KIR fine-tunes the functional potential in a process termed
education (35, 36). Expression of CD57, a carbohydrate epitope
of unknown binding, is associated with terminal maturation,
reduced proliferative capacity, and increased functional potential
(37). At the mature end of the spectrum is a unique group of
NK cells termed adaptive or memory-like NK cells (38, 39) that
can be found in approximately 40% of cytomegalovirus (CMV)
seropositive individuals. Adaptive NK cells are characterized
by single self-KIR expression, epigenetic downregulation of
intracellular signaling molecules and expression of the activating
receptor NKG2C and CD57 (40–45). Functionally, adaptive NK
cells exhibit increased ADCC activity compared to their non-
adaptive counterpart. Although the combination of NKG2A, KIR
and CD57 expression is commonly used to define NK cell subsets
in humans, this is a simplified model considering that up to
100,000 unique subsets exist within healthy individuals (46).

Transcriptional Regulation of Human NK
Cell Differentiation
Recently, several studies have shed light on the transcriptional
regulation of NK cell differentiation. Mouse studies identified
the importance of T-bet and Eomes in the differentiation
step from immature CD27+CD11b− to mature CD27−CD11b+

NK cells22, as well as the role of ZBTB32, IRF2, and
IKZF3 in NK cell differentiation (47–49). Bulk sequencing,
combined with ChIP sequencing, of human CD56bright and
CD56dim NK cells identified the TCF1-LEF-MYC axis within
the CD56bright population and the PRDM1-MAF-ZEB2 axis
within CD56dim NK cells (50). These transcription factor
controlled regulatory schemes within effector cells (CD56dim

NK cells) and proliferative precursor cells (CD56bright NK
cells) dictated their functional programs as well as localization
and trafficking. Expression of BACH2 in CD56bright NK cells
repressed BLIMP1 expression while ZEB2 expression in CD56dim

NK cells repressed TCF1 expression. The first single-cell RNA
sequencing (scRNA seq) study in human NK cells was focused
on characterizing the heterogeneity within peripheral blood and
organs in both mice and humans (51), without detailing the gene
regulatory circuit involved in NK cell differentiation. A recent
study from our group (52) set out to delineate the temporal
transcriptional regulation of human NK cell differentiation
with the aid of scRNA seq. Confirming previous phenotypic
and functional studies, we identified two main transcriptional
islands, which corresponded to the CD56bright and CD56dim

NK cell populations. Intriguingly, they were connected by a
narrow bridge which, based on RNA velocity analysis (53),
identified a transition from the CD56bright to CD56dim island.
This gradual transition between the two main subsets was further
corroborated by mapping a confined set of gene trends along
pseudotime using Palantir (54).

Formation of the Functional Template for
Education
NK cell education is the process whereby NK cells are
functionally tuned via inhibitory interactions mediated between
self-MHC and KIR or NKG2A. This is further fine-tuned by
the signal strength determined by the number of inhibitory
interactions (35, 36). As NK cells do not undergo positive or
negative selection, it was initially assumed that they would
express a minimum of one inhibitory receptor in order to
maintain tolerance to self (55). However, the presence of
NKG2A−KIR− cells and evidence of completely stochastic KIR
repertoires in the developing immune system (56–59) suggested
that alternative mechanisms are in play to ensure tolerance to
self. Indeed, NK cells that lack self-specific inhibitory receptors
circulate in a hypo-responsive state (56, 60, 61). Furthermore,
NK cells have the ability to undergo re-education after transfer
from oneMHC class I environment to another, further validating
the need for sustained inhibitory interactions in order to retain
functionality (62, 63).

Despite education being a dynamic process that forms an
important cornerstone in NK cell functionality, the intracellular
mechanism underlying education remained elusive until
recently. Multiple models have been proposed, including
the arming, the disarming and the rheostat model without a
general consensus being reached (35, 64, 65). Discriminating
between educated and uneducated NK cells required a functional
readout or sequencing of the HLA genes, as no phenotypic
readout existed. Recent work from our lab identified granzyme
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FIGURE 1 | NK cell subsets. Overview of the distinct stages of NK cell differentiation based on phenotypic and functional properties.

B retention as a sensitive and specific phenotypic readout
for education in resting NK cells, putting the core cytolytic
machinery itself in the spotlight in the search for an underlying
mechanism behind NK cell education (66). Transcriptionally,
educated NK cells were identical to uneducated NK cells, but
accumulated granzyme B in dense-core secretory lysosomes
located close to the centrosome. After target cell interaction,
these large granules containing granzyme B were released, in line
with increased cytotoxicity compared to uneducated cells lacking
these particular granules. Pharmacological inhibition of the
protein kinase PIKfyve and genetic silencing of its downstream
target, the lysosome-specific calcium channel TRPML1,
suggested a model where unopposed activating receptor input
leads to remodeling of the lysosomal compartment and loss of
dense-core secretory lysosomes in cells that lack self-specific
receptors. Downstream of such morphological changes, signaling
from acidic calcium stores may fine-tune the cell’s functional
potential through inter-organelle communication with the
endoplasmic reticulum.

Our recent scRNA-seq study (52) identified a gradual
increase in expression of effector molecules and genes involved
in lysosomal function within the CD56dim population.
Furthermore, genes important for vesicle formation and
trafficking, such as RAB27A, were higher expressed within the
CD56dim NK cell subset. Mutations in RAB27A cause Griscelli
syndrome type 2, resulting in a degranulation defect (67), as
Rab27a is recruited to the lytic granules by LFA-1 stimulation,
aiding the granule in docking to the plasma membrane (68, 69).
Hence, CD56dim NK cells are poised for modulation of the
lysosomal compartment mediated via inhibitory and activating
receptor input received at the cell surface, resulting in fine tuning
of their functionality.

NK CELL HOMEOSTASIS

IL-15 is the main cytokine required for NK cell development,
but also for survival, proliferation, metabolism and functionality
(70). The importance of IL-15 signaling in NK cell development

is best observed through mutations in the receptor components
and downstream signaling molecules which, together, present
as immunodeficiencies characterized by a lack of NK cells (71–
74). Immune cells, including DCs, monocytes and other non-
hematopoietic cells trans-present IL-15 on the IL-15Rα chain,
which binds to the heterodimer consisting of IL-2Rβ (CD122)
and the common γ-chain (CD132) found on the NK cell surface.
Downstream signaling is mediated via JAK1/3, allowing for
recruitment and activation of the transcription factor STAT5,
a survival signal for NK cells (73). A downstream target of
STAT5 is the cytokine induced SH2-containing protein (CIS,
encoded by CISH), which functions as a negative feedback loop
by inhibiting the upstream JAK1 (75). Cish−/− knockout mice
presented increased anti-tumor activity and proliferative capacity
as a result of being hyper-responsive to IL-15 signaling (75).
Mathematical modeling has been implemented in an attempt
to better understand the impact of IL-15 receptor signaling
on proliferation. The model predicted that increasing IL-15Rα

expression on the cell surface will accelerate the formation of IL-
15/IL-15R complexes, particularly at low IL-15 concentrations,
until a saturation level is reached and no further proliferative
response can be achieved (76). These results highlight the broad
and central role for IL-15 in NK cell development, differentiation,
homeostasis and priming of effector function.

Quorum sensing, which is a form of chemical communication
in bacteria whereby sensing of an autoinducer is used to
synchronize group behavior, has recently been proposed to also
control immune cell homeostasis (77). For example, colony
stimulating factor 1 (CSF1) produced by the surrounding stromal
cells is proposed to function as the autoinducer in macrophages,
whereby uptake of CSF1 controls the rate of proliferation and
survival to maintain a steady population density at homeostasis
(78). In T cells, IL-2 replaces CSF1 as the autoinducer, which
together with IL-6 has been suggested to also modulate the
differentiation from an effector T cell to a central memory
T cell (79, 80). The logical autoinducer counterpart in NK
cells is IL-15. The threshold for IL-15 induced proliferation
is subset-dependent, as observed by the onset of proliferation
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across the maturation spectrum. This is in line with the
concept of quorum sensing, whereby the level of IL-15 in
the microenvironment dictates the degree of proliferation and
overall size of the population.

The IL-15 mTOR Axis
The unique role of IL-15 in NK cell biology is largely attributed
to the IL-15 mammalian target of rapamycin (mTOR) signaling
axis and the metabolic regulation of NK cells. Mouse studies
identified a dose-dependent downstream signaling pathway,
where high dose IL-15 activated the mammalian target of
rapamycin (mTOR) as well as STAT5. mTOR, a serine/threonine
kinase consisting of the two complexes mTORC1 and mTORC2,
is a master regulator in cells. mTORC1 senses for nutrients in
the microenvironment to control metabolism while mTORC2
is involved in controlling the cytoskeletal organization of the
cell (81–83). Metabolic reprogramming due to environmental
cues has been identified as a key regulatory mechanism behind
immune cell differentiation and function in NK cells and other
immune cells (81–85). In mice, increased cytokine priming led
to metabolic reprogramming, with increased metabolic activity,
and a switch in energy source from oxidative phosphorylation
(OXPHOS) to glycolysis. An increase in metabolism allowed
for IFNγ and granzyme B production, conferring increased
functionality which could be reversed through the use of
rapamycin, an mTOR inhibitor (81). Viral infection can also
activate mTOR leading to metabolic reprogramming, as observed
in murine CMV infection122. It is possible that in a tumor setting,
a lack of available glucose due to high glycolytic activity by the
tumor cells could lead to functional inhibition due to lack of
mTOR activation (81, 86).

In addition to mediating NK cell functionality via modulation
of the cellular metabolism, mTOR may serve as a functional
rheostat during NK cell education (82, 87). Educated NK
cells exhibited higher basal mTOR activity, which was further
increased upon activating receptor ligation and also correlated
with the number of inhibitory receptors expressed (87).
Expression of SHP-1, a phosphatase required to convert
inhibitory receptor input into functional responsiveness, was
required for increased mTOR activity in educated cells (88).
Conversely, continuous activating receptor input in the absence
of inhibitor input dampened mTOR activity. Although education
is not transcriptionally regulated in human NK cells, mTOR
activity is dependent on its localization to the lysosomal
compartment which in turn can be negatively regulated
by TRPML1 (89, 90). The connection between lysosomal
remodeling during education and metabolic regulation through
mTOR is an unexplored area in NK cell biology that warrants
further investigation.

NK Cell Repertoire Dynamics and
Intra-Lineage Plasticity
At the donor level, the NK cell repertoire is vastly diverse and
unique (46). However, once the NK cell repertoire has been fully
formed and in some cases further shaped by pathogens such as
CMV, it is well-maintained over time considering the rather rapid
turnover of the cells (44, 91). Proliferation therefore plays an

important role in replenishing the NK cell pool at steady-state
and in maintaining a stable repertoire. NK cell proliferation has
mainly been examined in viral or disease settings, where it is
associated with rapid cell turnover resulting in subset skewing
toward immature NK cells with higher proliferative potential
(92–94). In a recent study we asked the question of whether or
not stable NK cell repertoires are maintained under homeostatic
proliferation (95). We hypothesized that the observed stability
was either the result of self-renewal from an immature pool of
progenitor cells followed by differentiation, or the result of intra-
lineage plasticity (BOX 1). This process has been observed in
other immune cells (96, 97) but NK cell plasticity has largely
remained unexplored (98).

BOX 1 | Cellular plasticity

Plasticity refers to phenotypic and functional changes occurring within

populations of cells. Intra-lineage plasticity, also known as functional plasticity,

refers to cells of a given lineage adapting to their surroundings in response

to cytokine or receptor input which is translated into transcriptional changes

resulting in an altered phenotype and modified functionality. An example of

this is macrophages transition between an M1 and M2 phenotype, T cells

transitioning from Th to Treg phenotype or ILC subsets transitioning between

ILC1- 3 phenotypes.

We developed a simplified model that induced a linear
onset of IL-15 induced proliferation with maximal retention
of NK cell subsets (based on NKG2A, KIR and CD57) to
mimic homeostatic conditions. We observed subset-specific
proliferation kinetics, which correlated with mTOR activation.
IL-15-induced mTORC1 upregulation prior to proliferation
onset could predict downstream proliferation 3 days later at both
the donor and subset level. Repeated sampling of the same blood
donors over time confirmed stable NK cell repertoires, but also
an intrinsic metabolic set point determining the level of mTOR
activation in response to IL-15 stimulation.

Despite subset-specific proliferation kinetics, the actual subset
frequencies at the population level remained largely stable,
suggesting that the repertoires were maintained through intra-
lineage plasticity. Indeed, sorting individual NK cell subsets prior
to proliferation revealed a surprising degree of cellular plasticity
in both immature and mature subsets. Acquisition of NKG2A in
sorted KIR+ NK cells was associated with increased proliferative
potential and decreased functionality, while the reverse was true
for CD57 acquisition by the same subset. Surprisingly, a fraction
of CD57+ NK cells lost CD57 expression, acquired NKG2A and
started to proliferate, suggesting they may not be terminally
differentiated. Rapidly cycling educated NK cells underwent
transcriptional reprogramming, resulting in a more immature
signature, while slowly cycling educated NK cells acquired amore
mature signature when compared with baseline subsets.

Our simplified in vitro homeostatic NK cell proliferation
model allowed us to examine the central role IL-15 plays in
maintaining NK cell homeostasis (Figure 2). CD57 expression
was associated with a negative influence on mTOR activation
and proliferation but enhanced functional potential. Although it
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FIGURE 2 | The functional dichotomy between proliferation and cytotoxicity

observed during IL-15-induced homeostatic proliferation. The example

illustrates the two distinct fates of sorted CD56dim KIR+ NKG2A−CD57− NK

cell depending on whether they acquire NKG2A or CD57.

is used as a main marker for subset discrimination in NK cells,
the function of CD57 remains unknown (37, 99). In neural cells,
CD57 has mainly been associated with adhesion proteins, while
binding to the IL-6 receptor has also been proposed (100). It
would be interesting to further delineate whether CD57 plays a
functional role, or if it is simply a surrogate marker for other
ongoing cellular modifications.

Due to their differential mTOR activation profile, it is
tempting to speculate that NKG2A+ and CD57+ cells display
distinct metabolic profiles. Metabolic reprogramming is
responsible for the differentiation of naïve T cells into active
effector and later into memory T cells (101–106). The transition
of naïve into effector T cells depends on the upregulation of
glycolysis and the TCA cycle to provide material for de-novo
synthesis of proteins, nucleic acids and lipids, whereas formation
of memory T cells rely on OXPHOS and fatty acid oxidation
(FAO) (107). Such differential use of metabolic programs has
also been observed in Th cell subsets (108). In addition, T cell
memory formation is influenced through the reorganization
of mitochondrial content (109). Interestingly, survival of
memory-like NK cells in mice upon CMV infection is dependent
on sufficient degradation of dysfunctional mitochondria via
mitophagy upon virus clearance (110).

Differences in terms of proliferation speed, phenotype,
and functionality between homeostatic and spontaneous
proliferation have been investigated in murine T cells (111–113).
Spontaneous proliferation, occurring in severely lymphopenic
mice, was characterized by a rapid onset of cell division that
was cytokine-independent. Homeostatic proliferation, on the
other hand, occurred in mildly lymphopenic mice at a slower
division rate and required both cytokine and T cell receptor
(TCR) stimulation. The proliferation-induced phenotype was
reverted after removal of the proliferation cues and cytotoxic
capacity of CD8+ T cells was lost during the initial phase of
intense proliferation (111–113).

Considering the asymmetric PI3K and mTOR activity post-
cell division observed in T cells and its role in controlling
differentiation fate and the functional dichotomy in proliferating
vs. arrested NK cells (101–106), it would be of interest to do
microscopy studies of cellular division or functional interactions
with target cells. Based on the induced transcriptional signature
in rapidly cycling NK cells, which included both RNA-modifying
metabolic genes and actin filament organization genes (95), the
loss of functionality in rapidly cycling cells may be due to
underlying deficits at the immune synapse. Conjugate formation
experiments combined with F-actin staining at the site of
the immune synapse would further shed light on the loss of
functionality observed during intense homeostatic proliferation.

NK Cell Homeostasis in vivo
Given the essential role of IL-15 on NK cells, stimulation of IL-15
signaling pathways has been explored in clinical settings (114–
120). In this regard, three main strategies have been pursued;
using recombinant-human IL-15 (116) generated by E. coli,
an IL-15 superagonist, ALT-803 (114, 115) and transfection
of an IL-15 containing CAR construct (121, 122). These have
been thus far tested in Phase I and II clinical trials, with
recombinant-human IL-15 and ALT-803 both showing moderate
success in inducing NK cell proliferation and activation in
vivo and in particular cases inducing disease remission. A
limitation of this approach has been the induction of some minor
side effects relating to an increased inflammatory environment.
Subcutaneous delivery of the compounds has resulted in a partial
reduction of these side effects (115). Recent pre-clinical studies
have highlighted the potential of combination therapy using
this IL-15 signaling stimulation and other immunotherapeutic
agents such as monoclonal antibodies or check-point blockade
(118, 119). Reflecting this, there are currently more than 100
registered clinical trials exploring IL-15 stimulation via either of
these two methods in a series of different cancer settings (www.
clinicaltrials.gov). In vitro, transfection with an IL-15 containing
CAR construct sustained autonomous NK cell growth over 42
days and increased systemic IL-15 serum levels were observed
in mouse studies (121). However, in 11 patients treated in a
Phase I/II trial, the detection of infused CAR+ NK cells by flow
cytometry was limited to the first 2 weeks post infusion (122).

In the setting of stem cell transplantation, NK cells are
the first lymphocyte population that can be detected following
engraftment (123). Their ability to mediate graft-vs.-leukemia
(GVL) effects is vital for elimination of residual disease, as
increased number of NK cells after transplantation result in
better treatment outcome (124, 125). Insights into the specificity
of NK cell alloreactivity, determined by specific combinations
of KIR and HLA, paved the way for the ground-breaking
discovery of a potential role of NK cells in mediating GVL in
haploidentical HSCT against AML (126, 127). Studies aiming
at harnessing NK cell alloreactivity in the context of HSCT
have recently been reviewed (128, 129). The indication that
NK cells may deliver a potent GVL effect in the setting of
HSCT inspired the whole NK cell community to develop
adoptive NK cell therapy based on transfer of “KIR ligand
mismatched” NK cells across HLA barriers to promote missing
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self-recognition. Whereas many studies did not find a beneficial
effect of genetic KIR ligand mismatch, calculation of the
functional dose of KIR ligand mismatched NK cells was
associated with less relapse after NK cell therapy against
AML (130–132).

A recent series of Phase III clinical trials have brought mTOR
inhibition to the forefront of transplantation (117, 120). In
both of these studies a series of patients received Sirolimus,
an alternate name for rapamycin, as a prophylactic against
graft vs. host disease (GVHD). Sandmaier et al. reported that
inclusion of Sirolimus to the standard calcineurin inhibitor
treatment showed decreased incidence of grade 2–4 acute
GVHD. Similarly, increased overall survival, and progression-
free survival, as well as decreased non-relapse related mortality
was observed in the sirolimus treated group. Due to the
clear improved benefit of Sirolimus treatment, the trial carried
out by Sandmaier et al. was terminated prior to complete
patient recruitment.

On the other hand, a parallel study by Gooptu et al.
did not report significant differences compared to standard
treatment regarding GVHD incidence, progression free survival
nor overall survival (117). This discrepancy may be due
to the differences in standard treatment and dosage of
Sirolimus between the two studies. In the latter study, the
immune reconstitution was evaluated at a series of timepoints
up to 24 months. Sirolimus treatment led to a decreased
lymphocyte cell count in the first 3 months of treatment,
and an increased ratio of regulatory T cells to CD8+ T cells
throughout the first 6 months of treatment. Lower NK cell
counts were observed in the first month following Sirolimus
treatment, although this recovered to similar levels compared
to standard treatment by the 3rd month. Given the phenotypic
and functional heterogeneity of NK cell subsets and the
critical role of mTOR and IL-15 signaling in driving NK cell
plasticity, it would be of great interest to further evaluate
the precise composition of the NK cell compartment during
such therapies.

Cytokine-Based Expansion Protocols for
NK Cell Therapy
There are several up to date and comprehensive reviews
describing the prospects of using various preparations of NK cells
in cell-based immunotherapy (133, 134). These include strategies
based on autologous and allogeneic NK cells that have been
stimulated by various cytokines alone or in combination with
irradiated feeder cells expressing membrane bound cytokines
such as IL-21 or IL-15 (121, 135–138). Therefore, we will focus on
a general discussion on how these protocols may drive dramatic
phenotypic and functional changes to the NK cell repertoire
(34, 95). To expand large numbers of cells for multi-dosing
schemes, many strategies are based on supra-physiological levels
of cytokines, including any combination of IL-2, IL-15, IL-12,
and IL-18 (139, 140). However, this can result in severe and
acute cytokine deprivation post-infusion as the cells become
“addicted” to cytokines (BOX 2). Severe side-effects (141, 142)
prevent patients from being treated with the same cytokines and

persistence is further limited through clearance of infused NK
cells by host immunity.

BOX 2 | Cellular addiction

Cytokine priming results in intracellular signaling changes occurring within

cells. Continuous stimulation with non-physiological cytokine levels can

result in an altered cellular state, which requires further cytokine stimulation

to support survival. This can be referred to as cytokine-dependence

or addiction, whereby cytokine withdrawal can lead to detrimental

consequences to the cell.

The Balance Between Pro- and
Anti-apoptotic Molecules During IL-15
Driven Proliferation
We recently set out to characterize the mechanism behind IL-
15 addiction and withdrawal in expanded NK cells. NK cells
exhibited a dose-dependent IL-15 addiction, where high-doses
induced rapid proliferation, skewing toward a naïve phenotype,
and subsequent crash upon cytokine withdrawal (143). Timing of
IL-15 dosing is crucial for NK cell survival and effector function
as chronic high-dose IL-15 stimulation leads to decreased
viability of NK cells with reduced respiratory spare capacity and
functional activity (144).

Numerous pro- and anti-apoptotic genes make up the
apoptosis network balancing the outcome of the cell during
various types of stimulations (70, 145–147). Within resting
NK cells, BCL-2 has been identified as an important anti-
apoptotic protein which can be further upregulated through IL-
15 stimulation, leading to downstream STAT5, but not mTOR
activation (82, 148). In actively proliferating NK cells, MCL-1
expression is vital to maintain viability (149). BIM is a pro-
apoptotic molecule and its downstream target BAX is directly
inhibited by BCL-2 (147). In murine effector CD8+ T cells,
increased BIM levels are balanced by increased BCL-2 levels,
expression of which dictates the amount of BIM that can
be tolerated (150). Similarly, in murine NK cells, the BCL-
2/BIM ratio was influenced by IL-15 stimulation and withdrawal,
whereby changes in the ratio could render the cells sensitive
to cell death (70, 150, 151). In line with these studies, we
observed an IL-15 dose-dependent increase in BCL-2, MCL-1,
and BIM expression. BCL-2 and MCL-1 were both crucial for
survival in NK cells stimulated with high-dose IL-15 as shown
through blocking experiments. Interestingly, rapidly cycling NK
cells exhibited reduced BCL-2 levels compared to slowly or non-
cycling NK cells during their expansion phase, in line with T cell
proliferation studies (145).

After cytokine withdrawal, anti-apoptotic proteins decreased,
and a potent apoptosis-inducing splice variant, BIM S, (152,
153) was preferentially upregulated in proliferating cells and
remained highly expressed until 24 h after cytokine withdrawal.
This severely altered the pro/anti-apoptotic ratio, exposing
rapidly cycling cells to high levels of toxic BIM S within 24 h
after cytokine withdrawal (Figure 3). The importance of these

Frontiers in Immunology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 812

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pfefferle et al. Natural Killer Cell Homeostasis

FIGURE 3 | The mechanism by which apoptosis is induced in cycling NK cells

after IL-15 induced cytokine dependence and subsequent withdrawal. The

curves represent expression of BIM short (red) and BCL-2 (blue) over culture

time.

apoptotic proteins in IL-15 mediated survival and function has
also been observed in murine studies (70). How homeostatic
and induced proliferation affects NK cell cytotoxicity, and how
apoptosis is induced in cycling cells upon cytokine withdrawal,
has potentially important implications for current cell therapy
expansion protocols.

CONCLUDING REMARKS

NK cells circulate in a pre-primed state full of effector molecules,
such as granzyme B and perforin, and have a natural ability
to kill cancer cells. Based on their cytotoxic capacity they hold
great potential in the clinic as a cancer treatment, made evident
by the number of ongoing clinical trials. However, to date
most completed and ongoing clinical trials are based on the
transfer of cytokine-activated polyclonal NK cell populations
from donors with very variable NK cell repertoires. To fully
harness the clinical potential of NK cells, future trials need to
be founded on recent breakthroughs in our understanding of

the vast repertoire diversity and the fundamental mechanisms
that govern the intrinsic functional potential of distinct NK cell
subsets at steady state and following cytokine stimulation.

Understanding how NK cells repertoires are formed and
maintained over time, and what functional roles individual
cell subsets perform in a homeostatic setting, are important
to improve current therapies and develop future treatment
strategies. Generating an “ideal” NK cell product for treatment
could involve modifying existing cells to improve functionality,
expanding highly cytotoxic subsets while ensuring retention of
functionality or designing a “synthetic” genetically engineered
killer cell from induced pluripotent stem cells.

Furthermore, we need to understand how NK cells are
functionally shaped by their surroundings. The soluble
factors, metabolic cues, fluctuations in oxygen levels, and
pH encountered by an NK cell in the tumor microenvironment
are very different from steady state and their impact on NK
cell function and persistence cannot be underestimated. This is
particularly difficult to study in the human setting, with mouse
models only providing an approximation.

By understanding the basic biology, from development to
differentiation to receptor and cytokine input, we will build
up our tool kit that can then be applied to design and
develop effective treatment strategies. After all, the “natural”
killing capacity is there, we just need to understand how to
harness it.
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