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CXCR3 is a chemokine receptor with three ligands; CXCL9, CXCL10, and CXCL11.

CXCL11 binds CXCR3 with a higher affinity than the other ligands leading to receptor

internalization. Long ago we reported that one of these chemokines, CXCL10, not

only attracts CXCR3+ CD4+ and CD8+ effector T cells to sites of inflammation, but

also direct their polarization into highly potent effector T cells. Later we showed that

CXCL11 directs the linage development of T-regulatory-1 cells (Tr1). We also observed

that CXCL11 and CXCL10 induce different signaling cascades via CXCR3. Collectively

this suggests that CXCR3 ligands differentially regulate the biological function of T

cells via biased signaling. It is generally accepted that tumor cells evolved to express

several chemokine receptors and secrete their ligands. Vast majority of these chemokines

support tumor growth by different mechanisms that are discussed. We suggest that

CXCL10 and possibly CXCL9 differ from other chemokines by their ability to restrain

tumor growth and enhance anti-tumor immunity. Along with this an accumulating number

of studies showed in various human cancers a clear association between poor prognosis

and low expression of CXCL10 at tumor sites, and vice versa. Finally, we discuss the

possibility that CXCL9 and CXCL10 may differ in their biological function via biased

signaling and its possible relevance to cancer immunotherapy. The current mini review

focuses on exploring the role of CXCR3 ligands in directing the biological properties of

CD4+ and CD8+ T cells in the context of cancer and autoimmunity. We believe that the

combined role of these chemokines in attracting T cells and also directing their biological

properties makes them key drivers of immune function.
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INTRODUCTION

Chemokines are small (∼8–14 kDa), structurally cytokine-like, secreted proteins that regulate
cell trafficking through interactions with a subset of 20 different seven-transmembrane, G
protein-coupled receptors (GPCRs) (1). These receptors could be divided into single (mono)
receptors, and shared receptors in which a single receptor binds several chemokines. Different
chemokines that bind a shared receptor may have different modes of interactions. They may either
poses similar biological properties (may explain redundancy), or induce divers signaling cascades
and thereby differ in biological properties. This type of biased signaling has been previously
observed for beta2-adrenergic receptor (also GPCRs) by the Nobel prize winner Robert J. Lefkowitz
(2) and by others (3). Our laboratory was the first to report that such biased signaling is also used by
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chemokines to direct the biological properties of CD4+ T cells
in controlling effector T cell function vs. tolerance to self (4, 5),
and perhaps in controlling anti-cancer immunity (6). The current
review focuses on the role of CXCR3 and its ligands: CXCL9,
CXCL10, and CXCL11 on the biological function of CD4+ and
CD8+ T cells and its translational implications.

Of the three CXCR3 ligands most of the attention has
been drawn thus far to CXCL10, as a candidate for cancer
immunotherapy. Only recently it has been suggested that that
CXCL9 is also involved in directing the potentiation of CD8+
T cells in cancer, and that its activity differs from CCL10 (7).
Not much is known about the role of CXCL11 in cancer diseases.
As for autoimmunity, the role of CXCL10 and CXCL11 has been
largely studied by several laboratories including ours, whereas the
role of CXCL9 is still elusive (8).

CXCR3 AND ITS LIGANDS

CXCR3 is a chemokine receptor that is primarily expressed
on CD4+ and CD8+ T cells, and to some extent by other
cells, among them, epithelial cells (9). Within the CD4+ subset
CXCR3 is mostly abundant on proinflammatory Th1 cells, but
notably it is also expressed by FOXp3+ regulatory T cells
(Tregs) (10–12). Mice express a single isoform of CXCR3 that
exclusively bind CXCL9, CXCL10, and CXCL11. In human
three isoforms were identified: CXCR3A that is reciprocal
to the mouse CXCR3 and also binds CXCL9, CXCL10, and
CXCL11, CXCR3-B that binds CXCL9, CXCL10, CXCL11 as
well as an additional ligand CXCL4, and CXCR3-alt that only
binds CXCL11 (13). The CXCR3 ligands share limited sequence
homology. Yet, in their structural homology they are more
similar to each other than to other non-ELR chemokines. Also
all three chemokines are inducible by IFN-γ (14). Together
this makes them a well-characterized subfamily of the non-ELR
chemokines. CXCL11 is believed to be the dominant CXCR3
agonist, as it is more potent than CXCL10 or CXCL9 as a
chemoattractant and in stimulating calcium flux and receptor
desensitization (15).

BIASED SIGNALING VIA CXCR3 DIRECTS
THE POLARIZATION OF CD4+ T
CELL SUBSETS

Based on their cytokine profile FOXp3-negative CD4+ T cells
fall into different subsets among them IFN-γhighIL4low Th1
cells IFN-γlowIL4high Th2 cells, IL17high Th17 cells and IL10high

T regulatory-1 (Tr1) cells (16). It is generally accepted that
the polarization of non-polarized CD4+ T cells (Thnp) into
these subsets is directed by the cytokine milieu within their
microenvironment (16). Not much attention has been drawn to
the role of chemokines in T cell polarization.

Long ago we observed that along the development of
two different experimental autoimmune diseases in Lewis
rats: Experimental autoimmune encephalomyelitis (EAE), and
adjuvant induced arthritis (AA) the immune system generate
an autoantibody response (IgG isotype) to pro-inflammatory

cytokines and chemokines that are likely to be involved in the
pathogenesis of these diseases (17, 18). In these studies we
also observed that amplification of these responses by targeted
DNA plasmids may restrain the progression of these diseases
(17, 18). We further investigated the mechanistic basis of this
response and named it “beneficial autoimmunity” (19). While
extending these studies to CXCL10 we learned that targeting
the function of CXCL10 restrained the development of EAE
or AA. Ex vivo analysis of CD4+ T cells subsets indicated for
in vivo shift from Th1 to Th2 (20, 21). Independently, others
observed that CXCL10 promotes the polarization of human
CD4+ T cells into IFNγ

highIL4low Th1 cells (22). The role
of CXCL9 in directing effector T cell polarization is yet to
be studied. Collectively, this suggests that CXCL10 promotes
the polarization of Th1 cells, thus its targeted neutralization
restrains autoimmunity. In our studies we could clearly record
the effect of CXCL10 neutralization on the Th1/Th2 balance
of antigen specific T cells in the periphery (17, 18), and
suggested that along the dynamics of each disease these cells are
recruited to the inflammatory site, to replace those that undergo
apoptosis there (23). The possibility that these antibodies directly
enter the CNS to affect T cell polarization there has not
been detected.

While further exploring the interplay between CXCR3
ligands, particularly CXCL10 vs. CXCL11 and their role in
directing CD4+ T cell polarization we observed that CXCL11
preferentially drives the polarization of IL10high Tr1 cells (4,
5). The underlying signal cascade included signaling via p70
kinase/mTOR in STAT-3- and STAT-6-dependent pathways (4,
5). This differed from CXCL10 that signals via STAT1, STAT4,
and STAT5 phosphorylation (4, 5). CXCL11 is believed to
be the dominant CXCR3 agonist, as it is more potent than
CXCL10 or CXCL9 as a chemoattractant and in stimulating
calcium flux and receptor desensitization (15). This suggests
that the interplay between CXCL11 and CXCL10 dominates the
regulation of CD4+ T cell mediated responses, while favoring
active tolerance over effector reactivity. C57BL/6 mice that
lack functional CXCL11 due to a shift in the open reading
frame of the CXCL11-encoding gene (insertion of two bases
after nucleotide 39), resulting in the translation of a chimeric
protein lacking the critical CXC motif (24), preferentially
induce Th1 oriented response, are highly susceptible to the
induction of various Th1-related autoimmune diseases. We
observed that these mice are excellent responders to low
doses CXCL11-Ig based therapy of EAE in comparison to
SJL mice that do not display this open reading frame
mutation (4).

The idea of different ligands that differ in their binding site to
the same GPCRs receptor also induce different signaling cascade
has been primarily investigated by Robert J. Lefkowitz and his
team while exploring the Molecular mechanism of beta-arrestin-
biased agonism (2, 25, 26). We have explored the relevance of this
mechanism for chemokines and T cell regulation.

In summary, we suggest that CXCL11 and CXCL10 plays
an opposing role in directing T cell polarization, and as
CXCL11 has a higher affinity to CXCR3 it is likely to dominate
immune regulation.
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THE CONTRADICTIVE ROLE OF
CXCR3-CXCL10 AXIS IN
NEUROINFLAMMATION

It is largely accepted that CXCL10 promotes the activity of
effector CD4+ and CD8+ T cells, and also their recruitment
at inflammatory sites (also tumor site) and thus its targeted
neutralization could be beneficial in treating various T
cell mediated autoimmune diseases among them: psoriasis,
rheumatoid arthritis (RA) (27, 28), Inflammatory Bowel Disease
[IBD) (29), and type I diabetes (T1DM) (30, 31) (for a recent
review also see (32)] (Figure 1B). The role of the CXCL10-
CXCR3 axis in neuroinflammation is likely to more complex and
controversial (37). The first record that systemic administration
of polyclonal antibodies against CXCL10 suppress EAE came
from the study of William Karpus and his group in 2001 (39).
Independently, and shortly after we reported that targeted DNA
vaccines encoding CXCL10 could amplify the production of
neutralizing autoantibodies to CXCL10 that could also suppress
EAE in Lewis rats (20). Both studies were limited in the use
of polyclonal antibodies. Four years later Richard Ransohoff
and his group reported that CXCR3 KO mice lacking the
CXCR3-CXCL10 interaction develop more severe EAE then
WT (40). The absence of CXCR3-CXCL11 interaction could
not be taken in account as these were C57BL6 mice lacking
functional CXCL11. Klein et al. examined the development of
EAE in WT Vs CXCL10 KO mice and observed differences only
during sub-optimal induction of disease (41). In another study,
Iain Campbell and his group compared the development of
EAE in WT and CXCR3KO mice and observed that along the
later chronic phase of disease CXCR3KO mice develop a more
severe EAE then WT, and that this has been associated with
reduced number of FOXp3+ Tregs at the CNS (38). Campbell
and his co-authors suggested that perhaps CXCL10 produced by
astrocytes at the inflamed CNS mostly direct the recruitment of
FOXp3+ Tregs that then suppress effector T cells function (37)
(Figure 1C). Yet, the authors question the validity and relevance
of using CXCL10KO mice, or CXCR3KO mice in EAE studies,
as in the absence of CXCL10 produced by astrocyte migration of
T cells to the CNS is very limited, and may not reflect the disease
in WT mice, or MS patients (37). It should also be noted that
vast majority of these experiments were conducted in C57BL/6
mice that lack CXCL11. Finally, Chung & Liao used an adoptive
transfer system in which CXCR3+ Th17 cells compared to
CXCE3−/− Th17 cells were transferred during EAE to suggest
that negative signaling via glial cells restrain the activities of
Th17 cells within the CNS (42).

In summary, the role of CXCL10 in inflammatory
autoimmunity, particularly in neuroinflammation is
controversial and need to be further addressed discussed below.

HOW THE FIELD COULD MOVE FORWARD
FROM THE CURRENT CONTROVERSY?

The controversy of the role of CXCL10 in neuroinflammation,
particularly when comparing systemic administration of anti

CXCL10 neutralizing antibodies vs. using CXCL10 KO mice
should be further addressed, particularly if one would like to
consider anti CXCL10 based therapy for autoimmunity. An
essential set of experiments should be conducted on CXCR3 KO
mice vs. WT and CXCL10 KO mice vs. WT subjected to the
induction of different inflammatory autoimmune disease that are
not associated with neuroinflammation. Particularly arthritis and
IBD. Ideal models would be mice models that express functional
CXCL11 (the only one that does not do so is the C57BL/6 mice).
Systemic blocked of CXCL10 in various diseases (including
neuroinflammation) should be addressed using anti CXCL10
mAbs with very high specificity. Finally, a set-up in which
CXCL10 is selectively knocked down from astrocytes would
also be helpful for addressing the role of astrocytes CXCL10
in neuroinflammation. An open-end question that should still
be unresolved is that why would CXCL10 selectivity recruits
FOXp3+ T cells to the CNS?

CANCER EVOLUTION AND
CHEMOKINES-CHEMOKINE
RECEPTOR INTERACTION

Chemokine-chemokine receptor interactions play a major role
in cancer biology (43–48). The common deterministic dogma
suggests along cancer evolution tumor cells evolved to express
chemokine receptor and produce their ligands because these
interactions support tumor growth by several mechanisms (47,
49–51): First, many of them function as growth/survival factors
either by autocrine pathway, and/or by inducing growth factors
production by epithelial cells and stromal cells within the
tumor microenvironment. Second, several of them direct the
recruitment of bone marrow derived cells that support tumor
growth and suppress anti-tumor immunity. Third, chemokine—
chemokine receptor interactions are involved in attracting tumor
cells to metastatic sites. The key chemokine receptor pathways
that directly support tumor development are the CCR2-CCL2
(52–56), CXCR4-CXCL12 (48, 57), and CCR5- CCL3/4/5 (58–
62) (Table 1). All three pathways are also associated with the
recruitment of bone marrow derives cells to the tumor site, and
with direct attraction of tumor cells to formmetastatic spread. An
additional chemokine receptor that recently became of a major
interest is CCR8 that is abundant of on FOXp3+ Tregs (63).

Aside of this axis many other chemokine-chemokine receptors
are involved in different cancer diseases (for a recent review
see (65)). However, the current mini review mostly focuses on
CXCR3 and its ligands.

WHAT IS KNOWN ABOUT CXCL10 AND
CXCL9 AND IN CANCER IMMUNITY?

Several studies showed that CXCL9 and CXCL10, particularly
CXCL10 produced by tumor or host cells can recruit CXCR3+
tumor-infiltrating CD4+ T cells, CD8+ T cells and NK cells
that are associated with tumor suppression (33, 66–74). Zumwalt
et al. showed active secretion of CXCL10 and CCL5 from
colorectal cancer microenvironments in human was associates
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FIGURE 1 | CXCL10 directs the biological function of CD4+ and CD8+ T cells in cancer and autoimmunity. (A) The role of CXCL10 in cancer diseases: CXCL10

directs the accumulation of CXCR3+ effector T cells, in particular effector CD8+ T cells to the tumor site (33) and potentiates their anti-tumor activities, either directly

or via the potentiation of effector CD4+ T cells to support their activity. As for tumor cells, it directly suppresses tumor growth (34, 35). Yet, for CNS metastatic spread

it had been suggested that CXCL10 produced by astrocytes directs metastatic spread to the brain (36). (B) The role of CXCL10 and CXCL11 in inflammatory

autoimmunity: CXCL10 is associated with chemoattraction and potentiation of effector T cells that commence the inflammatory process. Its activity is regulated, in

part, by CXCL11 that induces T regulatory-1 (Tr1) cells (4). (C) Neuroinflammation: In neuroinflammation CXCL10 is likely to hold a duale function. Aside of

chemoattraction of effector T cells it selectively induces the accumulation of FOXp3+ Tregs to restrain inflammation (37, 38).
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TABLE 1 | Key chemokine receptor pathways that support tumor development.

Chemokine receptor

-chemokine axis

Key pathways References

CCR2-CCL2 Direct support of tumor growth,

recruitment of tumor associated

macrophages (TAMs) to support

tumor growth and suppress

anti-tumor immune reactivity

(52–56)

CXCR4-CXCL12 Direct support of tumor growth,

metastatic spread, particularly to

the bones

(48, 57)

CCR5- CCL3/4/5 Direct support of tumor growth,

recruitment of polymorph nuclear

myeloid derived suppressor cells

and potentiation of their function

at the tumor site.

(58–62)

CCR8-CCL1 CCR8+ Tregs function as master

drivers of immune regulation and

therefore are key drivers in tumor

escape from immune destruction

(63, 64)

with Granzyme B+ CD8+ T-cell infiltration (75). It is likely that
for CD8+ T cells the CXCR3-CXCL10 axis that is involved in
directed migration of these cells to the tumor site also induces
their potentiation and proliferation there (7, 33) (Figure 1A).
What about CXCL9? Very recently Andy Luster and his group
showed that anti PD-1 efficacy is reduced in CXCR3KOmice, and
suggested that the interaction between CXCL9, largely produced
by CD103+ dendritic cells (DC) at the tumor site, and CXCR3 on
CD8+ T cells enhances anti PD-1 efficacy (7). The authors also
extended this study to humans, suggesting that levels of CXCR3
ligands in the plasma may be used to predict success in anti PD-1
checkpoint therapy (7). It is yet to be explored whether CXCL9
and CXCL10 induce different signaling cascade via CXCR3 in
CD8+ T cells.

WHAT IS KNOWN ABOUT CXCL10 BASED
THERAPY OF CANCER DISEASES?

Nineteen years ago, Arenberg et al. showed that intra-tumoral
injection of CXCL10 limits non-small-cell lung cancer (NSCLC)
in SCID mice by a direct effect on tumor growth (76). Our
collaborative study with Israel Vlodavsky was the first to show
that systemic administration of CXCL10 (CXCL10-Ig) limits
cancer in immunocompetent mice (34). One year later (2015)
Peng et al. showed that treatment with epigenetic modulators
that increase CXCL9/CXCL10 enhances effector T-cell tumor
infiltration, and slows down tumor progression of ovarian cancer
(77). At the same year, Barreiara da Silva et al. showed that
Dipeptidylpeptidase 4 inhibition enhances endogenous CXCL10
levels and suppresses B16/F10 melanoma growth (78). This study
also showed a highly effective effect of Dipeptidylpeptidase 4
based therapy if administered in combination with checkpoint
blockers (78). It has recently been suggested that in the set-up of
multiple myeloma CXCR3 receptor ligands CXCL9 and CXCL10,
limits NK cell positioning into the bone marrow by interfering

with CXCR4 function (79). It should also be noted that CXCR3
is expressed on Tregs and may be involved in directing their
recruitment in cancer and transplantation (11, 12). Collectively
this may vote for possible immune-regulating effect. Yet, it has
been clearly shown that enhancement of CXCL10 in an in vivo
set-up increases anti-tumor immunity and could be effectively
used for cancer immunotherapy either as monotherapy, or in
combined therapy with immune checkpoint inhibitors (78).

CXCL10 AND BRAIN CANCERS

As discussed above chemokines are involved in cancer diseases
by several mechanisms among the direct and indirect effect
on anti-cancer immunity, direct and indirect effect on cancer
growth, and attracting cancer cells to tumor sites. It is generally
accepted that CXCL10 enhances anti-cancer immunity, and by so
doing limits cancer development. It has also been observed that
CXCL10 directly limits cancer (melanoma) growth in vivo and
in vitro (80). Collectively this applies for an anti-cancer property
of CXCL10. As for directing metastatic spread Neta Erez and her
team very recently suggested that CXCL10 produced by astrocytic
cells participates in chemoattraction of tumor cells to the CNS
(36). This may give rise to a possible tumor supporting function
of CXCL10 in brain metastasis. Nevertheless, as described below
many human studies clearly show that in various human cancer
diseases low expression/transcription of CXCL10 at tumor sites
indicate poor cancer prognosis, whereas high levels of this
chemokine are associated with good prognosis.

In summary, CXCL10 is likely to hold anti-cancer propertied
that include: 1. Direct effect on the immune system resulting
in enhanced anti-cancer response, effect on epithelial cells
surrounding the tumor and direct effect on tumor growth. Its
tumor supporting role is by attracting tumor cells to form
metastasis, as was recently suggested for brain tumors. We are
now using CXCR3KO mice engrafted with CXCR3+ tumor
cells to dissect the direct effect of CXCL10-Ig based therapy on
tumor growth.

CXCL10 AND CANNER PROGNOSIS
IN HUMAN

Ten years ago Jiang et al. reported that low transcription of
CXCL10 shows poor prognosis in stage II and III colorectal
cancer (81). Later Li et al. showed that in patients with
rectal cancer that high expression of CXCL10 may predict
better successes in chemoradiotherapy suggesting a synergistic
beneficial effect of both (82). Rainczuk et al. showed that high
levels of a CXCL10 antagonist in patients with high-grade,
serous epithelial ovarian carcinoma (HGSOC) is associated
with poor prognosis (83). As for Osteosarcoma (OS), Flores
et al. showed better survival in patients with high level of
CXCL10 (84). Finally, very recently Zhang et al. showed that
in hepatocellular carcinoma (HCC) high levels of CXCL10
are associated with better prognostic and overall survival
(85). Several publications challenged this concept (86–88).
These studies focused on different cancers: breast cancer,
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renal cancer and multiple myeloma (86–88). One is that
the discrepancy between the studies is because the role of
CXCL10 / CXCL9 varies between different cancer disease. If
so this should be taken in account as a major criterion in
candidate selection for a favorable disease for CXCL10/CXCL9
based therapy.

In summary, CXCL10 is likely to restrict cancer development
in many cancers by inducing anti-cancer immune response,
and by a direct effect on epithelial cells within the tumor
microenvironment and by direct suppression of tumor
growth. It is possible that CXCL10 and perhaps pro-
cancer function is due to its chemotactic properties for
cancer cells.

CHEMOATTRACTION AND BEYOND,
CAN WE DIFFERENTIALLY ANALYZE
THESE PROPERTIES?

It is clear that chemoattraction of CXCR3+ T cells, and other
CXCR3+ cells, to sites of inflammation and tumor sites is an
essential feature, and that inhibition of the CXCR3 dependent
migration of CXCR3+ T cells to tumor site, or even their
adhesion molecule dependent arrest, plays a major role in
inflammation and cancer. For example, Mikucki et al. applied
adoptive transfer experiments of T cells from CXCR3KO Vs WT
mice in a cancer set-up to show that recruitment to the tumor site
was markedly inhibited when donor cells came from CXCR3KO
mice, and inhibition was comparable to the one achieved by
using T cells form WT donors and pertussis toxin (PTX) (33).
It is also clear that CXCL10, and probably CXCL9 signaling
enhance the effector properties of these cells (7). We believe
that what makes CXCR3 and its ligands drivers of immune
function is the combination of chemotaxis and direct effect on
the biological function (6, 89). Dissecting the direct effect of
CXCR3 ligands on cells migration from their ability to affect
the biological properties of these cells could be of interest when
developing therapeutic tools, such as blocking antibodies or
stabilized chemokines for immunotherapy.

CONCLUSIONS

The main take home message of this minireview is that few
chemokine receptors, among them CXCR3, are key drivers in
directing the immune response as aside of chemoattraction
they also direct the biological function of immune cells that
possess them. CXCR3 is of high interest as each of its three
ligands differs in its biological properties via this receptor, and
its ability to regulate the biological function of others. For
example, CXCL11 with the higher affinity to CXCR3 is likely
to hold anti-inflammatory properties and by leading to receptor
internalization makes the receptor less accessible to others.
Currently much attention is given to CXCL9 and CXCL10 and
their role in the potentiation of anti-tumor CD8+ T cells.

Chemokine receptors support tumor development different
complementary pathways: First, many of them function as
growth/survival factors either by autocrine pathway, and/or
by inducing growth factors production by epithelial cells and
stromal cells within the tumor microenvironment. Second,
several of them direct the recruitment of bone marrow derived
cells that support tumor growth and suppress anti-tumor
immunity. Third, chemokine—chemokine receptor interactions
are involved in attracting tumor cells to metastatic sites.
Table 1 indicates the involvement of key chemokine receptors in
these pathways.
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