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A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been

indicated in the pathogenesis of chronic inflammatory and autoimmune diseases.

A positive effect of blockade of IL-17 secreted by autoreactive T cells has been

shown in various inflammatory diseases. Several cytokines, whose production is

affected by environmental factors, control Th17 differentiation and its maintenance

in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of

chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune

encephalomyelitis (EAE), Alzheimer’s disease, and ischemic brain injury are reviewed

here. The role of environmental stimuli in Th17 differentiation is also summarized,

highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
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INTRODUCTION

Interleukin-17 (IL-17) is the first-described and founder member of the IL-17 family of
inflammatory cytokines, which contains six members: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and
IL-17F. The gene that encodes IL-17A was discovered in 1993 as an RNA transcript homologous
to a Herpesvirus Saimiri gene, and the protein, initially called CTLA-8, was cloned (1). However,
IL-17 attracted widespread attention in 2005, when two independent groups simultaneously
characterized a new population of T helper (Th) CD4+ cells that produced IL-17A, named Th17
(2, 3). T helper CD4+ cells were first marked as the principal source of IL-17, but it was later
shown that CD8+ cells also produce this cytokine, and these cells are termed Tc17. Also, several
types of innate immune cells such as γδ T, natural killer T (NKT), TCRβ+ natural Th17, and Type
3 innate lymphoid cells (ILC3) produce IL-17 (4). All of these IL-17-producing cells are termed
“Type 17” cells.

The proinflammatory activities of IL-17 are key in anti-microbial protection of the host,
but uncontrolled IL-17 activity is associated with different immunopathological conditions,
autoimmune diseases, and cancer progression (5). A critical role for IL-17R signaling in protection
against bacterial and fungal infections, particularly by Candida albicans and Klebsiella pneumoniae,
has been described in various studies in mice (6). In humans, mutations in IL-17 signaling genes
(ACT1, IL17RA, IL17RC) are associated with chronic mucocutaneous candidiasis (5, 7, 8). The
same condition also develops in individuals with AIRE deficiency, a condition accompanied by the
production of anti-IL-17 antibodies (9).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00947
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00947&domain=pdf&date_stamp=2020-06-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marijaposta@gmail.com
https://doi.org/10.3389/fimmu.2020.00947
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00947/full
http://loop.frontiersin.org/people/366081/overview
http://loop.frontiersin.org/people/628656/overview
http://loop.frontiersin.org/people/226813/overview
http://loop.frontiersin.org/people/947194/overview
http://loop.frontiersin.org/people/491303/overview
http://loop.frontiersin.org/people/416220/overview


Milovanovic et al. Interleukin-17 in Neuroinflammation

Anti-IL-17A antibodies have shown therapeutic effect in
various inflammatory diseases. Several anti-IL-17 antibodies have
been approved for the treatment of plaque psoriasis (10, 11).
Positive effects of IL-17 blockade have been shown in clinical
trials of ankylosing spondylitis and psoriatic arthritis (12). Anti-
IL17R antibody treatment of Crohn’s disease has been shown
to worsen the disease (13, 14), whereas targeting cytokines
that control the differentiation of Th17 cells and therefore IL-
17 secretion with anti-p40 subunit antibodies (Ustekinumab,
Briakinumab) and anti-IL-6 receptor antibody (Tocilizumab)
showed efficacy (15–17). These findings indicate that IL-17,
by maintaining the integrity of the intestinal barrier, plays a
dominantly protective role that overcomes its potential for tissue
destruction in inflammatory bowel disease (18). Clinical use of
antibodies that target IL-17 signaling gave insights into functions
of IL-17 in humans.

IL-17R SIGNALING

The family of IL-17 receptors contains five different receptors
(IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE) with
common a cytoplasmic motif known as the SEFIR domain (19).
IL-17 exists either as a homodimer or as a heterodimer, and
both forms of the cytokine induce signals through dimeric IL-
17RA and IL-17RC receptor complex (5). Binding of IL-17 to
its receptor induces activation of several independent signaling
pathways mediated by a cytosolic adaptor protein, Act1, and
different TRAF proteins (5, 19, 20). IL-17 signaling mediated
through TRAF6 and TRAF4 results in the transcription of
inflammatory genes. Activation of TRAF6 by binding of IL-17
to its receptor leads to triggering of NF-κB, C/EBPβ, C/EBPδ,
and MAPK pathways, while TRAF4 activation in complex with
MEKK3 and MEK5 activates ERK5 (21). On the other hand,
the mRNA stability of genes controlled by IL-17 is controlled
IL-17-activated TRAF2 and TRAF5 (22).

Expression of IL-17R is ubiquitous, but the main targets
of IL-17 are non-hematopoietic cells (23). IL-17 signaling
induces the production of proinflammatory cytokines (IL-1,
IL-6, G-CSF, GM-CSF, and TNF) and chemokines (CXCL1,
CXCL2, CXCL5, CCL2, CCL7, CCL20, and IL-8), matrix
metalloproteinases (MMP1, MMP3, MMP9, and MMP13), and
anti-microbial peptides (β-defensins, S-100 proteins) (24, 25).
The biological activities of IL-17 are often the result of synergistic
or cooperative effects of IL-17 and other inflammatory cytokines
(26). There are several mechanisms of negative regulation of
IL-17 signal transduction. The negative regulators of IL-17
signaling are different ubiquitinases, deubiquitinases, kinases,
endoribonuclease, and micro RNAs (21).

However, there is tissue-specific IL-17-dependent gene
induction (27). In gut epithelium, IL-17 regulates the expression
of several molecules that contribute to the preservation of
continuous intestinal epithelium. In renal epithelial cells, IL-
17 induces the expression of kallikrein 1 (28), while in salivary
epithelium, it induces the expression of histatins (29), molecules
that are involved in protection against C. albicans. IL-17-
mediated osteolysis, which is detected in periodontitis andmouse

models of arthritis or periodontal disease, is probably mediated
by a receptor activator of NF-κB ligand (RANKL, TNFSF11, or
osteoprotegerin ligand, OPGL) whose espression is induced by
IL-17 (30, 31).

DIFFERENTIATION OF TH17 CELLS

Th17 cells are classified as an inflammatory subset of T helper
cells that perform key roles at mucosal surfaces where they
mediate protection from bacteria and fungi and also contribute to
the regulation of the mutualistic microorganisms that constitute
the microbiota (32, 33). However, Th17 cells are also one of
the major factors in the pathogenesis of several autoimmune
diseases, including autoimmune disease of the central nervous
system, Multiple sclerosis (MS) (2, 3, 34–39). The process of
differentiation of naive CD4+ cells into Th17 cells is very similar
to that of Th1 differentiation, but transcriptional factors that
mediate this are distinct and it require stimulation with the
cytokines IL-1β, IL-6, IL-21, and TGFβ, which are produced
by professional antigen-presenting cells (APCs) (32, 40–47).
Cytokines produced by APCs stimulate the JAK-STAT3 axis
and upregulate the expression of transcription factors RORγt
and RORα, identified as markers of the Th17 lineage (48–
52). The differentiation of Th17 cells is reduced in the states
of IL-6, IL-21, TGFβ, or RORγt deficiency, which leads to
reduced production of Th17 cytokines and impaired defense
against extracellular bacteria and fungi but also attenuation of
autoimmunity (41, 48, 53). However, an alternative mode for
the differentiation of pathogenic Th17 cells in the absence of
TGFβ signaling has been described in vivo in Experimental
Autoimmune Encephalomyelitis (EAE) (54). Cytokines that
induce Th1 and Th2 differentiation are described as the main
inhibitors of Th17 differentiation. IL-2 is a key repressor of
Th17 differentiation, as it activates transcription factor STAT5
and thus inhibits IL-17 production (55), while inhibition of IL-
2 expression in T lymphocytes stimulates Th17 cell development
(56, 57).

In animal models of autoimmune diseases, proinflammatory
cytokines IL-1β and IL-23 have been shown to be enhancers
and stabilizers of partially or completely differentiated effector
Th17 cells, which dominantly express corresponding receptors
for these cytokines, IL-1R1 and IL-23R (44, 58–61). In line with
this observation, transfer of Th17 cells in vitro obtained by
exposure to IL-6 and TGFβ does not induce EAE in mouse, while
Th17 cells obtained by stimulation of naive cells with IL-1β, IL-6,
and IL-23 achieve the pathogenic potential and are able to elicit
EAE (55). In fact, it was later shown that IL-6 and TGFβ in Th17
cells induce production of anti-inflammatory cytokine IL-10,
while IL-23 has a critical role in the induction of the endogenous
cytokine TGFβ3. Suppression of IL-10 production in Th17 cells
during their differentiation results in high expressions of T-bet,
IL-23R, and GM-CSF, markers of Th17 cells with pathogenic
potential (62, 63). Furthermore, IL-1 and IL-23 stimulation
through JunB and SOCS family members (64, 65) affects the
effector profile of Th17 cells and induces the development of
highly pathogenic double-positive IL-17+ IFNγ+ and IL-17+
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GM-CSF+ T cells (66–68). These pathogenic double-positive
cells originate from Th17 cells. However, IL-23 is not required
for the differentiation and maintenance of nonpathogenic Th17
cells in the gut and functional plasticity toward T follicular helper
cells (66, 68). The novel genes Gpr65, Toso, and Plzp, identified
by the single-cell RNA-sequencing analysis of ex vivo Th17 cells,
are found to promote Th17 pathogenicity and to cause EAE and
chronic inflammation in the CNS ofmice, while CD5 antigen-like
(CD5L) attenuates Th17 cell-mediated disease (69, 70).

Before activation, T cells do not express receptors for
cytokines IL-1 and IL-23 (58, 71). During the initial phase of
Th17 differentiation, IL-6 induces binding of RORγt to the
Il1r1 locus and binding of STAT3 to the Il23r locus, leading to
the expression of these genes (54). Phosphorylation of STAT3
increases the expression of the conservedmiR-183/96/182 cluster,
which in turn reduces the expression of Foxo1, a transcription
factor that negatively regulates the expressions of IL-1R1 and IL-
23R (72). The Major Transcriptional Effector of Notch Signaling,
RBPJ, promotes IL-23R expression and induces pathogenicity
of Th17 cells (73). The differentiation of Th17 is stabilized by
positive feed-forward loop stimulation with IL-1β and IL-23,
accompanied by upregulation of IL-1R and IL-23R (50, 74).
The hallmark of effector Th17 cells is IL-23R expression, and
its signaling promotes the expression of transcriptional factor
Blimp-1, which induces the expression of several genes in vivo,
leading to the enhanced pathogenicity of Th17 cells (75).

The differentiation of human Th17 cells in vitro, similar
to mouse Th17 cells, requires IL-1, IL-6, IL-23, and TGFβ.
Initially, a few studies demonstrated that TGFβ was not required,
while stimulation with IL-1β, IL-6, and IL-23 was sufficient for
induction of human Th17 cell differentiation (76, 77). Later
studies showed that TGFβ, IL-23, and IL-1β (or IL-6) were the
key factors needed for differentiation of human Th17 cells under
serum-free conditions, since serum could be the source of TGFβ
or aryl hydrocarbon receptor (AhR) ligands (78, 79). In line with
findings regarding Th17 differentiation inmouse, IL-23 is also the
key player in the differentiation of human Th17 cells; moreover,
human CD4+ T cells express IL-23R before activation and
immediately respond to IL-23, while IL-23 signals in accordance
with stimulation with IL-1β further upregulate IL-23R expression
(78, 80). Described dominant-negative mutations of STAT3 gene,
which can be manifested by hyper-immunoglobulin E syndrome,
inadequate Th17 cell differentiation, and reduced production
of IL-17, supports the roles of STAT3 in the IL-6- and IL-23-
mediated process of Th17 differentiation in humans (81, 82).

ENVIRONMENTAL FACTORS THAT
AFFECT THE PATHOGENIC POTENTIAL OF
TH17 CELLS

Different environmental factors modulate the reactions of the
immune system and strongly accelerate the pathogenic potential
of Th17 cells. T helper cells under Th17 culture condition
increase expression of the aryl hydrocarbon receptor (AhR), a
ligand-dependent transcription factor that senses environmental
toxins and endogenous molecules such as metabolites of

tryptophan, and the stimulation of this molecule induces the
release of IL-17 and IL-22 by effector Th17 cells (83, 84).
The transcription factor, hypoxia-inducible factor 1 (HIF-1), a
key metabolic sensor, directly regulates expression of RORγt
and IL-17 at the transcriptional level and promotes Th17
differentiation (85, 86). Signaling via kinase complex mTORC1
coordinates metabolic and transcriptional programs that regulate
the development of pathogenic Th17 cells (87). Disrupted
mTORC1 signaling in Th17 cells leads to upregulated expression
of TCF-1 (transcription factor T-cell factor 1) and development
of stemness-like features, while transdifferentiation in the Th1 is
arrested. Mice with blocked mTORC1 activity are protected from
EAE, while their Th17 cells do not express T-bet and IFN-γ (87).

A high-salt diet can enhance the differentiation of Th17
cells and thus contribute to the development of EAE (88,
89). Exposure to a high-salt diet induces the expression of
serum glucocorticoid kinase 1 (SGK1), which promotes the
expression of IL-23R and thus stabilizes pathogenic Th17 cells
and enhances the production of GM-CSF (88, 89). Since mice
with T-cell-specific deletion of Sgk1 develop attenuated EAE,
without exacerbation after exposure to a high-salt diet, it appears
that a high-salt diet modulates EAE severity by its direct effect on
T-cell differentiation (88).

TH17 AND IL-17 IN MULTIPLE SCLEROSIS
AND EAE

Multiple sclerosis is a chronic inflammatory disease of the
central nervous system (CNS) that is characterized by damage
to myelinated axons in the CNS, leading to the loss of myelin
sheath. Inflammatory processes that cause myelin damage lead to
the destruction of oligodendrocytes and axons, with subsequent
axonal loss, and transient or permanent loss of neurologic
functions, resulting in various types of disabilities of different
severity (90). An overall reduction in CNS volume is very
often seen in MS. Localized inflammatory foci can be found
in the white matter in almost all areas of CNS, with a
considerable number of plaques in the gray matter and anywhere
in the CNS parenchyma, including the optic nerves, brainstem,
periventricular white matter, and cervical spinal cord (91–93).
The course of MS and clinical symptoms are highly variable
and unpredictable, varying from a relatively benign illness with
minimal impairment to a rapidly evolving and life-threatening
disease that requires serious medical treatment (94).

The precise etiology of MS is unknown, but it is considered
that both genetic and environmental factors play significant
roles in its development (95). The pathogenesis of MS also
remains elusive, but it is believed that MS is an autoimmune
disease mediated by auto-reactive CD4+ T cells specific for
myelin antigens. Autoreactive T cells initiate and perpetuate an
inflammatory cascade, resulting in demyelination and axonal
loss (96). The huge heterogeneity of disease course in patients
with MS and in the histopathological features seen in the CNS
indicates that multiple immunopathological pathways contribute
to the disease development. Evidence from clinical studies
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suggests that inflammatory mediators, such as cytokines, play an
essential role in the pathogenesis of MS (91, 97).

The pathogenesis of MS has been mostly described by analogy
to EAE, an animal model of MS (98–100). In typical EAE
induced by immunization with autoantigen, myelin-specific
CD4+ T cells are activated in the lymph organs in the periphery,
develop encephalitogenic potential, and infiltrate the CNS, where
they recognize specific autoantigens presented by local antigen-
presenting cells (APCs) and reactivate. The inflammatory process
in MS is initiated by binding of pathogen-associated molecular
patterns (PAMPs) from pathogens or commensal bacteria and
damage-associated molecular patterns (DAMPs) from dead or
dying cells to pathogen recognition receptors (PRRs), leading
to activation of innate immune cells and production of IL-1,
IL-6, IL-12, IL-18, and IL-23, cytokines that promote the
differentiation and expansion of encephalitogenic Th1 and Th17
cells (101, 102). Myelin-specific CD4+ T cells that enter the
CNS are reactivated and expanded by the IL-1β and IL-23
produced by resident microglia and infiltrating inflammatory
monocytes. Encephalityogenic Th1 and Th17 cells in the CNS
produce inflammatory cytokines that activate glial cells to
produce inflammatory mediators, matrix metalloproteinases,
chemokines, and free radicals, which induce myelin damage,
leading to manifestations of neurologic deficits (65, 66, 101,
103). One of the main differences between MS and animal
models (EAE) is the localization of demyelination. In EAE
demyelination, is mainly located in the spinal cord, whereas in
MS, this process mainly affects the cerebral and cerebellar cortex
(104). The dominant population of T cells in active MS lesions
are CD8+ T cells, but in EAE, the primary encephalitogenic
T cells and dominant population in CNS infiltrates are CD4+
T cells, with less evidence for the role of CD8+ T cells (105).
Neurodegeneration is more typical for MS, while in EAE models,
the dominant finding is neuroinflammation (106). In the later
stages of MS, neurodegeneration appears to be independent of
the inflammatory process, which cannot be found in the acute
inflammatory EAE model (107). However, axonal and neuronal
loss and demyelination with remyelination can be observed in
EAE in Biozzi antibody high (ABH) mice (108). Despite the
limitations of the EAE models, the main findings regarding MS
pathogenesis have come from EAE studies, as has the design,
development, and validation of many therapeutics used for the
treatment of MS (109).

Cytokines play roles in the pathogenesis of MS and EAE
and in the processes of inducing oligodendrocyte cell death,
neuronal dysfunction, and axonal degeneration (110). Th17 cells
are considered to be one of the key effectors of autoimmune
inflammatory diseases, including MS and experimental disease
EAE (2, 111–113). Increased expression of IL-17- and Th17-
associated transcripts (Il6, Il17a) has been demonstrated in MS
plaques collected at autopsy (114). Further, IL-17 was marked as
the highest-ranking gene expressed in the CNS of MS patients
at autopsy (114); this was before the discovery of Th17 cells.
Also, another report indicated that MS is a primarily IL-17-
mediated autoimmune disease (78). Later, the results of various
studies showed that a single nucleotide polymorphism (SNP) in
IL-23R gene is linked to several human autoimmune diseases,

indicating that IL-23 signaling is an essential event in the
development of pathogenic Th17 cells. It is known that IL-17
can stimulate the production of other proinflammatory cytokines
and chemokines and thus evince a powerful proinflammatory
effect (115). The concentration of IL-17 is significantly higher in
the serum of MS patients with relapses and remissions than in
normal, healthy subjects (116) and is in correlation with disease
activity, as demonstrated by magnetic resonance imaging (117).
Consistently with the increased concentration of IL-17 in liquor
and peripheral blood of MS patients, the proportion of Th17
cells is also increased, especially during relapses, while there is
no change in Th1 cells (118, 119). Th17 cells are able to cross
the blood–brain barrier, and their presence in MS lesions is
associated with enhanced neuroinflammation (120). It has been
shown that IFN-γ-producing Th17 cells cross the blood–brain
barrier and accumulate in the CNS during the active phase of
MS (121). Besides CD4+ T cells, there is evidence that IL-17-
producing CD8T cells contribute to CNS tissue damage in EAE
and are also present in the liquor of patients with MS (122, 123).
Importantly, it has been documented that the cells that enter the
CNS in the first wave of CNS infiltration are Th17 cells (124),
followed by infiltration with other immune cells that further
promote and sustain tissue inflammation. Also, the presence of
IL-17- and IL-22-producing Th cells has been reported in the
early stages of MS (125).

Beneficial effects of treatment with rituximab, blocking anti-
CD20 antibody, in EAE are associated with decreased production
of several cytokines, including IL-17 (126). Neutralization of IL-
17 can significantly attenuate the progress of EAE by attenuating
the induction of pathogenic cytokines (58). Also, EAE severity
was ameliorated in IL-17-deficient animals (123, 127, 128), while
the disease was mild, with delayed onset, in RORγt-deficient
mice (48).

One study indicates that the beneficial effect of vitamin
D supplementation in MS patients is mediated by alleviating
the percentage of pathogenic T-cell subsets that produce IL-
17 (129). It has also recently been shown that amelioration
of MS by dimethyl fumarate is associated with suppression of
IL-17+ CD8+ Tc17 cells (130). The beneficial effect of statins
in some forms of MS could be due to their effect on Th17
cells (131). Phase IIa study has been conducted in order to
investigate possible beneficial effects of Secukinumab, an IL-
17A-neutralizing monoclonal antibody. No adverse effects of
Secukinumab were detected, while the results of this study
indicate that blocking IL-17A with an antibody may reduce MRI
lesion activity in MS (132).

There are studies that demonstrate the importance of Th17
cells in EAE and MS, but there is also evidence that indicates that
Th1 cells are the main mediators of neuropathology in the EAE
model (113, 133). Several reports indicated that IFN-γ-deficient
and IFN-γR-deficient mice, as well as anti-IFN-γ-treated mice,
develop EAE (134, 135). Also, there are reports showing a
protective role for IFN-γ in EAE, mediated by the supression
of pathogenic Th17 cells (3). The presence of T cells that
coexpress IL-17 and IFN-γ under inflammatory situations has
been reported (136, 137). These Th1/Th17 cells were noticed in
the CNS of mice with EAE (138). Data obtained from the mouse
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studies indicate that Th17 cells lacking Il17a generated in vitro
are able to induce EAE upon adoptive transfer, similar to wild-
type Th17 cells (127, 139). Finally, it seems that there is significant
plasticity of Th17 cells, with evidence that lymphocytes obtained
from the blood of MS patients have an increased potential to
switch from IL-17-secreting Th17 cells to IFN-γ-secreting Th1,
also called ex-Th17 cells (121).

Several studies have demonstrated that IL-23, a cytokine
essential for the differentiation and expansion of Th17 cells,
promotes EAE more robustly than IL-12, a cytokine that
stimulates the development of INF-γ-producing Th1 cells (140).
IL-23 is a covalent heterodimer of p40 (IL-12) and p19 (IL-
23) subunits (70). IL-12 and IL-23 share the p40 subunit. The
same cell types, mainly dendritic cells, produce both of these
two cytokines, but their relative ratio depends on the nature
of stimuli that activate dendritic cells (141). IL-12Rβ2-deficient
mice with excluded IL-23 signaling are more susceptible to EAE,
develop disease earlier, and havemore severe disease, with greater
demyelination and CNS inflammation, compared to WT mice
(142). This result was contrary to findings in IL-12Rβ1-deficient
mice (excluded IL-12 signaling) (143). Also, it has been shown
that IL-23, not IL-12, plays the key role in the development of
CNS autoimmune inflammation, affecting the subset of memory
Th1 cells (144). It has also been shown that IL-23 induces
differentiation of highly encephalitogenic Th cells that produce
IL-17A (145).

In attempts to clearly define the roles of Th1 and Th17
subpopulations in MS pathogenesis, it was shown that the
transfer of Th17 cells induces more severe EAE compared
to Th1 cells (58). Another study showed that autoantigen-
specific Th1 and Th17 cells were able to induce disease
with similar severity but with different pathological findings
(133). Th1-mediated neuroinflammation was characterized
by macrophage infiltration, while, in Th17-mediated disease,
neutrophil predominated in CNS infiltrates (133). Also, it
was found that Th17 cells induce mainly brain damage, in
contrast to Th1 cells, which dominantly induce spinal cord
inflammation (146).

IL-17 mediates EAE development by the stimulation of IL-
17R expressed on endothelial cells, astrocytes, microglia, and
resident neuroectodermal cells (147). Mouse astrocytes express
receptor for IL-17 (148) when stimulated with recombinant IL-
17A in vitro, but also, in vivo in the EAE model, they produce
various cytokines and chemokines, IL-6, TNFα, CCL2, CCL3,
CCL20, CXCL1, CXCL2, CXCL9, CXCL10, and CXCL11 (IP-
9) (149–151), that promote the influx of immune cells into
the CNS and mediate neuroinflammation. Similarly, human
astrocytes cultured with IL-17 in vitro produce IL-6, a cytokine
that perpetuates the differentiation of CD4 naive cells into Th17
cells (152). The role of IL-17-mediated activation of astrocytes
in EAE pathogenesis was confirmed by attenuation of EAE in
animals with blocked IL-17 signaling in astrocytes (152). IL-17
also contributes to EAE development by affecting the activity of
NG2+ oligodendrocyte precursor cells (OPCs) (153). Further,
in vitro treatment of these cells with IL-17 strongly inhibits
the maturation of oligodendrocytes and reduces their survival
(154). Another study also indicates that IL-17 mediates apoptosis

and inhibits differentiation of oligodendrocytes in vitro (155).
IL-17 stimulates the maturation of primary OPCs and their
participation in inflammatory processes (156). Microglial cells
stimulated in vitro with IL-17 produce inflammatory mediators
IL-6 and CXCL2, while only LPS pre-stimulated microglia exert
enhanced cytotoxic effects (157). Further, microglial cells co-
cultured with Th1/Th17 cells, but not Th1-only cells, produce
high amounts of IL-1β, IL-6, and TNF-α, which promote further
Th17 differentiation, neuroinflammation, and damage (158). IL-
17 disrupts blood–brain barrier (BBB) tight junctions in vitro
and in vivo in MS and promotes CNS inflammation (120). In
an EAE model, it has been shown that IL-17 disrupts BBB by
the induction of oxidative stress in endothelial cells accompanied
by down-modulation of the tight junction molecule occludin
(159). IL-17A levels are elevated in the CSF of relapsing-remitting
MS patients, and this level correlates with the level of BBB
dysfunction. Also, the treatment of BBB cell line hCMEC/D3
with a combination of IL-17A and IL-6 reduces the expression of
tight junction-associated genes and disrupts monolayer integrity
(160). Indirect evidence supports the role of IL-17 in direct
neuronal damage. Different neuronal populations express IL-17
receptor (161). Direct contact, resembling immune synapses, of
MOG-specific Th17 cells and neurons in demyelinating lesions
associated with axonal damage has been shown by confocal,
electron, and intravital microscopy, indicating the central role of
Th17 cells in neuronal dysfunction (162).

IL-22, a cytokine whose production specifically induces IL-
23, contributes to the pathogenicity of Th17 cells (163). It has
been reported that IL-22 contributes to MS severity (120) as
well as dysregulated expression of IL-22 and its antagonist,
IL-22BP (164). Single nucleotide polymorphism in the IL-
22R A2 gene is associated with MS risk (91, 165). IL-22 can
contribute to MS pathogenesis by enhancing the expression of
Fas in oligodendrocytes, resulting in oligodendrocytic apoptosis,
and decreasing the expression of FOXP3 in T cells (166).
Production of IL-22 is increased during the peak phase of
EAE and is decreased during remission (167). However, beside
involvement inmany neurological inflammations, IL-22may also
be protective (168).

Although Th17 cells and their hallmark cytokines IL-17, IL-
22, and IL-23 have been marked as the crucial players in the
pathogenesis of MS and EAE, however, mice lacking IL-17 and
IL-22 develop EAE (62, 169).

Findings indicating that GM-CSF has the key role in the
encephalitogenic potential of Th17 cells in mice (74, 170, 171),
specifically, increased levels of GM-CSF in the cerebrospinal fluid
and serum of active MS patients with the relapsing-remitting
type of the disease and increased secretion of GM-CSF from
T cells isolated from the peripheral blood and brain lesion of
MS, suggest that GM-CSF also plays an important role in MS
development (172, 173). Unlike other cytokines, GM-CSF plays a
non-redundant role in EAE development, and its secretion alone
is able to provide development of autoaggressive and pathogenic
MOG-specific T cells (170). GM-CSF-deficient Th cells are
not able to induce EAE, indicating that the encephalitogenic
potential of both Th1 and Th17 cells depends on their GM-CSF
production (74).
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In our previous studies, we have shown that overcoming
resistance to induction of EAE with MOG35−55 peptide
of BALB/c mice by infection with murine cytomegalovirus
(MCMV) (174) or by deletion of ST2 gene (169) is associated with
increased production of IL-17 in T cells.

Disease developed by MCMV-infected BALB/c mice is
accompanied with an increase in IL-17-positive CD4+ and
CD8+ cells in the central nervous system. Brain infiltrates in
MCMV-infected BALB/c mice were more significant that in
C57BL/6 mice, with a similar number of CD4+ and CD8+
cells, contrary to the dominantly CD4+ cells in C57BL/6
mice, which develop “typical” EAE (105). The encephalitogenic
potential of CD4+ T cells in the CNS infiltrates of BALB/c
mice is further documented by the detection of CCR6, the key
molecule that mediates the initial infiltration of the CNS by Th17
cells (174, 175). Almost equal participation of IFN-γ- and T-
bet (Th1)- and IL-17- and RORγt (Th17)-expressing cells was
found in the CNS of MCMV-infected MOG35−55 immunized
BALB/c mice, in contrast to almost exclusive CNS infiltration
with Th1 cells in C57BL/6 mice infected with γHV-68 before
EAE induction (174, 176). Further, CNS infiltrates of BALB/c
mice infected with MCMV before MOG35−55 immunization
contained CD8+ cells that express T1 and T17 transcriptional
factors and corresponding cytokines, TNF-α and IFN-γ (Tc1) and
IL-17 (Tc17 cells) (174).

Since cerebrospinal fluid of early-stage MS patients contains
a greater number of Tc17 cells in comparison with peripheral
blood, these cells are considered to be required for the
accumulation of Th17 cells in the CNS in MS (177). No
inflammatory T1 and T17 cells were found in the CNS of
BALB/c mice immunized with MOG35−55 (174), while in the
CNS of unimmunized BALB/c mice infected with MCMV
neonatally, Tc1 cells (IFN-γ and T-bet+) dominated (178).
CD8+ T cells isolated from CNS of MCMV-infected and
MOG35−55-immunized mice produced inflammatory cytokines
in response to in vitro MOG35−55 peptide stimulation but
were not specific for viral epitopes pp89 and m164 (174).
These findings indicate that the newly developing autoimmune
process in MOG35−55-immunized BALB/c mice previously
infected with MCMV attracts a new population of IL-17-
producing CD8+ cells that participate in the development of
autoimmunity (177). These findings are in line with previous
reports that the expansion of myelin-specific CD8+ T cells
follows CD4+ T cell-mediated initiation of the autoimmune
process in CNS, thus contributing to tissue damage (179).
The significant presence of IL-17-, CCR6-, and RORγt-positive
CD4+ and CD8+ cells in the CNS of MOG35−55−immunized
BALB/c mice with non-productive MCMV infection in contrast
to uninfected BALB/c mice immunized with MOG35−55, with
negligible number of these cells in the CNS, indicates thatMCMV
infection probably modulates the activation and differentiation
of antigen-presenting cells in the periphery, changing their
signature cytokines, and thus, after additional stimulus, enables
the development of Th17/Tc17 cells with encephalitogenic
potential (174).

Our results indicate that MCMV infection of BALB/c mice
significantly affects dendritic cells in peripheral lymph nodes,

thus enabling differentiation of encephalitogenic cells (174). In
line with the well-known capacity of MCMV to encode an analog
of chemokine CCL2 (180) that induces monocyte recruitment
and viral dissemination (181), we found a higher percentage
of CCR2+ dendritic cells in the peripheral lymph nodes of
MCMV-infected mice (174). In contrast with a previous report
that MCMV attracts monocytes that acquire immunosuppressive
characteristics (182), we found higher percentages of dendritic
cell-expressing markers of activation, CD86 and CD40, and Th1-
promoting cytokine IL-12, indicating that MCMV infection of
BALB/c mice increases the proportion of inflammatory dendritic
cells in peripheral lymph nodes and thus enables the development
of encephalitogenic T cells (174).

IL-17 IN ALZHEIMER’S DISEASE

Alzheimer’s Disease (AD) is the most common
neurodegenerative disorder causing cognitive impairment in the
elderly (183, 184). The histopathological hallmarks of AD are
amyloid plaques in the brain, mainly consisting of fibrillary forms
of amyloid β peptide-40 (Aβ-40) and amyloid β peptide-42 (Aβ-
42) (185). The fibrillary forms of amyloid β found in the amyloid
plaques are obtained by a sequential cleavage from amyloid
precursor proteins (186, 187). Highly insoluble Aβ peptides
generated in the CNS play a crucial role in the pathogenesis of
AD; they activate the complement pathway (168) and stimulate
microglia to produce the proinflammatory cytokines and
chemokines and thus induce accumulation of inflammatory cells
into the CNS (188, 189). This proinflammatory process mediated
by microglia leads to neurodegeneration (188, 190), although
microglia play a protective role also, due to the clearing of Aβ

aggregates by phagocytosis (191). Aβ peptides also increase the
production of reactive nitrogen and oxygen species by microglial
cells, leading to oxidative stress development, stimulation of
Th17 cells, and IL-17 production (192, 193). It appears that the
main roles of IL-17 in AD pathogenesis are the attraction of
neutrophils and the stimulation of their function. It has been
shown that Aβ aggregates mediate the chemotaxis and the
recruitment of neutrophils in the CNS of mice overexpressing
human mutant amyloid precursor protein (APP), which produce
IL-17 and thus amplify neutrophil entry in the CNS (192),
although mesenteric lymph nodes of these mice have lower
production of IL-17 as a consequence of reduced differentiation
of Th17 cells (194). Since neutrophils are the main targets of
IL-17 in the CNS but are also very important sources of this
cytokine, these cells, by promoting inflammation and CNS tissue
damage, could have an important role in the development of
AD pathology. Results from in vitro experiments indicate that
IL-17 might promote autophagy in neurons and thus induce
neurodegeneration (195).

There have been more reports about the role of innate
immunity in AD than about adaptive immunity, but increased
activation of T and B lymphocytes was recently demonstrated
in a triple transgenic mouse model that replicated Aβ and tau
neuropathology (196). Moreover, it has been shown that these
cells produced high levels of IL-2, TNF-α, IL-17, and GM-CSF,
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indicating that neurodegeneration in these mice is associated
with Th17 polarization (196). Increased expression of IL-17, IL-
22, and RORγt has been found in the hippocampus, CSF, and
serum of rats after intrathecal injection of Aβ-42 peptide (197). In
the same study, Zhang et al. indicated that after disruption of the
blood–brain barrier with Aβ-42 injection, Th17 cells enter into
the brain (197). Tian et al. reported that postoperative cognitive
dysfunction is associated with an enhanced level of IL17A in the
hippocampus and suggested that IL-17-mediated damage of the
hippocampus leads to Aβ1-42 accumulation and thus probably
to cognitive decline (198). Increased expression of RORγt, IL-23,
and IL-17 was found in the brains of Aβ-42-injected rats, while
Treg-related cytokines TGF-β and IL-35 were decreased (199).
Activated Th1 or Th17 cells in the brain produce inflammatory
cytokines IFN-γ or IL-17 and thus heighten the inflammatory
cascade, recruit and activate immune cells, and promote AD
neuropathology (192, 200).

In MS, cytokines released by Th17 cells bind to their receptors
on neurons and activate the apoptotic pathway, leading to
neurodegeneration (201). Expression of Fas and FasL is also
increased in the brain of AD rats (197, 202), and it could
be assumed that Th17 cells activate the apoptotic pathway in
neurons by Fas/FasL interaction and thus contribute to the
development of neurodegeneration in AD (197, 203).

Elevated levels of IL-1β in the brains of AD mice homozygous
for a destructive mutation of TLR4 cause up-regulation of
IL-17 (204). In a very recent study, it has been shown that
the administration of blocking anti-IL-17 antibody decreases
the cognitive impairment and neuroinflammation induced
by Aβ1−42 injection into cerebral ventricles of adult CD1
mice, as suggested by reduced Aβ1−42, glial fibrillary acidic
protein (GFAP), S100 proteins, and inflammatory mediators
and cytokines (205). This result supports the previously
indicated role of IL-17 and related cytokines in promoting
AD neuroinflammation and neurodegeneration (206). On the
other hand, there is a study that indicates a protective role
for IL-17 in an animal model of AD (207). Intracranially
overexpressed IL-17 reduced cerebral amyloid angiopathy and
improved anxiety and learning deficits (207). Further, it has
recently been shown that ICR mice injected with IL-17 have
an improvement in spatial learning as measured by the Morris
water maze test, which is associated with the promotion of
maturation of already-formed neuroblasts and the inhibition of
neuroprogenitor proliferation (208).

The number of both CD4+ and CD8+ T cells in the brain
parenchyma and vascular endothelium in humans with AD is
higher than in healthy controls (209). Further, naive lymphocytes
obtained from AD patients had increased production of Th17-
related cytokine IL-21 and had higher expression of Th17
transcription factor RORγt, while monocytes obtained from the
same patients produced higher amounts of IL-6 and IL-23 (210).
A higher proportion of Th17 cells has been noticed in peripheral
blood of patients with mild cognitive impairment due to AD
pathology than in subjects with mild cognitive impairment due
to pathologies other than AD and healthy controls (211). Also,
higher concentrations of IL-17 and IL-23 were detected in the
serum of AD patients than in healthy controls (212). IL-17

is reported to be a good plasma biomarker for distinguishing
individuals with AD from cognitively healthy control subjects
(213). Also, it was reported that the IL-17 concentration in
cerebrospinal fluid could be used antemortem for identification
of frontotemporal lobar degeneration with tau pathology (214).

It has been proposed that a desirable AD vaccine should
induce Th2 and inhibit Th1/Th17 immune responses to Aβ in
order to limit or prevent neuroinflammation and subsequent
neurodegeneration (215).

A number of reports indicate the important role of IL-17
in AD pathogenesis; however, the precise mechanism of IL-
17 upregulation in the CNS of AD patients is not known.
It is possible that microbial infection, as was reported for
respiratory infection (216) or inadequate immune surveillance
in the gut (194), induces higher IL-17 production in the CNS,
which later leads to deposition of amyloid-β. However, the
opposite sequence of events is possible; that is, deposition of
amyloid-β and inadequate clearance stimulate receptors of innate
immune cells and induce production of IL-17, which perpetuates
AD pathogenesis.

IL-17 IN ISCHEMIC BRAIN INJURY

Brain ischemia causes necrosis of the affected CNS tissue
due to the loss of nutritional supply (217). Damaged CNS
tissue releases damage-associated molecular patterns (DAMPs)
that stimulate resident innate immune cells in the CNS, in
the first line microglia (218). Activated microglia cells have a
dual role: these cells play a beneficial role by phagocytosis of
damaged tissue but also release inflammatory mediators TNF-
α, IL-1β, IL-6, and IL-17, which enhance inflammation and
tissue damage (219). DAMP molecules, released after ischemic
brain damage, such as high mobility group 1 box 1 (HMGB1)
(220, 221) and peroxiredoxin, induce IL-23 production in
microglia/macrophages by activating TLR2 and TLR4, which
subsequently induce the expression of IL-17 in other immune
cells but also in microglia (222).

Activated immune cells after reperfusion additionally damage
CNS tissue and significantly contribute to overall tissue damage
after stroke. Adaptive immunity most probably contributes
to inflammation development in CNS tissue after ischemia-
reperfusion, especially T cells (223, 224). Similar was found
in animal models: RAG1(–/–) mice, after stroke induced by
transient middle cerebral artery occlusion, developed reduced
damage of brain tissue, but detrimental effects of T cells in
cerebral ischemia did not depend on antigen recognition or TCR
costimulation (225). The presence of Th1 as well as Th17 cells was
noticed in the brain lesions in ischemic stroke (226). These cells
release proinflammatory cytokines and thus contribute to tissue
damage (226).

Waisman et al. indicate IL-17 as one of the molecules that
play a particular role in the delayed phase of the postinfarct
inflammatory cascade (217). Increased expression of IL-17
mRNA in peripheral blood mononuclear cells was detected
in patients after ischemic stroke, and its expression was in
correlation with Scandinavian Stroke Scale scores (227). High

Frontiers in Immunology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 947

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Milovanovic et al. Interleukin-17 in Neuroinflammation

TABLE 1 | The main cellular source of IL-17 and its target cells in chronic inflammatory neurological diseases.

Multiple sclerosis Alzheimer’s disease Ischemic brain injury

Main source of IL-17 Th17 Neutrophils γδ T cells

IL-17 target cells • Astrocytes

• BBB endothelial cells

• Microglia/macrophages

• Oligodendrocyte

precursor cells

• Neutrophils

• Neurons

• Microglia/macrophages

• BBB endothelial cells

• BBB endothelial cells

• Astrocytes

• Neurons

• Microglia/macrophages

Main biological effects of IL-17 • BBB disruption

• Induction of inflammation

• Myelin damage

• Induction of inflammation

• Deposition of amyloid-β

• BBB disruption

• Induction of inflammation

• CNS tissue damage

BBB, Blood–Brain Barrier.

FIGURE 1 | IL-17 in Inflammatory Diseases of the Central Nervous System. Infection in the periphery (viral infections) activates innate immunity

(monocytes/macrophages and NK cells) and induces a proinflammatory environment that changes the phenotype of antigen-presenting cells, which differentiate into

inflammatory APCs that produce inflammatory cytokines IL-1, IL-6, IL-12, and IL-23. These APCs induce bystander activation of autoreactive T cells and their

differentiation toward encephalitogenic T cells (IFN-γ, IL-17, TNF-α, Tbet, RORγt, CXCR3, and CCR6 positive) capable of entering the CNS, where after reactivation in

contact with antigens presented by local tissue APCs, they proliferate and produce cytokines (IL-17, GM-CSF) that contribute to BBB disruption and recruitment of

other immune cells into the CNS, finally inducing myelin damage (Multiple sclerosis). Peripheral infections can compromise the BBB and lead to an influx of

IL-17-producing cells into the CNS. IL-17 can induce damage to neurons by direct cytotoxic effects or by recruitment of neutrophils and induction of inflammation,

leading to deposition of amyloid fibrils and plaque formation (Alzheimer’s disease). Also, the opposite order of events is possible, where microglia phagocytize amyloid

fibrils and induce differentiation of T cells toward IL-17-producing cells, and the released IL-17 damages the BBB, recruits neutrophils, and induces inflammation and

neuron damage, which exacerbates amyloid deposition (Alzheimer’s disease). CNS tissue damaged by ischemia releases damage-associated molecular patterns

(HMGB1) that stimulate microglia to release inflammatory mediators TNF-α, IL-1β, IL-6, and IL-17, which enhance inflammation and tissue damage. Activated

microglia also can induce Th17 development. IL-17 released by innate immune cells or Th17 cells can enhance BBB damage, recruit immune cells, and enhance

inflammation, inducing direct neuronal damage (postischemic inflammation).

expression of IL-17 was observed in ischemic injured brain
tissue in experimental animals and also in postmortem analyzed
human tissues (228–230). Also, higher expression of IL-17 at the
mRNA and protein levels has been detected in the penumbral
brain tissue 1, 3, and 6 days after reperfusion in mice (231).
In an animal model of ischemic stroke, an increased number

of IL-17-producing blood mononuclear cells were observed
(232). In another study, IL-17 levels were elevated 3 days after
reperfusion. This induction of IL-17 production was IL-23-
dependent, and γδ T cells were indicated as the main source of
IL-17 (233). In this study, it has been shown that IL-17 plays
the main role in the stage of tissue damage after infarction,
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since IL-17-deficient mice had attenuated damage only on day
4 after ischemic insult (234). On the other hand, IL-23p19-
deficient mice developed attenuated CNS tissue damage on day
one after stroke induction (234), but γδ T-cell-deficient mice
still develop brain injury after ischemia reperfusion induction
(228). Although there is no clear evidence that Th17 cells play
a role in tissue damage after stroke induction, activation of T
cells and autoantigen-specific T cells, which exacerbates ischemic
brain injury, was noticed in experimental animals (234). Also, an
increase in the proportion of Th17 cells and a decrease in Treg
cells in the periphery might contribute to CNS tissue damage
after ischemia-reperfusion (235). Astrocytes are also marked as
a source of IL-17 in inflammatory foci after brain ischemia-
reperfusion (228, 236).

IL-17 may contribute to CNS tissue damage by several
mechanisms, as described previously in other inflammatory
diseases of CNS, affecting the cells that express IL-17 receptor,
microglia, endothelial cells, astrocytes, and neurons, as
summarized in Table 1. Although ischemia-reperfusion
induces necrosis of blood–brain barrier, IL-17 could enhance
BBB damage by the disruption of tight junctions (120) and by
the promotion of monocyte migration across the BBB through
an intracellular adhesion molecule (ICAM) 1-dependent
mechanism (159). Levels of inflammatory cytokines IL-1β,
TNFα, and matrix metalloproteinases, indicators of BBB
damage, are decreased after stroke induction in IL-17-deficient
mice (233). Increased expression of IL-17 receptor on neurons
has been shown simultaneously with increased expression
of IL-17 in CNS tissue after stroke induction, indicating
the role of IL-17 in direct neuronal damage (230). This
observation is supported by in vitro study (230). IL-17 also
enhances autophagy in neurons and thus aggravates neuronal
ischemic injuries (237). In synergy with TNF-α released by
macrophages, IL-17 stimulates astrocytes to produce CXCL1,
which recruits neutrophils into the CNS and thus enhances
inflammation and damage (228). Astrocytes stimulated in
vitro with TNFα and IL-17A show enhanced expression of
several chemokines that have a role in the attraction of other
immune cells, CCL20, CXCL2, CXCL9, CXCL10, and CXCL11,
(153). IL-17, synergistically with IL-6, induces expression of

CCL20 in astrocytes, which is a chemokine that attracts Th17
cells (149).

On the other hand, IL-17A induces the expression of
molecules that have neuroprotective effects, brain-derived
neurotrophic factors (BDNF), glia-derived neurotrophic factors
(GDNF), and nerve growth factors (NGF), indicating that IL-17
might have a role in the reduction of damage (157). Recently,
it has been shown that recombinant mouse IL-17A significantly
attenuates damage of cortical astrocytes after stroke induction in
a dose-dependent manner by inhibition of apoptosis (238).

CONCLUDING COMMENTS

Despite a large number of reports that indicate an important or,
in some diseases, even indispensable role of IL-17 and Th17-
related cytokines in inflammatory and degenerative neurological
diseases, the precise mechanism of the pathogenic effect of IL-
17 in the CNS is still elusive. Numerous in vivo and in vitro
studies identify several types of CNS tissue cells as IL-17 targets
and illustrate the effects of stimulation of these cells with IL-17
(summarized in Figure 1). However, the relative contributions
of these processes to tissue damage and the development of
inflammatory CNS diseases in humans are still undetermined.
In order to gain new insights into the role of IL-17 in the
pathogenesis and eventual new treatment of neuroinflammatory
and neurodegenerative diseases, additional research in this field
is required.
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