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Novel coronaviruses (nCoVs) encode ion-channel proteins called viroporins such as protein E,
open reading frame 3a (ORF3a) and ORF8a. These viroporins, via mechanisms such as lysosomal
disruption and ion-redistribution in the intracellular environment, activate the innate immune
signaling receptor NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) inflammasome. This
leads to the production of inflammatory cytokines such as interleukin 1β (IL-1β), IL-6 and tumor
necrosis factor (TNF), causing tissue inflammation during respiratory illness caused by CoV
infection. Due to this crucial role in triggering inflammatory response to infection, the NLRP3
inflammasome appears to be a potential drug target in the treatment of coronavirus disease
2019 (COVID-19), caused by SARS-CoV-2. This manuscript highlights the importance of NLRP3
inflammasome in the pathogenesis of nCoVs, discusses its known inhibitors and draws attention
toward evaluation of these and similar known or novel agents for potential beneficial effects in the
treatment of SARS-CoV-2 (COVID-19).

The twenty-first century has witnessed the emergence of three novel coronaviruses (nCoVs): The
first outbreak was caused by severe and acute respiratory syndrome coronavirus (SARS-CoV) that
emerged in Southeast China in 2002, followed by the Middle East respiratory syndrome-related
coronavirus (MERS-CoV) in 2012 (1). The recent pandemic which is caused by SARS-CoV-2
originated atWuhan city in China in late 2019, is causing a respiratory illness named as coronavirus
disease 2019 (COVID-19) which is causing morbidity and mortality worldwide (2).

CoVs carry a positive-sense, single-stranded RNA genome of about 30 kb and the virion
nucleocapsid is surrounded by an envelop which is studded with spike (S), membrane (M), and
envelop (E) proteins (3, 4). The spike (S) glycoprotein recognizes and interacts with its target called
angiotensin converting enzyme 2 (ACE2) receptor on the host cell surface, mediating viral entry
during the infection cycle (5). Identifying and exploiting promising therapeutic targets has always
been an area of intensive research in the treatment of viral diseases. In this respect, the spike protein
of SARS-CoV is also viewed as a drug target due to its role in a crucial checkpoint of viral infection,
i.e., viral attachment and entry in to the host cell. Nevertheless, there are also other virus-host
interactionmechanisms (see below) that offer attractive targets for potential therapies in the context
of infections caused by SARS-CoVs.

ROLE OF NLRP3 INFLAMMASOME IN NOVEL CORONAVIRUS
PATHOGENESIS

Like other animal viruses, SARS-CoV also encode three ion-channel (IC) proteins called viroporins,
namely the protein E, open reading frame 3a (ORF3a) and ORF8a. It has been observed that during
the course of viral infections, these viroporins oligomerize and form pores, that disrupt normal
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physiological homeostasis in the host cell and thus contribute
to the viral pathogenicity (4, 6, 7). In SARS-CoV, two of the
viroporins, i.e., the more dominant protein E and also ORF3a,
each carrying a PDZ-binding motif (PBM, which interacts with
cellular proteins) and also having IC activity, were reported
to be required for optimal viral replication. Of these, the
protein E was shown to be necessary for viral virulence (8).
Moreover, E protein was shown to be essential, as its absence
led to the attenuation of SARS-CoV. In fact, E protein is
involved in several signaling mechanisms that ultimately results
in inflammation during infection. In addition to its role in
activation of the inflammatory NF-kB pathway and interaction
of its PBM with syntenin proteins which trigger activation of the
p38 MAPK (9, 10) it also forms a calcium ion (Ca2+) channel
in the Endoplasmic Reticulum Golgi Apparatus Intermediate
Compartment (ERGIC)/Golgi membranes. As a result of this,
changes in calcium homeostasis in the intracellular environment
leads to activation of the cytosolic innate immune signaling
receptor NLRP3 (NOD-, LRR-, and pyrin domain-containing 3)
inflammasome (10), shown in Figure 1. The NLRP3 is composed
of adapter component apoptosis-associated speck-like protein
carrying a caspase activation and recruitment domain (ASC)
and the catalytically inactive procaspase-1 (11, 12). It has been
shown that several external and internal stimuli including viral
RNA, activate the NLRP3 inflammasome via mechanisms such
as formation of pores with ion-redistribution and lysosomal
disruption, resulting in inflammation and associated cell death
called pyroptosis (13). Upon activation of the NLRP3, its
procaspase-1 is converted into the active effector protease
caspase-1, which then causes cleavage and maturation of pro-
inflammatory cytokines such as pro-interleukin 1β (pro-IL-
1β) into its active form IL-1β as well as that of IL-18. These
trigger a cascade of other downstreammediators of inflammation
such as interleukin 6 (IL-6), tumor necrosis factor (TNF),
prostaglandins and leukotrienes (13, 14). Accordingly, it was also
observed that IL-1β, among other pro-inflammatory mediators,
was produced in SARS-CoV infected ACE2- (viral receptor)
expressing epithelial cells, pneumocytes and macrophages of
bronchial and pulmonary tissues (15). In agreement with the
role of E protein in triggering pro-inflammatory cytokines, it
was also shown that E protein ion channel activity promote lung
inflammation, fluid accumulation and bronchoalveolar epithelial
damage. Further confirming this role, studies with a mutant E
protein lacking IC activity showed better outcome particularly in
terms of reduced edema in tissues (10, 16). Moreover, consistent
with these findings, it was observed that the HIV-1 virus
Vpu channel inhibitor Hexamethylene amiloride (HMA) also
hindered coronavirus replication in cultured cells and inhibited
the conductance of E protein ion channels in human coronavirus
229E (HCoV-229E) and mouse hepatitis virus (MHV) (17).
Likewise, the ORF3a protein, a potassium (K+) ion channel
viroporin, was shown to render host cell lysosome dysfunctional
and cause caspase-1 activation either directly or via increased
potassium (K+) efflux, leading to the NLRP3 inflammasome
activation. Furthermore, it caused NFkB-mediated up-regulation
of transcription of the pro-IL-1β cytokine gene and pyroptotic
cell death (7, 14, 18) (see Figure 1).

Therefore, it is evident that SARS-CoV encoded viroporins,
i.e., E protein and ORF3a activate the NLRP3 inflammasome
and assembly. This leads to activation of inflammatory cascade
involving cytokines such as IL-1β, IL-6, TNF, and othermediators
as part of the host inflammatory responses to SARS-CoV
infection and contribute to tissue damage.

NLRP3 INFLAMMASOME: A POTENTIAL
DRUG TARGET IN COVID-19

Although, innate immune mechanisms such as optimal
activation of the NLRP3 inflammasome plays an important
role in antiviral host defenses, its aberrant activation and
downstream mediators often lead to pathological tissue injury
during infection (19). Also, infection with SARS-CoV is known
to induce a storm of pro-inflammatory cytokines, especially
IL-1β, IL-6, and TNF. These play an important role in the
progression of tissue inflammation causing acute respiratory
distress syndrome ARDS (10), which is a form of acute lung
injury (ALI) and often leads to death. It is noteworthy that
ARDS has been the leading cause of death in patients infected
with SARS-CoV and MERS-CoV (1). Several studies have
reported the important role of NLRP3 inflammasome activation
in relation to the pathogenesis of ARDS and ALI (20–22). The
pathogenesis of ARDS is driven by these pro-inflammatory
cytokines, i.e., IL-1β, IL-6, and TNF and other mediators of
inflammation. This is manifested by pathological events such as
recruitment of inflammatory and phagocytic cells, complement
activation, opsonization, increased permeability of endothelial
and epithelial cells causing disruption of the air-blood barrier
and accumulation of protein-rich fluid in alveoli of lungs,
as well as other systemic and hemodynamic effects (23–25).
Consistent with this cytokine-mediated immunopathology,
elevated levels of IL-1β, IL-6, and TNF have also been observed
in the broncho-alveolar lavage and plasma of ARDS patients
(26). Moreover, it has been observed that there is a positive
correlation between serum level of these cytokines and mortality
rate in ARDS patients (27).

Based on this strong inflammatory potential of the NLRP3
inflammasome in the context of infections caused by SARS-
CoVs, it appears to be an important druggable target, and its
inhibition can potentially reduce tissue inflammation, also in
the context of COVID-19. Based on the observed divergence
of some SARS-CoV-2 encoded activators of inflammasome
(viroporins) from that of SARS-CoV, comparative mechanistic
studies of these viral proteins particularly in relation to NLRP3
inflammasome activation are yet to be performed. Nevertheless,
cytokine storm is the main cause of inflammation in COVID-
19 highlighting an important role of NLRP3 inflammasome.
Accordingly, high levels of IL-1β and other cytokines have
been found in COVID-19 patients (28). Whereas, a variety of
drugs such as remdesivir (29), favipiravir (30), glucocorticoids
(31), chloroquine (32), hydroxychloroquine plus azithromycin
(2) have recently been tested for their potential beneficial
effect, however, airway management and ventilatory support (33)
remain the mainstay of treatment in critically ill COVID-19
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FIGURE 1 | Schematic representation of SARS-CoV viroporin-mediated NLRP3 inflammasome activation, its inhibitors (shown with asterisks) and downstream

inflammatory cascades leading to inflammation and cell death. Genes (italicized) in empty boxes, respective proteins in gray boxes.

patients. Given the key role of cytokines in causing inflammation,
blocking their effects using biologic agents has revolutionized
the treatment of rheumatoid arthritis, psoriasis, inflammatory
bowel disease, and other auto-inflammatory diseases (34).
Likewise, based on the SARS-CoV-2-induced cytokine-mediated
inflammatory response, biologic agents that target cytokines
such as the IL-1 receptor antagonist Anakinra, antibody against
IL-6 receptor, i.e., Tocilizumab and anti-interferon gamma
(IFN-γ) antibody Emapalumab have also been considered in
clinical studies. Nevertheless, there is a dire need of effective
therapy, novel agents or repurposed drugs, against the novel
SARS-CoV-2 (COVID-19) so that to reduce mortality of
this disease.

Efforts have been made to find potential inhibitors of the
NLRP3 inflammasome, especially in the context of its role in
various inflammatory diseases. Luckily, several inhibitors of
the NLRP3 inflammasome including natural products as well
as approved drugs, have been identified (see Figure 1). Known
for their anti-inflammatory properties, natural products such as
Oridonin (found in Rabdosia rubescens plant) and Parthenolide
(sesquiterpene lactone found in feverfew plant) as well as
synthetic compound Bay 11-7082 and related vinyl sulfone
compounds have been shown to exert their effects via inhibition
of the NLRP3 inflammasome. Interestingly, parthenolide
and Bay 11-7082, inhibiting the NLRP3 inflammasome and
inflammatory NFkB pathways, were shown to reduce lung
inflammation and improve survival in SARS-CoV-infected
animals (9, 35, 36).

Likewise, a sulfonylurea drug Glyburide which is widely used
for the treatment of Diabetes type 2, was also shown to inhibit
the NLRP3 inflammasome. Primarily acting by blocking the
ATP-sensitive K+ channels (KATP) in β-cells of the pancreas,
Glyburide was shown to act upstream and prevent NLRP3
inflammasome activation. Interestingly, Glyburide-mediated
inhibition of K+ efflux was shown to inhibit NLRP3 and secretion
of IL-1β in cells infected with RNA viruses, i.e., vesicular
stomatitis virus (VSV) and encephalomyocarditis virus (EMCV)
(19, 37). Similarly, Tranilast, a drug used for the treatment
of allergic conditions such as bronchial asthma, was shown
to inhibit the NFkB pathway, several cytokines as well as the
NLRP3 oligomerization, thereby preventing the inflammasome
assembly. Based on these effects, Tranilast showed significant
beneficial effects in animals models of NLRP3 inflammasome-
related diseases of humans (38).

More importantly, an alkaloid drug Colchicine which is
known for its effects such as tubulin disruption, alteration of
E-selectin distribution on endothelial surfaces, inducing loss
of adhesion molecule L-selectins and preventing adhesion and
recruitment of neutrophil, has also been shown to inhibit
activation of the NLRP3 inflammasome. Subsequently, this
led to blocking of the pro-inflammatory IL-1β and IL-18
cytokine production (39, 40). Colchicin is frequently used for
auto-inflammatory conditions such as gouty arthritis (41) and
familial mediterranean fever (FMF) (42, 43). However, its anti-
inflammatory role due to inhibition of the NLRP3 inflammasome
activation, has also been shown in other conditions such as acute
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coronary syndrome (ACS) (44), oxidized low-density lipoprotein
(oxLDL) and cholesterol crystal-induced macrophage activation
(45) and non-steroidal anti-inflammatory drugs- (NSAIDs)
induced small intestinal injury (46).

NSAIDs is a group of anti-inflammatory drugs, inhibiting
cyclooxygenase (COX) enzymes in the synthesis of
prostaglandins and other mediators, and widely used for
the treatment of pain and inflammation. Studies have shown
that, unlike other NSAIDs, fenamates (mefenamic acid,
flufenamic acid) selectively inhibit the NLRP3 inflammasome
and IL-1β release via inhibiting the membrane volume-
regulated anion (Cl−) channel (VRAC), independent of
its cyclooxygenase-1 (COX-1) mediated anti-inflammatory
activity (47). In agreement with these findings, fenamates
(mefenamic acid and meclofenamic acid) were observed to
have considerable activity against viral replication, and a
combination of ribavirin together with mefenamic acid was
shown to be effective in reducing viral yield in cells infected
with a positive-sense RNA genome chikungunya virus (48).
Several other compounds such as MCC950 (49), CY-09 (50),
OLT117 (51), and a benzoxathiole derivative BOT-4-one
(52) have been shown to inhibit the NLRP3 inflammasome

and have been discussed in relation to NLRP3-associated
inflammatory diseases.

To summarize, this manuscript underlines the crucial role of
NLRP3 inflammasome activation in the pathogenesis of diseases
caused by SARS-CoVs, discusses reported inhibitors of the
NLRP3 inflammasome in the context of inflammatory diseases
and draws attention toward potential role of these (and similar
agents) inhibitors in the treatment of SARS-CoV-2 (COVID-19).
To this end, the evaluation of these reported (and other similar
known or novel agents) inhibitors of the NLRP3 inflammasome
in pre-clinical and/or clinical studiesmight offer new alternatives,
especially in the form of potential repurposing of approved drugs
for the treatment of COVID-19. Furthermore, considering the
clinical use of several NLRP3 inhibitor drugs for the treatment
of other inflammatory diseases, controlled studies of these co-
morbid patients might also determine potential usefulness of
these agents in the treatment of COVID-19.
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