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Phagocytosis is a cellular process for ingesting and eliminating particles larger than

0.5µm in diameter, including microorganisms, foreign substances, and apoptotic cells.

Phagocytosis is found in many types of cells and it is, in consequence an essential

process for tissue homeostasis. However, only specialized cells termed professional

phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils,

monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These

professional phagocytes express several phagocytic receptors that activate signaling

pathways resulting in phagocytosis. The process of phagocytosis involves several

phases: i) detection of the particle to be ingested, ii) activation of the internalization

process, iii) formation of a specialized vacuole called phagosome, and iv) maturation

of the phagosome to transform it into a phagolysosome. In this review, we present a

general view of our current understanding on cells, phagocytic receptors and phases

involved in phagocytosis.
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INTRODUCTION

Phagocytosis is a basic process for nutrition in unicellular organisms, and it is also found
in almost all cell types of multicellular organisms. However, only a specialized group
of cells called professional phagocytes (1) accomplish phagocytosis with high efficiency.
Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these
dedicated cells. Professional phagocytes are responsible of removing microorganisms and
of presenting antigens to lymphocytes in order to activate an adaptive immune response.
Fibroblasts, epithelial cells, and endothelial cells can also accomplish phagocytosis with
low-efficiency and are thus described as non-professional phagocytes. These cells cannot ingest
microorganisms, but are important in eliminating dead cells and maintaining homeostasis
(2). Phagocytosis is the process of sensing and taking in particles larger than 0.5µm.
The particle is internalized into a distinctive organelle, the phagosome. This phagosome
subsequently changes the structure of its membrane and the composition of its contents
in a process known as phagosome maturation (3). The phagosome next fuses with
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lysosomes to become a phagolysosome. This new organelle
contains enzymes that can degrade the ingested particle (4).

Phagocytes can identify several diverse particles that could
potentially be ingested, including apoptotic cells and microbial
pathogens. Discrete receptorsmediate this recognition by sensing
the particle as a target and then initiating signaling pathways that
favor phagocytosis. Plasma membrane receptors of phagocytes
are divided into non-opsonic or opsonic receptors. Non-opsonic
receptors directly identify distinct molecular patterns on the
particle to be ingested. These receptors include C-type lectins,
such as Dectin-1 (5), Dectin-2, Mincle, or DC-SIGN (6);
lectin-like recognition molecules, such as CD33; and scavenger
receptors (7). Although, the toll-like receptors (TLRs) (8) can
also detect molecular patterns on pathogens, they are not
phagocytic receptors. Nevertheless, TLRs can cooperate with
phagocytic receptors to make phagocytosis more efficient (9).
Opsonic receptors detect host-derived proteins bound to target
particles. These proteins known as opsonins include antibodies,
fibronectin, complement, milk fat globulin (lactadherin), and
mannose-binding lectin (10). Opsonins label particles as targets
of phagocytosis. Fc receptors (FcR) and the complement
receptors (CR) are the best characterized opsonic receptors.
FcRs bind to the Fc portion of IgG (11, 12) or IgA antibodies
(13). Complement receptors bind to activated complement
components, such as iC3b, deposited on the particle (14).

Upon binding to the particle, phagocytic receptors initiate
signaling pathways leading to remodeling of the actin
cytoskeleton and lipids in the membrane, that result in the
membrane extending to cover the particle (15). Then, the
membrane closes at the distal end creating the phagosome. Thus,
the particle gets internalized inside the phagosome. During
membrane extension, the phagocytic receptors bind to the target
in a sequential order and help completing the formation of
the phagosome (16, 17). Next, this early phagosome undergoes
sequential fusion and fission events with endocytic vesicles to
create a late phagosome (18). This late phagosome then fuses
with lysosomes and becomes a phagolysosome. The process to
change a phagosome into a potent anti-microbial phagolysosome
is known as phagosome maturation (3).

The process of phagocytosis involves several phases: (i)
detection of the particle to be ingested, (ii) activation of the
internalization process, (iii) formation of a specialized vacuole
called phagosome, and (iv) phagosome maturation. In this
review, we present the main phagocytic receptors and a general
view of our current understanding on phagocytosis.

DETECTION OF THE TARGET PARTICLE

The first phase in phagocytosis is the detection of the target
particle. Detection is mediated by dedicated receptors on
phagocytic cells. Receptors directly recognizing pathogen-
associated molecular patterns (PAMPs) are the pattern-
recognition receptors (PRRs). Some of these PRRs can initiate
phagocytosis and thus constitute the non-opsonic receptors
for phagocytosis. Other PRRs, for example TLRs, can bind to
PAMPs but not induce phagocytosis. These receptors however,

can prepare (prime) the cell for phagocytosis. Foreign particles
can also be detected indirectly by opsonic receptors. The
receptors for antibody and complement are the best described
opsonic receptors.

Non-opsonic Receptors
Receptors for Microorganisms
Some receptors that directly bind PAMPs and can induce
phagocytosis include Dectin-1, Mincle, MCL, and DC-SIGN
(Table 1). All these molecules are members of the family of
C-type lectin receptors (6). Dectin-1 (dendritic cell-associated
C-type lectin-1) recognizes yeast polysaccharides (19), and
it has been shown to be a bona fide phagocytic receptor.
When expressed on non-phagocytic heterologous cells, Dectin-
1 allowed the cells to perform phagocytosis (19–21). In vivo, it
is also possible that Dectin-1 cooperates with other phagocytic
receptors in particular cells. For example, in neutrophils, Dectin-
1 has been reported to connect to the phagocytic receptor
Mac-1 (CD11b/CD18, CR3) (33). Mincle (macrophage-inducible
C-type lectin) is a receptor for trehalose dimycolate (TDM),
which is present on the cell wall of some mycobacterium (22).
MCL (macrophage C-type lectin, Dectin-3) is another receptor
for TDM that also binds α-mannans. Both, Mincle and MCL
are considered bona fide phagocytic receptors, because when
individually expressed in 293T cells, they induce internalization
of beads covered with antibodies against each receptor (23). In
myeloid cells, Mincle and MCL seem to cooperate for enhanced
phagocytosis by forming heterodimers on the cell membrane
(23). DC-SIGN (dendritic cell-specific ICAM-3-grabbing non-
integrin) is another receptor that can bind multiple microbial
pathogens, including viruses, fungi, and bacteria (6), through
recognition of fucosylated glycans and mannose-rich glycans
(24). DC-SIGN was shown to be a phagocytic receptor by
expressing it in non-phagocytic human myeloid K562 cells
or in epithelial HeLa cells. K562 cells were then capable
of internalizing Mycobacterium tuberculosis mannose-capped
lipoarabinomannan (ManLAM)-coated beads (25), while HeLa
cells could bind and internalize Escherichia coli bacteria (26). DC-
SIGNR is another C-type lectin receptor with high homology
to DC-SIGN, and capable of binding mannose-rich ligands
(34). Therefore, DC-SIGNR is also very likely a phagocytic
receptor. Other C-type lectin domain-containing proteins have
been implicated in phagocytosis long before Dectin-1 and other
C-type lectin receptors (6). The macrophage mannose receptor
(CD206) presents several C-type lectin carbohydrate recognition
domains, which detect α-mannan on many microorganisms
(Table 1). The mannose receptor was also shown to be a bona
fide phagocytic receptor when expressed in non-phagocytic COS-
1 cells. Transfected COS-1 cells were then able to mediate
internalization of zymosan (27).

Other PAMP receptors are also involved in phagocytosis,
but it is still not clear whether they can induce phagocytosis
on their own, or they do it indirectly by just bringing the
particle close to the phagocyte (35). It is also possible that these
receptors just prime the phagocyte, while other receptors mediate
phagocytosis (35). CD14, scavenger receptor A (SR-A), CD36,
and MARCO are among these receptors (Table 1). CD14 is a
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TABLE 1 | Human non-opsonic phagocytic receptors and their ligands.

Receptor Ligands Reference(s)

Non-opsonic receptors

Dectin-1 Fungal beta-glucan

Polysaccharides of some yeast cells

(19–21)

Mincle Trehalose dimycolate of

Mycobacteria

(22, 23)

MCL Trehalose dimycolate

α-Mannan

(23)

DC-SIGN Fucosylated glycans

Mannose-rich glycans

(24–26)

Mannose

receptor

Mannan (27)

CD14 Lipopolysaccharide-binding protein (28)

Scavenger

receptor A

Lipopolysaccharide, lipoteichoic acid (29, 30)

CD36 Plasmodium falciparum-infected

erythrocytes

(31)

MARCO Bacteria (32)

receptor for lipopolysaccharide (LPS)-binding protein (28). SR-A
recognizes LPS on Gram-negative bacteria (29), and on Neisseria
meningitidis (30). CD36 detects Plasmodium falciparum-infected
erythrocytes (31), and MARCO (macrophage receptor with
collagenous structure) is involved in recognition of several
bacteria (32).

Receptors for Apoptotic Cells
In multicellular organisms many cells die constantly by apoptosis
for maintaining homeostasis. These apoptotic cells are eliminated
by phagocytosis. Detection of apoptotic cells requires particular
receptors for molecules that only appear on the membrane of
dying cells. These molecules include lysophosphatidylcholine,
and phosphatidyl serine (PS) (36). These molecules deliver
to phagocytes an “eat me” signal (37). Receptors directly
recognizing PS include TIM-1, TIM-4 (38), stabilin-2 (39), and
BAI-1 (brain-specific angiogenesis inhibitor 1) (40) (Table 2).
The integrin αvβ3 can also bind PS after other receptors, for
example lactadherin, connect PS to the integrin (41). The integrin
αVβ5 (42), CD36 (45), and CD14 (44, 46) are also receptors
for apoptotic cells (Table 2). Some normal cells, for example
activated B and T lymphocytes, may express significant levels of
PS on their surface. These cells avoid phagocytosis by expressing
at the same time molecules that serve as “don’t eat me” signals
(2). One such molecule is CD47, a ligand to the receptor SIRPα

(signal regulatory protein α), which is expressed on phagocytes
(47). Upon engagement, SIRPα delivers an inhibitory signal for
actin assembly (47). The signaling events from these receptors to
activate phagocytosis are just beginning to be elucidated. Since
phagocytosis of apoptotic cells is central to homeostasis (48),
determining the phagocytosis mechanisms of all these receptors
for apoptotic cells will be an active area of future research.

Opsonic Receptors
Foreign particles can also be labeled for phagocytosis by
opsonins, which are host-derived proteins that bind specific

TABLE 2 | Receptors for apoptotic cells.

Receptor Ligands Reference(s)

TIM-1* Phosphatidylserine (38)

TIM-4* Phosphatidylserine (38)

Stabilin-2 Phosphatidylserine (39)

BAI-1* Phosphatidylserine (40)

Lactadherin and αVβ3 MFG-E8* (41)

αVβ5 Apoptotic cells (42)

CD36 Oxidized lipids (43)

CD14 Phosphatidylserine (?) (44)

*TIM, T cell immunoglobulin mucin; BAI-1, brain-specific angiogenesis inhibitor 1; MFG,

milk fat globule.

TABLE 3 | Human opsonic phagocytic receptors and their ligands.

Receptor Ligands Reference(s)

FcγRI (CD64) IgG1 = IgG3 > IgG4 (49)

FcγRIIa (CD32a) IgG3 ≥ IgG1 = IgG2 (49)

FcγRIIIa (CD16a) IgG (49)

FcαRI (CD89) IgA1, IgA2 (13, 50)

CR1 (CD35) Mannan-binding lectin, C1q,

C4b, C3b

(51)

CR3 (αMβ2,

CD11b/CD18, Mac-1)

iC3b (52)

CR4 (αVβ2,

CD11c/CD18,

gp190/95)

iC3b (52)

α5β1 (CD49e/CD29) Fibronectin, vitronectin (53)

receptors on phagocytic cells. Important opsonins promoting
efficient phagocytosis include antibody (IgG) molecules and
complement components. These opsonins and their receptors are
the best studied so far (Table 3).

Fcγ Receptors
Fcγ receptors (FcγR) are glycoproteins that specifically bind
the Fc part of IgG molecules (12, 54). When FcγR engage
IgG molecules in multivalent antigen-antibody complexes, they
get clustered on the membrane of the cell, and then trigger
phagocytosis as well as other cellular responses (11, 55)
(Figure 1).

Three types of FcγR are expressed on human cells, FcγRI
(CD64), FcγRII (CD32), and FcγRIII (CD16) (56) (Figure 1).
FcγRI has three Ig-like domains, and displays high affinity for
IgG molecules. In contrast, FcγRII and FcγRIII have two Ig-
like domains, and display low-affinity for IgG molecules. Thus,
they can only bind multimeric immune complexes (57). FcγRI
is expressed together with a dimer of the common Fc receptor
gamma (FcRγ) chain. Each FcRγ chain contains tyrosine residues
within an immunoreceptor tyrosine-based activation motif
(ITAM; consensus sequence: YxxI/Lx(6−12)YxxI/L) (58, 59). The
clustering of activating FcγRs results in the phosphorylation
of tyrosine residues in the ITAM sequence present within
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FIGURE 1 | Human Fcγ receptors. The human receptors for the Fc portion of immunoglobulin G (IgG) molecules are classified in three groups FcγRI, FcγRII, and

FcγRIII. The IgG binding α-subunit in the high affinity FcγRI, possesses three immunoglobulin (Ig)-like extracellular domains. The α-subunit in the other low-affinity

receptors presents only two Ig-like domains. Activating receptors contain an ITAM (immunoreceptor tyrosine-based activation motif) sequence within the α subunit (for

FcγRIIa) or within the accessory γ and ζ chains (for FcγRI and FcγRIIIa). FcγRIIIa has a homodimer of γ chains in macrophages, natural killer (NK) cells, and dendritic

cells, whereas it has a heterodimer of γ/ζ chains and an extra β chain in basophils and mast cells. FcγRIIIb is also an activating receptor, which is bound to the cell

membrane via a glycosylphosphatidylinositol (GPI) anchor. In contrast, FcγRIIb is an inhibitory receptor containing an ITIM (immunoreceptor tyrosine-based inhibition

motif) sequence.

the cytoplasmic domain of the receptor (as is the case with
FcγRIIa and FcγRIIc), or in an associated FcR common γ-
chain (as with FcγRI and FcγRIIIa) (11, 12, 57). These tyrosine
residues are phosphorylated upon activation and are essential
for receptor signaling. FcγRII presents two isoforms: FcγRIIa
expressed mainly in phagocytic cells and FcγRIIb expressed
mainly in B lymphocytes (56). FcγRIIa does not associate with
FcRγ chains, but has an ITAM motif in its cytoplasmic tail.
FcγRIIb also does not associate with FcRγ chains, but in contrast,
has an immunoreceptor tyrosine-based inhibition motif (ITIM;
consensus sequence: S/I/V/LxYxxI/V/L) in its cytoplasmic tail
involved in negative signaling (60). Phosphorylated tyrosine
residues within the ITIM recruit phosphatases that down-
modulate signals coming from ITAM-containing activated
receptors (60, 61). FcγRIIb functions as a negative regulator of
cell functions, such as phagocytosis (62, 63). FcγRIII presents
two isoforms: FcγRIIIa expressed in macrophages, natural killer
(NK) cells, basophils, mast cells and dendritic cells, and FcγRIIIb
expressed exclusively on neutrophils (57) (Figure 1). FcγRIIIa
is a receptor with a transmembrane portion and a cytoplasmic
tail, associated with a dimer of FcRγ chains, while FcγRIIIb
is a glycosylphosphatidylinositol (GPI)-linked receptor, lacking
a cytoplasmic tail and no known associated subunits (64)
(Figure 1).

Complement Receptors
Complement receptors (CRs) bind activated complement
molecules deposited on microorganisms or cells (65, 66).
Complement receptors belong to three groups of molecules: (i)
CR1 and CR2, which are formed by short consensus repeat
(SCR) elements, (ii) CR3 and CR4, which belong to the β2
integrin family (66), and (iii) CRIg, which belongs to the
immunoglobulin Ig-superfamily (14) (Figure 2). The integrin
αMβ2 (also known as CD11b/CD18, CR3, or Mac-1) binds
the complement component iC3b, and is the most efficient
phagocytic receptor among complement receptors (66–68).

FIGURE 2 | Complement receptors. There are three groups of complement

receptors: (i) the short consensus repeat (SCR) modules that code for CR1

and CR2, (ii) the β2 integrin family members CR3 and CR4 (66), and (iii) the

immunoglobulin Ig-superfamily member CRIg.

Phagocytic Receptors Cooperation
For efficient recognition of the target particle and initiation of
phagocytosis, numerous receptors on the phagocyte membrane
must interact with several IgG molecules on the opsonized
particle. For this, receptors must have good mobility of the
membrane (69) so that they can aggregate and get activated.
However, free diffusion is not easy for most phagocytic receptors,
because they are among other (usually bigger) transmembrane
glycoproteins that cover the cell surface. Phagocytic receptors
are very short molecules compared to these longer glycoproteins;
hence short receptors are obscured among a layer of large
glycoproteins (the glycocalyx), such as mucins, hyaluronan, and
the membrane phosphatases CD45 and CD148 (70). In addition,
many large glycoproteins are tied to the cytoskeleton, and can
interfere with the lateral diffusion of receptors on the cell
membrane (15, 17).

Interactions of Fcγ receptors with possible targets can be
enhanced by cooperation with other receptors that can remove
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FIGURE 3 | Cooperation among phagocytic receptors. Most phagocytic

receptors, such as receptors for antibody (FcγRIIa) and receptors for

complement (Integrin CR3) cooperate to bind the particle to be ingested. FcγR

aggregation triggers an inside-out signal that activates integrins via the

GTPase Rap. Activated Rap (Rap GTP) is responsible for integrin activation.

Then, activated integrins also bind to the particle (via complement fragment

C3b), and form a diffusion barrier that excludes larger molecules, such as the

transmembrane phosphatase CD45. This allows other Fc receptors to be

engaged and increase the signaling for phagocytosis. SFK, Src family kinases.

Syk, spleen tyrosine kinase.

larger glycoproteins from the area of the membrane in contact
with the target particle. The result is that Fcγ receptors can
then diffuse more freely on the membrane and engage more IgG
molecules (16) (Figure 3). Removal of large glycoproteins from
the membrane area of contact with the target particle is achieved
by activated integrins. Integrins, for example CR3, increase their
affinity for their ligand after they receive an inside-out signal
(71, 72) from other receptors such as Fc receptors (73), TLRs (74),
or CD44 (75). Inside-out signaling leads to activation of integrins
(66, 76) via the small GTPase Rap1 (77). Activated integrins
extend their conformation and create a diffusion barrier that
keeps larger glycoproteins, for example the phosphatase CD45,
away from phagocytic receptors (16) (Figure 3). Also, extended
integrins can engage more distant ligands on the particle (78) and
create a progressive wave of large molecules migrating in front
of the bound Fcγ receptors, which aggregate in microclusters
to mediate a strong adhesion between the phagocyte membrane
and the particle to be ingested (17). Thus, during phagocytosis
integrins cooperate with Fcγ receptors by promoting adhesion to
the opsonized particle (79). Interestingly, this type of cooperation
was implied by earlier studies showing that in neutrophils
FcγRIIIb associates with Mac-1 integrins (80, 81).

ACTIVATION OF THE INTERNALIZATION
PROCESS

When a particle is recognized by phagocytic receptors, various
signaling pathways are activated to initiate phagocytosis.

Reorganization of the actin cytoskeleton and changes in the
membrane take place resulting in a depression of the membrane
area touching the particle, the phagocytic cup. Then, pseudopods
are formed around the particle until the membrane completely
covers the particle to form a new phagosome inside the cell. The
signaling mechanisms to activate phagocytosis are best-known
for Fc receptors and for complement receptors (10, 67, 82–
84). For other phagocytic receptors, signaling pathways are just
beginning to be investigated.

Fcγ Receptor Signaling
Fcγ receptors get activated when they bind to antibody
molecules covering the target particle and get clustered on
the phagocyte membrane. Upon clustering of Fcγ receptors,
they co-localize with Src-family kinases (such as Lyn, Lck, and
Hck). These kinases phosphorylate tyrosines within the ITAM.
Then, Syk (spleen tyrosine kinase) binds to the phosphorylated
ITAMs and gets activated (67, 85). Activated Syk, in turn,
can phosphorylate multiple substrates and initiate different
pathways that connect to distinct cellular responses such as
phagocytosis (67, 85, 86) and transcriptional activation (86)
(Figure 4). Important Syk substrates involved in phagocytosis
are the adaptor molecule LAT (linker for activation of T cells),
phosphatidylinositol 3-kinase (PI 3-K), and phospholipase Cγ

(PLCγ) (87, 88) (Figure 4). Phosphorylation of LAT induces
docking of additional adaptor molecules such as Grb2 and
Gab2 (Grb2-associated binder 2) (89). Phosphorylated (active) PI
3-K generates the lipid phosphatidylinositol-3,4,5-trisphosphate
(PIP3) at the phagocytic cup (90, 91). This lipid also regulates
activation of the GTPase Rac, and contractile proteins such
as myosin. Active Rac is important in actin remodeling and
activation of other signaling molecules such as JNK and the
nuclear factor NF-κB (Figure 4). Activated PLCγ produces
inositoltrisphosphate (IP3), and diacylglycerol (DAG). These
second messengers cause calcium release and activation of
protein kinase C (PKC), respectively (92). PKC leads to activation
of extracellular signal-regulated kinases (ERK and p38) (93). The
Guanine nucleotide exchange factor (GEF) Vav activates GTPases
of the Rho and Rac family (94), which are involved in regulation
of the actin polymerization that drives pseudopod extension
(Figure 4).

Complement Receptor Signaling
Among complement receptors, CR3 (integrin Mac-1) is the
most efficient phagocytic receptor (66, 67). From very early
studies, it has been realized that CR3 on macrophages initiates a
different type of phagocytosis from the one mediated by antibody
Fcγ receptors. CR3-mediated phagocytosis is characterized by
“sinking” of the target particle into the cell membrane without
generation of pseudopods around the particle (95). Also, the
usage of cytoskeleton components for particle internalization
is different between FcγR- and CR-mediated phagocytosis.
During FcγR-mediated phagocytosis the actin cytoskeleton is
used, whereas during CR-mediated phagocytosis the actin and
microtubule cytoskeletons are involved (96, 97). In complement
phagocytosis F actin remodeling depends on activation of the
GTPase Rho, but not on the GTPases Rac or Cdc42 (98, 99).
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FIGURE 4 | FcγR signaling for phagocytosis. FcγRIIa crosslinking by

immunoglobulin (IgG) bound to a particle, induces activation of Src family

kinases (SFK), which phosphorylate tyrosine residues in the ITAM sequence

within the cytoplasmic tail of the receptor. Then, spleen tyrosine kinase (Syk)

associates with phosphorylated ITAMs and leads to phosphorylation and

activation of a signaling complex formed by the scaffold protein LAT (linker for

activation of T cells) interacting with various proteins. One of these proteins is

phospholipase C gamma (PLCγ), which produces inositoltrisphosphate (IP3),

and diacylglycerol (DAG). These second messengers cause calcium release

and activation of protein kinase C (PKC), respectively. PKC leads to activation

of extracellular signal-regulated kinases (ERK and p38). The guanine

nucleotide exchange factor Vav activates the GTPase Rac, which is involved in

regulation of the actin cytoskeleton. Rac is also involved in activation of

transcription factors such as NF-κB and JNK. The enzyme

phosphatidylinositol 3-kinase (PI3K), which is recruited and activated by Syk,

generates the lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3 ) at the

phagocytic cup. This lipid also regulates Rac activation, and contractile

proteins such as myosin. P represents a phosphate group. ER, endoplasmic

reticulum. IP3R, receptor (calcium channel) for inositoltrisphosphate.

Active Rho in turn, promotes actin polymerization via two
mechanisms (Figure 5). First, Rho stimulates Rho kinase, which
phosphorylates and activates myosin II (100). Myosin then
leads to activation of the Arp2/3 complex, which promotes
actin assembly at the phagocytic cup (100). Second, Rho
can induce accumulation of mDia1 (mammalian diaphanous-
related formin 1) and polymerized actin in the phagocytic cup
(101). Also, mDia1 binds directly to the microtubule-associated
protein CLIP-170 at the phagocytic cup (102) and provides a
link to the microtubule cytoskeleton required for CR-mediated
phagocytosis (96, 97) (Figure 5).

PHAGOSOME FORMATION

Phagocytosis initiates when phagocytic receptors engage ligands
on the particle to be ingested. Then, receptors activate signaling
pathways that change the membrane composition and control
the actin cytoskeleton, resulting in the formation of membrane
protrusions for covering the particle. Finally, these membrane
protrusions fuse at the distal creating a new vesicle that pinches
out from the plasma membrane. This new vesicle containing the
ingested particle is the phagosome.

FIGURE 5 | Complement receptor signaling for phagocytosis. The

complement receptor 3 (CR3 integrin) binds the complement molecules (iC3b)

deposited on the target particle, and activates a signaling pathway that leads

to activation of the GTPase Rho. Then, active Rho induces actin

polymerization via two mechanisms. Rho activates Rho kinase (ROCK), which

phosphorylates and activates myosin II, inducing accumulation of Arp2/3 and

actin assembly at the phagocytic cup. Rho also promotes accumulation of

mDia1 (mammalian diaphanous-related formin 1), which stimulates linear actin

polymerization. In addition, mDia1 binds directly to the microtubule-associated

protein CLIP-170 providing a link to the microtubule cytoskeleton.

During phagosome formation the membrane changes its
lipid composition. These changes have been revealed by elegant
fluorescence imaging techniques (3, 103), and involve the
formation and degradation of different lipid molecules on
the phagosome membrane in an orderly fashion. During
Fcγ receptor-mediated phagocytosis, phosphatidylinositol-4,5-
bisphosphate [PI(4,5)P2] initially accumulates at the phagocytic
cup but then it declines rapidly (91). The decline in PI(4,5)P2
is important for particle internalization, probably by facilitating
actin disassembly (104). The decline in PI(4,5)P2 is caused
by the action of PI 3-K, which phosphorylates it to produce
PI(3,4,5)P3 at the phagocytic cup (105). Reduction of PI(4,5)P2
in the membrane is also mediated by the action of PLCγ,
which produces diacylglycerol (DAG) (91). DAG in turn, induces
activation of PKCε for enhanced phagocytosis (92).

Together with the changes in lipid composition, the plasma
membrane also changes by remodeling the actin cytoskeleton
in order to generate the membrane protrusions that will
cover the target particle. Important steps for pseudopodia
formation are recognized. First, the cortical cytoskeleton
gets disrupted. Second, pseudopodia are formed by F-actin
polymerization. Third, at the base of the phagocytic cup, actin
gets depolymerized while the membrane phagosome is sealed at
the distal end to form the phagosome (15). When phagocytosis
is initiated, the membrane-associated cortical cytoskeleton is
altered by the action of coronins (F-actin debranching proteins)
(106), and cofilin (107) and gelsolin (108) (F-actin-severing
proteins). Coronin 1 concentrates at the nascent phagosome and

Frontiers in Immunology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 1066

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Uribe-Querol and Rosales Phagocytosis

debranches F-actin leaving linear fibers that can be severed by
cofilin and gelsolin. The activity of these enzymes is controlled by
their binding to phosphoinositides, such as PI(4,5)P2, resulting
in their association with or separation from actin filaments (108,
109). Next, nucleation of new actin filaments, mediated by the
actin-nucleating activity of the Arp2/3 protein complex, leads
to pseudopodia formation. During FcγR-mediated phagocytosis,
the GTPase Cdc42 and the lipid PI(4,5)P2 activate the proteins
WASP (Wiskott-Aldrich syndrome protein) and N-WASP (110),
which induce activation of Arp2/3 complex at the nascent
phagocytic cup (111, 112). Different from this, during CR-
mediated phagocytosis, actin polymerization is regulated by
the GTPase Rho (113). Rho leads to activation of the Arp2/3
complex, via Rho kinase and myosin II (100). The Arp2/3
complex then produces branched actin-filament assembly at the
phagocytic cup (100, 114). Rho also promotes accumulation
of mDia1, which produces long straight actin filaments at the
phagocytic cup (101, 114) (Figure 5). Together, these changes
help extend membrane protrusions that completely cover the
target particle.

The final step for phagosome formation involves fusion
of the membrane protrusions at the distal end to close the
phagosome. Just before the phagosome is completed, F-actin
disappears from the phagocytic cup. It is thought that removal
of actin filaments from the phagocytic cup may facilitate
curving of the membrane around the particle (115). The
mechanism for removing F-actin involves termination of actin
polymerization and depolymerization of existing filaments. Both
steps seem to be controlled by PI 3-K. Inhibition of this enzyme
blocks actin depolymerization at the phagocytic cup and stops
pseudopod extension (90). Activation of GTPases is necessary for
stimulating the Arp2/3 complex during phagocytosis for actin
polymerization (116). But, PI(3,4,5)P3, the product of PI 3-K can
stimulate Rho-family GAPs (GTPase activating proteins), which
cause deactivation of GTPases and in consequence prevents actin
polymerization. In support of this model, it was found that
inhibition of PI 3-K led to an increase of activated GTPases at
the phagocytic cup (94, 116). In addition, the activity of PI-
3K decreases the levels of PI(4,5)P2. This phospholipid activates
the Arp2/3 complex, via WASP and N-WASP (110). Thus,
its disappearance at the phagocytic cup (111, 112) promotes
pseudopod extension (90).

It seems that myosins, actin-binding proteins (117, 118) use
their contractile activity to facilitate phagosome formation. In
macrophages, it was shown that class II, and IXb myosins were
concentrated at the base of phagocytic cups, while myosin Ic
increased at the site of phagocytic cup closure, and myosin
V appeared after phagosome closure (119). During pseudopod
extension, a tight ring of actin filaments moves from the bottom
toward the top of the phagocytic cup squeezing the particle
to be ingested (120). This contractile activity is dependent of
myosin light-chain kinase (MLCK). Thus, myosin II activated
by MLCK is required for the contractile activity of phagocytic
cups (121). It seems that the squeezing action of the phagocytic
cups pushes extra-particle fluid out of the phagosomes. Myosin
X is also recruited to phagocytic cups in a PI 3-K-dependent
manner, and seems to be important for pseudopod spreading

during phagocytosis (122). At the same time, myosin Ic, a
subclass of myosin I, concentrates at the tip of the phagocytic cup,
implicating it in generating the contraction force that closes the
opening of phagocytic cups in a purse-string-like manner (123).
Myosin IX also appears in phagocytic cups similarly to myosin
II (119, 123). Thus, it is believed that myosin IX is involved in
the contractile activity of phagocytic cups. However, it is also
possible that myosin IX functions as a signaling molecule for the
reorganization of the actin cytoskeleton. This idea is based on the
fact that class IX myosins contain a GTPase-activation-protein
(GAP) domain that activates the GTPase Rho (124) involved in
actin remodeling. Finally, myosin V appears on fully internalized
phagosomes. Because class V myosins are involved in vesicular
transport in other cell types (125), it is possible that myosin V is
responsible for phagosome movement rather than formation of
phagosomes (120). Video microscopy experiments have shown
that newly formed phagosomes remain within the periphery of
the cells for a while, hence it is likely that myosin V mediates the
short-range slow movement of newly formed phagosomes (126).
Consequently, the described roles of myosins during phagosome
formation are: myosin II is involved in phagocytic cup squeezing,
myosin X andmyosin Ic are responsible for pseudopod extension
and phagocytic-cup closing, respectively, myosin IX may activate
Rho to direct actin remodeling, and myosin V controls the
short-range movement of new phagosomes.

PHAGOSOME MATURATION

Once internalized the new phagosome transforms its membrane
composition and its contents, to become a new vesicle, the
phagolysosome, that can degrade the particle ingested. This
transformation is known as phagosome maturation, and consists
of successive fusion and fission interactions between the new
phagosome and early endosomes, late endosomes, and finally
lysosomes (4, 127).

Early Phagosome
The new phagosome combines with early endosomes (3) in
a process that involves membrane fusion events regulated by
the small GTPase Rab5 (128, 129). Rab5 recruits the molecule
EEA1 (early endosome antigen 1), promoting the fusion of the
new phagosome with early endosomes (130). EEA1 functions
as a bridge between early endosomes and endocytic vesicles
(131), and promotes recruitment of other proteins, such as Rab7
(132, 133). Although, the new phagosome combines with several
endosomes it does not increase in size because at the same
time vesicles, named recycling endosomes, are removed from the
phagosome (Figure 6).

Late Phagosome
As phagosome maturation proceeds, Rab5 is lost, and Rab7
appears on the membrane (133). Then, Rab7 mediates the
fusion of the phagosome with late endosomes (134). At the
same time, there is an accumulation of V-ATPase molecules
on the phagosome membrane. This V-ATPase is responsible
for the acidification (pH 5.5–6.0) of the phagosome interior by
translocating protons (H+) into the lumen of the phagosome
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FIGURE 6 | Phagosome maturation. The nascent phagosome gets

transformed into a microbicidal vacuole, the phagolysosome, by sequential

interactions with vesicles from the endocytic pathway. The process can be

described in three stages of maturation: early (A), late (B), and

phagolysosome (C). In this process, composition of the membrane changes

to include molecules that control membrane fusion, such as the GTPases

Rab5 and Rab7. The phagolysosome becomes increasingly acidic by the

action of a proton-pumping V-ATPase and acquires various degradative

enzymes, such as cathepsins, proteases, lysozymes, and lipases (scissors).

EEA1, early endosome antigen 1; LAMP, lysosomal-associated membrane

protein; NADPH, nicotinamide adenine dinucleotide phosphate oxidase.

(135, 136) (Figure 6). Also, lysosomal-associated membrane
proteins (LAMPs) and luminal proteases (cathepsins and
hydrolases) are incorporated from fusion with late endosomes
(4, 127) (Figure 6).

Phagolysosome
At the last stage of phagosomematuration, phagosomes fuse with
lysosomes to become phagolysosomes (3). The phagolysosome
is the fundamental microbicidal organelle, equipped with
sophisticated mechanisms for degrading microorganisms. First,
phagolysosomes are very acidic (pH as low as 4.5) due to the
accumulation of many V-ATPase molecules on their membrane
(136). The phagolysosome membrane also presents the NADPH
oxidase complex, that is responsible for producing reactive

oxygen species (ROS), such as superoxide (O2−) (137, 138).
Superoxide dismutates to H2O2, which can in turn react with
Cl− ions to form hypochlorous acid, a very potent microbicidal
substance. This last reaction is catalyzed by the enzyme
myeloperoxidase (139). In addition, the phagolysosome contains
several hydrolytic enzymes, such as cathepsins, proteases,
lysozymes, and lipases, which contribute to degrade ingested
microorganisms (135) (Figure 6).

PHAGOCYTOSIS-ASSOCIATED
RESPONSES

Phagocytosis is not an isolated cell response. It usually occurs
together with other cell responses, including formation of
reactive oxygen species (ROS) (140, 141), secretion of pro-
inflammatory mediators (142), degranulation of anti-microbial
molecules (143, 144), and production of cytokines (142). Cell
responses associated to phagocytosis can be controlled by parallel
signaling pathways triggered by the same phagocytic receptors.
For instance, antibody-dependent phagocytosis in monocytes is
controlled by PKC, independently of PI 3-K and ERK (145).
However, in the same monocytes, antibody stimulation induces
cytokine production via PI 3-K and ERK (145). Phagocytosis
and associated cell responses can also be controlled by
partially overlapping signaling pathways. For instance, antibody-
dependent phagocytosis, in macrophages involves the signaling
molecules Syk, PI 3-K, PKC, and ERK, but it is independent
of an increase in cytosolic calcium concentration (146, 147).
In contrast, in neutrophils production of ROS also involves
Syk, PI 3-K, PKC, and ERK, but it is dependent on cytosolic
calcium (148). Also, in macrophages different PKC isoforms
seem to be required either for phagocytosis, or for production of
ROS. The isoforms PKCδ and PKCε are involved in regulation
of phagocytosis, while PKCα is involved in regulation of ROS
production (92). These observations suggest that particular Fcγ
receptors can trigger diverse signaling pathways for specific
cell responses (55). In support of this idea, in neutrophils in
was found that FcγRIIa and FcγRIIIb signal differently for
phagocytosis (149), and also for neutrophil extracellular trap
(NET) formation (150).

PHAGOCYTOSIS EFFICIENCY

Most phagocytes have relatively low levels of phagocytosis at
resting conditions. However, during inflammation, phagocytes
are exposed to a variety of activating stimuli, which increase
phagocytosis efficiency. These stimuli include bacterial products,
cytokines, and inflammatory mediators. The signaling induced
by these stimuli leads to increased stimulation of molecules
involved in phagocytosis. For example, leukotriene B4 increases
Syk activation and in consequence antibody-dependent
phagocytosis (151). Similarly, the activity of PI 3-K and/or
ERK, which are essential enzymes for efficient phagocytosis
(83), can be enhanced by the bacterial peptide fMLF (152),
granulocyte colony-stimulating factor (153), leukotrienes (154),
and cytokines such as interleukin 8 (IL-8) (155).
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Phagocytosis efficiency can also be regulated by cell
differentiation. For example, monocytes have a lower phagocytic
capacity than neutrophils and macrophages, but can enhance
their phagocytic capacity upon cell differentiation (1, 156).
The capacity of monocytes to phagocytize diverse targets
changes with their state of differentiation. IgG-opsonized
particles are phagocytized better by mature macrophages than
by undifferentiated monocytes (83). Similarly, the efficiency
of complement-mediated phagocytosis depends on monocyte
differentiation (157, 158). How the process of monocyte-to-
macrophage differentiation enhances phagocytic capacity is
still unknown. It is possible that during cell differentiation
the molecular machinery for phagocytosis gets rearranged. In
support of this idea, it was found that in monocytes phagocytosis
signaling requires PKC, but it does not use PI 3-K and ERK
(145). However, during monocyte-to-macrophage differentiation
the enzymes PI 3-K and ERK are recruited in an orderly
fashion for efficient phagocytosis (159). Similarly, PLA2 is also
implicated in regulation of phagocytosis. During phagocytosis,
various PLA2 isoforms participate in releasing arachidonic
acid from membrane triglyceride lipids. In monocytes, a
calcium-independent PLA2, under PKC control is involved
in phagocytosis (160, 161), while in macrophages, a calcium-
dependent PLA2, under ERK and p38MAPK control is involved
(162). Thus, during monocyte-to-macrophage differentiation
important signaling enzymes are reorganized in order to achieve
enhanced phagocytosis.

CONCLUSION

Phagocytosis is a fundamental process for the ingestion and
elimination of microbial pathogens and apoptotic cells. All

types of cells can perform phagocytosis, but specialized cells

called professional phagocytes do it much more efficiently.
Phagocytosis is vital, not only for eliminating microbial
pathogens, but also for tissue homeostasis. Because there are
different types of phagocytic cells and they can ingest a vast
number of different targets, it is evident that phagocytosis
involves diverse mechanisms. We have presented the main steps
of phagocytosis as performed by professional phagocytes and in
response mainly to Fcγ receptors. For other phagocytic receptors,
we are just beginning to describe the signaling pathways they use
to activate phagocytosis. Today, we have a better understanding
on the process of phagosome maturation, but there are still many
gaps in our knowledge of the signaling pathways regulating this
process. Similarly, the resolution of the phagolysosome, after
degradation of the ingested particle, is a topic that requires
further research. Many important questions remain unsolved.
For example, how different phagocytic receptors on the same cell
work together? and what is the role different phagocytes in tissue
homeostasis? An improved understanding of phagocytosis
is essential for future therapeutics related to infections
and inflammation.
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