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Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease

of unknown origin, which is predominantly affecting the joints. Antibodies against

citrullinated peptides are a rather specific immunological hallmark of this heterogeneous

entity. Furthermore, certain sequences of the third hypervariable region of human

leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so

called “shared epitope” sequences, appear to promote autoantibody positive types of

RA. However, MHC-II molecule and other genetic associations with RA could not be

linked to immune responses against specific citrullinated peptides, nor do genetic factors

fully explain the origin of RA. Consequently, non-genetic factors must play an important

role in the complex interaction of endogenous and exogenous disease factors. Tobacco

smoking was the first environmental factor that was associated with onset and severity

of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore,

smoking is associated with extra-articular RA manifestations such as interstitial lung

disease in anatomical proximity to the airway mucosa, but also with subcutaneous

rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen

with unique citrullinating capacity of foreign microbial antigens as well as candidate RA

autoantigens. Although the original hypothesis that this single pathogen is causative

for RA remained unproven, epidemiological as well as experimental evidence linking

periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as

Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed

to play a specific immunodominant role in context of RA. However, demonstration of

T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium

coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention

to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically

healthy subjects with citrulline directed immune responses and was correlated with RA

onset. In conclusion, we retrieved more than one line of evidence for mucosal sites

and different microbial taxa to be potentially involved in the development of RA. This

review gives an overview of infectious agents and mucosal pathologies, and discusses

the current evidence for causality between different exogenous or mucosal factors and

systemic inflammation in RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a common immune mediated
inflammatory condition primarily affecting the joints. Despite
the well-described contribution of a genetic background
predominantly at the immunological synapse and themany other
candidate autoantigens, the origin of this potentially devastating
human disease is still enigmatic. Increasing efforts have been
made in the recent past to unravel the interaction of affected
subjects with their environment, but many aspects of a multitude
of potential triggering factors and their respective contribution in
RA pathogenesis are still unknown. The mucosal surface of the
oral cavity and the gut is physiologically colonized by commensal
microbes, which possess the capacity to profoundly shape the
repertoire of adaptive immune responses. It is one of the most
fascinating current perspectives to employ this way of immune
system regulation for therapeutic or preventive purposes.

An immune response against citrullinated peptides is the most
specific immunological marker of RA. Citrullinated peptides
are abundant in many types of inflammation, RA synovitis
with all antigens for the most relevant fine-specificities of
anti-citrullinated protein antibodies (ACPAs) (1–5), in extra-
articular RA manifestations (6), but also in non-RA related
inflammation (7) as well as in Porphyromonas gingivalis (Pg.)
induced periodontitis (PD) (8). Already in the pre-clinical phase,
RA patients develop ACPAs against an increasing numbers of
epitopes (9). Affinity maturation of ACPA paratopes appears to
cause the antigen spreading (10), but little is really understood
or even proven how this phenomenon occurs. A persistent
response of ACPA expressing plasmablasts predominantly of an
IgA isotype suggests one or several persistent mucosal triggers
in this process (11). Moreover, the highest diagnostic specificity
of IgA-isotypic ACPA further supports the assumption that the
most specific immune system activation in RA is happening at
mucosal sites (12).

In the following chapters, we try to review parts of the
overwhelming amount of data which we think is of most probable
relevance. We will follow different currently proposed tracks of
RA pathogenesis from genetic and environmental risk factors
to microbial species and microbial communities, from innate
inflammatory to adaptive immune responses and ultimately to
associations with some of the characteristic features of RA.
In order to sensitize the readers, we strongly recommend to
scrutinize the proposed relationships in view of the Bradford–
Hill criteria for causality (13). Among them, we believe that
the highest attention should be given to the reported strengths
of association, reproducibility, specificity, temporality, and the
overall coherence of epidemiological and experimental findings.

INBORN FACTORS IN RA

RA is apparently not very strong clustered in families, but the
genetic background of RA was in the focus of pathogenesis
oriented research until the decryption of the human genome at
the turn of the millennium and in the following years (14, 15). In
a nationwide sibling study in the UK from 1993, monozygotic
twins had about four times higher RA concordance rates than

dizygotic twins (16). More recently, in the largest registry study
on the inheritance of RA in Sweden, the odds for RA heritability
was about three in first degree relatives and about two in
second degree relatives, irrespective of the affected being parent,
sibling or offspring (17). Both studies independently point to a
significant genetic background of RA, which may confer to about
50% of disease risk. Today genetics in RA are still an important
aspect of research with a new focus on personalized medicine,
as an individually tailored approach for the minimization of the
large inter-individual variability response to therapy (18).

The strongest genetic risk factor for RA is a specific peptide
sequence in the type II human leukocyte antigen (HLA) or
major histocompatibility complex (MHCII) of only six amino
acids, called the shared epitope motif. Shared epitope motifs are
especially frequent in native Americans (19). MHCII molecules
play a crucial role in the presentation of antigens, and their
association with RA is a consistent finding in many populations
of different ancestry (20–24). MHCII molecules are central in
directing adaptive immune responses. Only a few alleles in the
DRB1 molecule, which are coding for QKRAA [Q (glutamine)
K (lysine) R (arginine) and AA (alanine-alanine], QRRAA, or
RRRAA amino acid sequences in the positions 70–74 of the
third hypervariable region, have a strong association with RA.
However, other alleles in the HLA complex (25) as well as
dozens other non-HLA genes appear to also confer to the
genetic risk of RA, but to a much lesser extent (26). Other
sufficiently robust RA associated genes are single nucleotide
polymorphism (SNP) in the PTPN22 gene, which codes for
a non-receptor lymphoid protein phosphatase and negative
regulator of presentation of immune complex derived antigens
(27) and a specific allele in human PADI4 (28). Other genetic
associations were too inconsistently associated with RA to
mention in this brief overview.

Recently, X-ray crystallography studies could demonstrate
citrullinated as well as non-citrullinated vimentin peptides
in the binding groove of HLA-DRB1 molecules (29). This
finding suggests that the genetic background of MHC molecules
is directly linked to the antigenicity of specific peptides.
Interestingly, recent data demonstrate an effect of the shared
epitope on the gut microbiome in clinically healthy study
populations (30). Thus, it is tempting to speculate that RA-
related MHC alleles affect the presentation of disease relevant
antigens and the symbiotic coexistence of the host and its
microbiota by the same key MHCII molecules. However,
other researchers suggested an alternative and probably antigen
independent explanation for the association of MHC molecules
with RA (31, 32).

Another inborn X-chromosomal risk factor for RA is the
female sex. Notably, although female subjects are about two to
three times more often affected by RA in the general population,
familial RA aggregation appears not to be affected by sex
(17). Female RA preponderance seems to be limited to the
reproductive phase of life, but late onset RA appears to be
similar prevalent in male and in female (33). We currently
have no consistent data on an inappropriate inactivation of X-
chromosomal genes in RA (34). Furthermore, as indicated by
the preferential disease onset in the menopause, RA onset or
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flares in the first year after delivery but treatment-independent
amelioration of disease activity during pregnancy, the role of the
female sex hormones in RA appears to be complex (35, 36). As
for all large epidemiological studies, it has to be kept in mind
that the results are strongly depending on the robustness of
disease definition, e.g., autoantibody status, which can be a major
challenge in the field (17). Furthermore, the strength of observed
association with sex appears to be affected by ancestry, by disease
severity, by disease onset during life time or parity (37). Although
the research field on the vaginal microbiome and female health is
rapidly growing, we did not retrieve any specific literature on this
topic in relation to RA.

AGE AND BEHAVIORAL RISK FACTORS
FOR RA

RA as well as RF and ACPA associated types of juvenile idiopathic
arthritis may start at any phase of lifetime. However, RA
incidence is highest in the fifth and sixth life decade. This fact
may hint to the important non-genetic factors, which become
only active under certain circumstances. Life style factors also
appear to be relevant, as age- and sex-standardized incidences
were lower in densely populated areas and in individuals with
high educational level (34). Depending on sex, RA occurred in
a study from Sweden more often in male farmers, brick layers,
and electric or electronic workers, and in female preferentially in
nurse assistants and social science related workers (38).

Smoking is one of the best established environmental risk
factors especially for RF-positive RA and especially in men
(39). Tobacco smoking was the first environmental factor
that was associated with the onset RA (40, 41), but smoking
can explain the severity of RA only to some extent (42).
Furthermore, smoking is associated with extra-articular RA
disease manifestations such as interstitial lung disease (43) and
subcutaneous rheumatoid nodules (44). The mechanisms of how
smoking might affect RA must be further elucidated. Moreover,
with the given focus of this review, smoking is also an established
risk factor for periodontitis (45).

The influence of diet on the onset and course of RA is since
a long time a matter of an intensive debate. Mediterranean diet
as well as antioxidant and fruit-rich diet have been proposed
to be protective (46–48), while obesity seems to have negative
effects on the risk for the development of RA. However, any
observed effects of diet on the RA disease risk were rather small,
and even bariatric surgery appeared to be without effect on RA
status, despite its obvious consequences for the nutritional status
as well as for the intestinal microbiome (49, 50). Coffee or tea
consumption appears to be irrelevant for the onset of RA (46).
Alcohol consumption in contrast to smoking does not seem play
a relevant role in the incidence of RA (51), but appears to have
modest effects on PD (52).

INVASIVE INFECTIOUS TRIGGERS

One of themost frequent causes of an inflammation is an invasive
infection. However, RA in contrast to reactive arthritis starts very

rarely with a clinically apparent infection. Following the classic
postulates of Robert Koch for the proof of a microbial origin of
disease, RA would not be proven infectious origin (53). However,
an imperfect but repeatedly significant association of specific
MHCII alleles necessary to develop RA may indicate a relevant
role of host response mechanisms for an infection with low
disease penetrance, which could have prevented the discovery of
an infectious origin of RA.

Following the first of Koch’s postulates of an infectious disease
origin, a microbial agent or at least some of its components
should have been detected in RA joints. A landmark study on
this topic was published in 2003 (54), when authors searched
for bacteria-derived muramic acid by gas chromatography-mass
spectrometry (GC-MS) as well as bacterial 16s or 23s rRNA
by polymerase chain reaction in RA synovium. This study was
positive in a few patients with longstanding RA, but in similar
frequency as in control subjects (54). In another study, bacterial
DNA from Pg. was identified in 15% of RA samples, which was
significantly more frequent than in the 3% of synovial fluid from
control subjects (55).

Zhao et al. (56) reported the presence of bacterial 16s rRNA
from many different species in synovial materials from RA
and control samples, which draws any species-specific invasive
infection to cause RA into question. However, this notable
finding should be confirmed in an independent study. An
invasive infection in RA must not necessarily be proven in the
joint. In RA associated vasculopathy, Methylobacterium oryzae
was detected in the aortic adventitia in 3 out of 11 biopsies, but
different bacterial species were detected by 16s rRNA sequencing
in 4 out of 11 control samples (57). As far as we know,
Methylobacterium oryzae has never been isolated from RA joints.

Viral infections are since a long time handled as a potential
infectious trigger of RA. In a recent systematic review, an
overall poor quality of studies on RA incidence upon viral
exposure was reported. The risk of RA onset appeared to be
somewhat increased after Parvo B19 [n = 12 studies, OR =

1.77 (95% CI: 1.11–2.80), p = 0.02], hepatitis C virus [n =

7 studies, OR = 2.82 (95% CI: 1.35–5.90), p = 0.006] and
possibly also after EBV infection (58). In summary, we have
some evidence for infectious triggers, but only limited evidence
for an invasive infection causing RA. Furthermore, all the few
positive studies for an invasive infection in RA are still awaiting
independent confirmation.

DISEASE MODELS FOR MUCOSAL
INFECTIONS AND DYSBIOSIS

In animal models, major effects of oral as well as of intestinal
infectious triggers could be observed on incidence and severity
of arthritis (Table 1). Furthermore, inoculation of some specific
periopathogens in the oral cavity appeared to affect the
composition of the gut microbiome. However, there also exists
experimental evidence from the K/BXN serum transfer model
in C57BL/6 mice that an existing arthritis might not only
be consequence of intestinal dysbiosis, but may act back
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TABLE 1 | Mucosal inflammation in arthritis models.

Model Animals Challenge Microbial stimulation ACPA status References

K/BxN C57BL/6 K/BxN serum Intestinal Pg. on three occasions Not reported (59)

CIA BALB/c CII + FA Pg. after 3d antibiotics Unknown (60)

AIA DR4-IE-tg FA CEP-1 and REP-1 from human and Pg. Positive (61)

MHC II (–/) wt

C57BL/6

CIA DBA/1 CII + FA Pg. W83 wt. and PPAD- Positive (62)

CIA DBA/1 CII + FA Oral Pg. infection Unknown (63)

CIA BALB/C CII + FA Pg. vs. PPAD def. Pg. Positive (64)

CIA B10.RIII mice CII + FA Pg., T. denticola, T. forsythia Unknown (65)

CIA (HLA)-DR1 humanized C57BL/6 CII + FA Oral Pg. infection after 7d SMZ-TMP Positive (66)

SKG ZAP-70 mut Laminarin Pg. i.p. Positive (67)

CIA DQB1-tg B6 CII + FA Prevotella histicola unknown (68)

CIA DBA/1 CII + FA P. gingivalis, P. intermedia Pos., unchanged (69)

CIA DBA/1 CII + FA Antibiotics Unknown (70)

AIA, CIA TH17–/– C57BL/6 CII+ FA Antibiotics, Jackson microbiota Unknown (71)

CIA F1 (DBA/1 × B10.Q) CII + FA P. gingivalis Unknown (72)

CIA DBA/1 CII + FA Antibiotics before and after challenge Negative (70)

Lewis rats P. gingivalis, P. intermedia Positive (73)

CII + FA, Type II collagen and FA Freund’s adjuvant; CEP, citrullinated alpha enolase from human or Pg.; K/BXN serum transfer model, Serum from F1 generation of T-cell receptor

transgenic KRN mice with autoimmune-prone non-obese diabetic (NOD) mice (74). Pg., Porphyromonas gingivalis; REP arginine bearing alpha enolase from human or Pg.

on mucosal inflammation by down-regulation of several pro-
resolving mediators (59). As compared to control mice, the
gut protective mediator resolvin became metabolized to its
inactive 17-oxo metabolite, when arthritis was induced by
K/BxN serum transfer. Furthermore, the mucosal expression of
anti-inflammatory IL-10, the number of goblet cells and the
expression of tight junction molecules was reduced in arthritic
mice, thereby increasing the gut permeability for microbes (59).
Increased gut mucosal permeability upon serum transfer was
further aggravated upon Pg. inoculation directly in the stomach,
but administration of resolvin in arthritic Pg.–inoculated mice
normalized mucosal IL-10 expression and gut permeability and
ameliorated arthritis. This study elegantly demonstrates how a
weakened gut barrier can be critical for the pathogenic action of
intestinal microbes (59).

In the study of Flak et al. (59), an oral pathobiont was directly
inoculated into the stomach, thereby preventing Pg-induced PD.
In the meantime, a correlation of oral and intestinal mucosal
colonization was confirmed for several times and in different
arthritis models (Table 1). However, most of the data come
from collagen induced arthritis (CIA), which typically develops
a rapidly erosive but self-limiting disease without citrulline
specific immune responses. Nevertheless, as a conclusion of a
rapidly increasing number of animal experiments, we have strong
evidence that arthritis-relevant triggers of the immune system
could be initiated by commensal or facultative human pathogens
in the oral as well as in the intestinal mucosa.

PERIODONTITIS

Healthy squamous epithelium of the mouth or cylinder
epithelium of the gut and respiratory mucosa should represent a

sufficient defense line against invadingmicrobes of low virulence.
However, these mucosal tissues show important anatomical
differences, which may warrant more attention than what is
currently reported.

The gingival mucosa especially in the close proximity

of teeth represents a weak point in the barrier against
invasive microorganisms. The periodontal tissue is perfect

site for longstanding commensal colonization and a nidus

of dysbiotic biofilm for a permanent immune stimulation.
With a 3.47 billion people estimate (95% CI: 3.27–3.68), oral
disorders are globally the number one among all level three
burden of disease conditions (75). Nutritional components

such as carbohydrate intake and other behavioral factors

such as standard and habits of dental hygiene as well
a smoking are likely to have a major influence on the

microbial colonization and thus on both the evolution of caries
and periodontitis during lifetime. According to recent global

estimates, 743 million people worldwide are affected by severe
PD (76).

PD is characterized clinically by bleeding or suppuration upon

probing due to pocket formation and loss of supporting alveolar
bone (77). In contrast, the gingivitis is characterized by a bleeding
of the gingiva without pocket formation and bone loss. PD is

triggered by so-called lead bacteria, which are mostly facultative
anaerobic pathogens. It is assumed that these ubiquitous taxa are
present in every human’s oral cavity, but in such small numbers
that they can be kept in check by the natural microbiota and
the host immune system. Socransky categorized PD triggering
bacteria into four different complexes (78), the early colonizer
which are mainly streptococci, followed by so called bridge
species such as Fusobacteria and Prevotellaceae, which create an
ideal livelihood for the most aggressive microbes.
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More recently, a new periodontal disease model, i.e., the
polymicrobial synergy and dysbiosis (PSD) model, has been
proposed (79) (Figure 1B). Peridontitis in the PSD model is
initiated by a synergistic and dysbiotic microbial community
rather than by select “periopathogens,” such as the “red complex.”
In this polymicrobial synergy, different members or specific gene
combinations within the community fulfill distinct roles which
may act synergistically in order to form and stabilize a disease-
provoking microbiota. In this model certain microbial species,
termed “keystone pathogens” play a crucial role to modulate
the host response in ways that impair immune surveillance and
shift the balance from homeostasis to dysbiosis. The so called
“keystone pathogens” also increase the virulence of the entire
microbial community through interactive communication with
accessory pathogens.

To the “key stone” pathogens belong the facultative anaerobic
bacteria Pg., Treponema denticola, Tannerella forsythia, and
Aggregatibacter actinomycetemcomitans (Aa.). These pathogens
are strongly related to the flora found in deep periodontal
pockets associated with advanced periodontal disease (80). Pg.
possesses some virulence factors of special interest in the context
of RA: it has its own citrullinating enzyme, Porphyromonas
peptidylarginine deiminase (PPAD), which is expressed on the
outer membrane of Pg. and differs from human PAD’s in its
Ca2+ independent enzymatic activity (62). Furthermore, PPAD
in contrast to human PAD is capable of citrullinating C-terminal
arginine residues, which are generated by another Pg.-derived
enzyme, arginine specific gingipain (Rgp) protease (81). The
coordinated activity of these two microbial enzymes is unique in
having the capacity of generating known RA autoantigens such
as C-terminal citrullinated fibrinogen and enolase without aid of
human enzymes (82).

One of the first cross-sectional RA association studies with PD
goes back to 1997 (83), when the nowadays available modern
biological and targeted immunosuppressive therapies were not
available. Many patients were at that time in advanced stages
of RA and handicaps in accurately performing oral hygiene
measures were likely present in this population with longstanding
RA. By using nationwide health care data for PD, the number
of reimbursed dental treatment courses for PD as well as the
costs for PD therapy before the onset of RA were significantly
increased in a large Taiwanese case-control study (84). As
compared to health care insurance patients in a database without
PD, patients with PD but without dental scaling (HR= 1.89, 95%
CI: 1.56–2.29) had the highest RA risk, followed by PD patients
who had received PD therapy (HR: 1.35, 1.09–1.67 (85). In some
studies, the oral microbiome appears to be altered in RA anyway
and irrespective of the co-existence of PD (86, 87), and even
in orally healthy subjects (88), but the composition of the oral
microbiome was not in all association studies associated with
RA (89).

In RA association studies for specific periodontal microbes,
Pg. was on basis of its citrullinating properties of self- and
foreign-antigens the first candidate periodontopathogen to be
studied in context of RA (90–92). Infection of the gums by
Pg. and PD is probably not the same, as Pg. alone at very low
colonization levels was not sufficient to cause periodontitis in

germfree mice, but disrupted the host-microbial homeostasis and
caused severe PD when added to a community of commensal
microbiota (93, 94). Furthermore, Pg. in contrast to typically
health associated oral commensals was eliminated from the feces,
elicited systemic immune responses and induced pathological
changes in the liver, which supports the importance of an oral-gut
connection (93).

Better understandable in respect of these experimental
findings was that the frequency of PD as well as of immune
responses against Pg. was increased in a British study in ACPA
positive subjects without arthritis (95). In a Western Chinese
study, Pg. was expanded in patients with established RA, but
reduced in ACPA positive high-risk individuals (96). ACPA
positivity in contrast was not linked to immunity against Pg. in
the French early RA study cohort (97). Furthermore, in treatment
naïve patients with arthralgia, inflammation was rather linked
to the presence of PD than the presence of Pg. (98). Moreover,
PAD expression and citrullination in the periodontium was
neither associated with the presence of Pg. nor with Aa., another
interesting common pathogen PD in context of RA (99). In
a study in patients with established RA, antibodies against
Pg. derived arginine gingipain type B (RgpB) were associated
with RA, but smoking interacted with PD as well as with RA
(100). Finally, as a summary from three studies in patients with
established RA, the presence of Pg. in the gingival crevicular fluid
as well as Pg. directed antibody response appeared to be more
closely associated with PD than with RA (86, 91, 101). Other
cell- and surface receptor-specific data will be discussed in the
respective chapters.

The second already mentioned periodontal pathogen with
specific features of interest in context of RA, Aa., induces the
pore-forming toxin leukotoxin-A (LtxA), thereby releasing
citrullinating enzymes from neutrophils (102). A third
periodontal taxa to be briefly discussed in context of RA is
Prevotella intermedia (Pi.) and Prevotella_6 (P_6). Pi. causes
citrullination of different peptides in the crevicular fluid, among
them peptides from Tenascin-5. Anti-tenascin-5 antibodies
were detected in 18% of pre-RA and in about 50% of sera from
patients with manifest RA with a specificity of 98% (103). P_6
was identified in the Western Chinese study population in
high-risk individuals for RA and in patients with established
RA (96).

Pathology of PD
Gingivitis and PD are a continuum of diseases of the teeth
supporting tissues (Figures 1A–D). In 1976, Roy Page and
Hubert Schroeder described PD as the host response to a
lasting accumulation of dental plaque. They described the entire
process in four phases, an “initial,” an “early,” an “established,”
and an “advanced” stage of lesions (104, 105). Initial lesions
were characterized by an inflammatory infiltrate of mainly
neutrophils, early lesions predominated by macrophages and
lymphocytes and later phases of PD with more complex
cellular infiltrates.

In gingivitis and the initial stage of PD, the junctional
epithelium starts to produce prostaglandin E2 (PGE2) and
other chemotactic mediators (106). This leads to enhanced
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FIGURE 1 | Simplified scheme of four hypotheses or aspects in the etiopathogenesis of periodontitis (PD) relevant to RA. (A) Falsified scenario of a single specific

infectious microbial pathogen, i.e., P. gingivalis. (B) Current hypothesis of an increasing multitude of microbes necessary to initiate and maintain PD the polymicrobial

synergy and dysbiosis model (PSD) and immune response in RA. (C) Osteoimmunology. (D) Excessive or unresolved inflammatory response. (1) Squamous

epithelium, (2) Periodontal space (orange line), (3) Fibroblast periodontal ligament cells, (4) Osteocyte control Wnt-signaling by Sclerostin and DKK-1 (green dashed

arrow) in (5) Osteoblasts and activate (6) Osteoclasts by RANKL (green solid arrow). Abbreviations for different immune cells: Mφ are macrophages, DC dendritic cells,

PMN neutrophils, CD4+, Th1, Th2, Th17, and Treg are some of a much larger multitude of T cell subsets in PD. MHC, major histocompatibility complex and TCR, T

cell receptor represent the immunological synapse of antigen-specific immune response. All other abbreviations of soluble factors are explained in the text.

permeability of the endothelium, accumulation of numerous
neutrophils, and evasion from the junctional epithelium into the
gingival sulcus. The mucosal epithelium starts to proliferate and
an apical migration of the junctional epitheliummay be observed.
Detachment of the junctional mucosa from the enamel defines
disease progression from initial to an early disease stage, while
deeper pockets are characteristic for an established stage. From
this stage onwards the epithelial defense line is growing and the
retention of the dysbiotic biofilm at the same time facilitated.

In parallel to the epithelial alterations and cellular infiltrates,
the subepithelial matrix stroma becomes increasingly affected.
Periodontal ligament cells and other fibroblasts start to
proliferate. Furthermore, osteoblasts and other progenitor cells
differentiate into osteoclasts and start to degrade the bonematrix,
which is the main criterion of advanced PD. Page and Schroeder
already reported from longitudinal observations that established
lesions did not necessarily progress to bone resorption and
edentulism, but could remain stable indefinitely. This led them
to conclude that an appropriate level of host response and
maintenance of a stable balance despite the persistence of a
dysbiotic biofilm could be achieved in chronic PD (104, 107).
Variants in the MHC II complex definitely have an important
impact on the strength of adaptive immune responses, and an
overwhelming amount of data from around the globe shows their
importance for the development of RA (20–24). In comparison,
the strongest known genetic associations for PD are observed

with genes outside the MHC II complex (23, 24, 108), and they
are much weaker. Thus, RA and PD are not linked to each other
by their genetic background. In the following, we will discuss the
potential role of different cell types for the onset of PD with a
perspective of its relevance for RA.

Since the early descriptive studies of PD (107), major advances
in knowledge about the biology of PD could be achieved by
interventional studies in various PD models. Experiments were
performed in knock-in and knock-out animals and even germfree
mice. Some came to fascinating novel results that changed the
view on PD, but most of these data are yet unrelated to systemic
(auto-)immunity or arthritis. At this place, we like to refer
to the excellent review of Hajishengallis and Korostoff (104)
for a comprehensive overview, but we want to briefly discuss
here some of the central results and the findings with highest
probability to be relevant for RA.

Resident Periodontal Cells
The alveolar bone is the indispensable mechanically stable
ground for the fixation of the teeth and covered by the
periodontal and gingival epithelium and subepithelial stroma.
In between of teeth and the bone, the architecture of the
periodontal tissue is defined by collagen fibers, glycoproteins,
and many other macromolecules. To allow a stable fixation
of the teeth in the cavities of alveolar bone, oblique, and
horizontal type-1 collagen fibers are circumferentially strained
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around the teeth. This extracellular matrix is synthesized and
continuously reshaped for the changing demands over time
by resident periodontal ligament (PDL) cells and fibroblasts.
However, in their capacity of producing high amounts of tissue
degrading matrix metalloproteinases (MMPs) in an activated
state, they resemble to some extent fibroblast-like cells in
the RA synovium. PDL are also capable of phagocytosing
and processing pathogenic periodontal microbes such as Aa.
(109). Upon stimulation, e.g., with viable Pg., PDL express
increased amounts of the inflammatory cytokines IL-1β, IL-6,
TNF, as well as chemokines such as IL-8, CCL3, CXCL12, and
monocyte chemotactic protein MCP-1 (110). Notably, PDL and
fibroblasts of other subgingival localization appear to respond
differently to inflammatory stimuli (111). However, despite their
capacity of transiently elevating the expression of MHC II
molecules upon stimulation with pro-inflammatory cytokines,
even potently cytokine-stimulated PDL do not express CD40
or CD80 co-stimulatory molecules, which are fundamentally
important characteristics of professional APC (109).

Alveolar bone loss is hardly reversible and a hallmark of the
most advanced stage of PD (Figure 1C). Until recently, when we
compare PD with a cacophonic symphony of the oral and dental
health, microbial invasion was believed to be the conductor
and the host’s inflammatory response the orchestra of PD. The
bone tissue was until recently exclusively believed to be the
passively suffering audience, with the osteoclasts among them
at best as applauding listeners. Recently, it became clear that
osteocytes play an active and central role in PD by expressing
receptor activator of nuclear factor kappaB ligand (RANKL)
(112). Together with macrophage colony stimulating factor (M-
CSF) which stimulates the proliferation of osteoclast progenitors
(113), RANKL is the key stimulus of osteoclast formation (114,
115). When a mixture of Pg. and Fusobacterium nucleatum, two
frequent dysbiotic bacterial strains were several times inoculated
into the periodontal tissue of osteocyte-specific RANKL-deleted
mice, osteoclast numbers were not increased nor were the bony
surfaces eroded. In contrast, the same PD-associated bacteria
mixture increased osteoclast numbers and caused severe alveolar
bone loss in wild type mice (112).

Osteocytes do not only express RANKL, but they also express
other mediators with major relevance for anabolic processes in
the bone. Wnt/β-catenin (named by homologies to the wingless
gene in Drosophila and int-1 oncogene in mice) is a major
signaling pathway for osteoblast formation and differentiation
(116). This pathway is of central importance in the embryonic
osteogenesis and later in life for bone homeostasis. Wnt/β-
catenin signaling in osteoblasts is under control of sclerostin
and dickkopf-1 related protein (DKK1). Sclerostin antagonizes
canonical Wnt-signaling directly by binding to the LRP5/6
receptor, while DKK1 exerts its action by binding to the Wnt co-
receptor (116, 117). Osteocytes express and secrete sclerostin and
DKK1 (118).

Sclerostin appears to be involved in the etiopathogenesis of
PD, as knock out mice had a slightly ameliorated PD phenotype
(119) and antibodies against sclerostin inhibited the progression
of PD (116). Even more interesting, sclerostin antibodies were
able to ameliorate inflammation and to partially revert PD related

bone damage (118). In conclusion, osteocytes are a source of
important mediators of bone in periodontitis. In human PD,
sclerostin concentrations were locally elevated in the gingival
crevicular fluid only from diseased sites (120), hereby indicating
a locally restricted response of osteocytes. This finding seems to
be specific for sclerostin, as concentrations of TNF and a soluble
activator of the Wnt-pathway, Wnt-5a, appeared to be altered in
a similar way (120). In opposite to this local finding, sclerostin
in contrast to DKK1 concentrations were elevated on a systemic
level in the sera of PD patients (121). In difference to PD, elevated
DKK1 but not sclerostin serum concentrations were related to
joint damage progression in RA (106). Furthermore, although
the biological importance of sclerostin for the negative effects on
bone formation were recently shown in arthritic rats (122), the
periodontal bone loss in PD is restricted to the gums, and a direct
link to the joint erosions in RA remains currently unexplained
by soluble factors. However, it could be interesting to study
the relevance of sclerostin and DKK1 on a systemic level for
other bone-specific aspects of human RA such as osteoporosis,
abnormal bone geometry and accelerated thinning of metacarpal
bones (123–125).

Innate Immunity
With their main function of phagocytosis and elimination of
pathogens, polymorphic nuclear cells (PMN) are the dominant
cell population in gingivitis (Figure 1D). Given the relevance
of infectious noxes in PD, it appears rational to assume that
an impaired elimination of dysbiotic bacteria by defective PMN
might be critical. However, a normal frequency of PD in
patients with a severe X-linked defect in the nicotinamide
adenine dinucleotide phosphate (NADPH)-oxidase necessary for
the respiratory burst of phagocytes (104, 126) suggests only a
secondary role of bacterial elimination by neutrophils for the
prevention of PD.

We have increasing evidence that a periodontopathogen
such as Pg. may circumvent elimination despite an originally
intact neutrophil biology. PMN migrate along chemokine
gradients such as C′5a or C′3a complement factor concentrations
through the capillary endothelium, the submucosal stroma and
gingival epithelium. Intriguingly, therapeutic blockade of the C′5
receptor in a prophylactic protocol prevented PD, respectively
application in a therapeutic manner alleviated PD in a Pg.
induced periodontitis model (127). Notably, Pg. can use the C′5a
receptor in crosstalk with toll-like receptor 2 (TLR-2) to induce
proteasomal degradation of the Toll-like receptor-2 adaptor
myeloid differentiation primary response protein-88 (MyD88)
in neutrophils and other phagocytes (128). The resulting lack
in MyD88 impairs the rapid activation of the inflammasome
complex and affects the host defense against dysbiotic microbes,
but the same initial process activates a phospho-inositol-3 kinase
(Pi3K) dependent pro-inflammatory pathway.

TLR-2 is a pivotal receptor for innate immune processes in
neutrophils, in monocytes and in macrophages (129). Activation
of TLR-2 appears to be crucial for the development of PD,
as TLR-2 deficient mice are normally resistant to Pg. induced
PD (130). Adoptive cell transfer of TLR-2 positive monocytes
and macrophages enables Pg. to induce PD in TLR-2 deficient
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mice (130). Furthermore, TLR-2 may mediate longer bacterial
persistence in macrophages and stimulate TNF-dependent
osteoclast activation (130, 131).

Macrophages are directed in vitro to M1 in the presence
of lipopolysaccharides (LPS), granulocyte-monocyte colony
stimulating factor (GM-CSF), and interferon-gamma (IFN-γ),
and are characterized by CD86 surface expression, inducible
nitric oxide synthase (iNOS), TNF, interleukin 1 beta (IL-1β), IL-
6, IL12, and IL-23 expression. M2macrophages in contrast origin
from alternative activation in a Th2 dominated cytokine milieu
with excess of IL-4 and IL-13 from Th2 differentiated T cells.
M2 cells are characterized by CD206, IL-10, and transforming-
growth factor beta (TGF-β) expression (132). Both, M1 as well
as M2 macrophages are present in human PD, but periodontal
macrophages appear to be predominantly polarized to the
classically activated M1 phenotype (133, 134).

Switching From Innate to Adaptive
Immunity
A low number of lymphocytes, predominantly CD4+ and CD8+

and a few γδ T cells can be found in the healthy periodontium
(Figure 1D) (135). Upon activation by antigen-presenting cells,
naive CD4+ T cells can be polarized into distinct effector T helper
(Th) cell subsets; Th1, Th2, Th17, and regulatory T (Treg) cells,
depending on the local cytokine milieu.

Dendritic cells (DCs) are the best studied APCs in mucosal
tissues. DCs can be subdivided into predominantly resident DCs
and those with migratory potential. For the spreading of RA
relevant antigens, the latter appear to be of greater interest
(136). With regard to their migratory capacity, Pg. is capable of
inducing CCR6 expression in CD1c+ DCs, as the CCL20 ligand
of CCR6 was elevated in Pg. induced PD (137). Non-canonical
DC maturation by Pg. is reported to occur with or without GM-
CSF/IL-4, and Pg.-infected DCs become resistant to apoptosis
and inflammatory pyroptosis (138).

The 67 kDaminor fimbriaeMfa-1 bacterial adhesionmolecule
is known for inducing the expression of dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin (DC-
SIGN) or CD209 (138). Mfa-1 is a DC-SIGN ligand, and the 41
kDa major fimbriae protein FimA a TLR2 agonist (139). DC-
SIGN and TLR-2 are two different pattern recognition receptors
(PRRs) on DCs, and their activation has divergent consequences
for the survival of Pg. (138). TLR2/4 deficiency ameliorates the
course of PD to the costs of more extensive bacterial spreading
throughout the body due to insufficient bacterial containment
or killing (140). Uptake of Pg. into DC by interaction of Mfa-1
with DC-SIGN resulted in lower intracellular killing and higher
intracellular content of Pg. in single membrane phagosomes,
where the bacteria survived intracellularly after prevention of
phagolysosome formation. Furthermore, interaction of Mfa-1
with DC-SIGN in stably transfected monocytic cell lines induced
lower expression levels of CD80, CD83, and CD86 co-stimulatory
molecules, and secreted significantly lower levels of inflammatory
cytokines IL-1β, IL-6, IL-8, IL-12 p70, and TNF (139). In contrast,
uptake of Pg. in the absence of DC-SIGN upon single activation

of TLR-2 and autophagy was associated with endosomal lysis and
reduced survival of Pg. (138).

Another receptor on DCs for fimbriae proteins is C-X-C
chemokine receptor type 4 (CXCR4), which is also present
on DCs in RA synovium (141). Activation of the CXCR4
receptor appears to be beneficial for the severity of PD
by disrupting immunosurveillance, but with the consequence
of prolonged bacterial persistence (142, 143). As another
interesting finding, CXCR4 inhibition appears to be beneficial
in terms of a lower expression of oncogenes (144). Upon
activation of the MAP kinase pathway, Pg. may induce
protective genes against oxidative stress and apoptosis in
mDCs via forkhead box class-O protein FOXO1 (143).
Control of FOXO1 in DCs reduced the cleavage of caspase-
3 and decreased the expression of pro-apoptotic proteins
Bax and Bim (144). Myeloid DCs had a better longevity
and propagated the generation of local Treg by Indole
amine 2,3 dioxygenase (Ido1) activity in the presence of
Pg. (144).

FOXO1 transcription factors appear to be essential for
the mucosal immunity, as they do not only regulate DCs,
but pro-inflammatory signaling molecules (TLR-2, TLR-4,
IL-1β, and TNF), wound healing factors such as TGF-β
and vascular endothelial growth factor (VEGF), integrins,
a proliferation inducing ligand (APRIL) and B-lymphocyte
stimulator (Blys), T-regulatory modulators (Foxp3 and CTLA-
4), antioxidants and DNA repair enzymes in different immune
relevant cell populations (145). In conclusion, Pg. infected
and apoptosis resistant mDC can lead to local immunological
tolerance, but are at the same time a good candidate for
spreading the key pathobiont of PD into other organs
and tissues.

CD207+ (langerin) positive Langerhans cells (LC) are potent
immune regulators, but are in contrast to conventional myeloid
DCs resident cells predominantly in the periodontal epithelium
(146). They are important mediators of Pg. induced local Th17
differentiation, but have only little effect on the migratory
capacity of conventional mDCs (146). Myeloid CD207-DCs
could migrate from the lamina propria into the regional lymph
nodes. We speculate that non-Langerhans DC are more likely
to have an impact on systemic immune response or microbial
spreading. Furthermore, the generation of Th1 cells as well
as regulatory T cells was not affected in mice lacking LC
(146). Notably, despite a deficiency of Th17 cells, alveolar
bone resorption by osteoclasts was not affected by a lack of
LC (146).

Adaptive Immune Response
T and B cell infiltrates are abundantly present in established
and in advanced PD (104) (Figure 1D). T cells become
locally primed, according to the dominating cytokine milieu,
into Th1, Th2, or Th17 cells, to provide locally active
inflammatory, regulatory, or immune activating signals.
Th17 cells are divided into two subsets; homeostatic Th17
cells which accumulate in the periodontal space in an IL-
6 dependent manner, and locally expanding Th17 cells
which require both, IL6 and mostly monocyte derived

Frontiers in Immunology | www.frontiersin.org 8 June 2020 | Volume 11 | Article 1108

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Möller et al. RA, Mucosa and Environment

IL-23 for local expansion. Genetic as well as therapeutic
blockade of IL-17 diminished the amount of inflammatory
response in PD as well as bone loss, but propagated fungal
infections (147).

Plasma cells are also present in chronic PD. The occurrence
of IL-35 and IL-37 expression appears to be beneficial to the
local inflammatory process, as both cytokines inhibited osteoclast
formation at least in vitro (148). However, these findings appear
to be controversial to other studies, and we retrieved surprisingly
little original data on the role of plasma cells as local antibody
secreting cells (149).

Probably more interesting for the systemic aspects of mucosa
driven autoimmunity in RA is the total lack of reports regarding
the formation of lymph follicles or other organized lymphoid
structures, which appears notable in view of more than 500
histological studies that were performed in relation to PD. Thus,
any canonical immune response in relation to mucosal infections
requires the migration from the affected tissue to the regional
lymph nodes.

Effects of PD Treatment on RA
More intensive than only standard hygienic means are necessary
in the advanced stages of PD, when deeper pockets prevent an
efficient reduction of pathogenic bacteria from heavily colonized
dental plaques (76). Standard of care in advanced PD is non-
surgical scaling and root planning (SRP) plus intensive oral
hygiene, e.g., with antimicrobial chlorhexidine containing mouth
rinse. This procedure reduces the periodontal microbiota at
least transiently is called a one-stage full mouth disinfection
(FMD), which may be completed by short term systemic
antibiotic therapy (150–152). In a recently published randomized
controlled trial in patients with PD plus RA, no significant
effect on RA disease activity was demonstrated upon standard
PD therapy (153). However, although the autoantibody profile
against citrullinated peptides remained unaffected, it was shown
in another uncontrolled study that FMD plus antibiotics could
be beneficial for RA in some highly selected patients (154). More
mechanistically, no significant changes in the peripheral blood
DC or T cell population were observed upon standard non-
surgical local therapy for PD (136), but myeloid DCs (mDCs)
with a pro-inflammatory phenotype were reduced upon one
week of antibiotic co-therapy (136). These changes in numbers
of mDCs with an inflammatory phenotype to the levels of
healthy control subjects was paralleled by lower Th17 to Treg
ratios (136).

So far, we have only discussed the local dysbiotic periodontal
colonization and the resulting inflammation that could be
associated with RA, but a sufficiently large cross-sectional RA
association study on the subgingival microbiome came to a
negative result (89). Furthermore, it has to be kept in mind
that the periodontal microbiome in RA could share relevant
similarities with the microbiome on the palatinal tonsils, as it
was at least demonstrated in healthy subjects (155). According
to this finding, it might be worth to study whether a colonization
of dysbiotic bacteria in the periodontal niches might be linked
to a pathogenic antigen presentation on the tonsils in patients
with RA.

INTESTINAL MUCOSA IMMUNITY

Intestinal Dysbiosis
One of the first large metagenome-wide association study
(MGWAS) on the microbiome in fecal samples revealed
significant differences between RA and control subjects with
regard to the phylogenetic taxa, redox environment, transport,
and metabolism of iron, sulfur, zinc, and arginine (156).
Furthermore, significant associations were observed when the
stool samples were compared to dental biofilm and saliva from
the same individuals (156). Interestingly, MTX and an alternative
herbal treatment partially restored the microbiome to a more
normal respectively healthier state (156), an unexpected finding
at that time, which resembles experimental evidence that an
inflammatory status such as arthritis could act back to disrupt
the mucosal integrity (59).

As to be expected are nutritional factors importantmodulators
of the intestinal microbiome, which appears to also have
important impact on systemic immunity. It was recently shown
in this context that the treatment of mice with an alpha-
glucosidase inhibitor affected the intestinal microbiome and
alleviated CIA (141). Furthermore, vitamin D and its active 1,25
hydroxylated metabolite is not only a differentiation factor of
monocytes and Th17 cells (157, 158), but vitamin D deficiency
impairs the intestinal barrier function and affects themicrobiome
composition (74).

In 2017, N-acetylglucosamine-6-sulfatase (GNS) and filamin
A (FLNA) were identified in RA as HLA-DR–presented peptide
autoantigens for T and B cell responses (159). Both autoantigens
had marked sequence homology with gut derived peptides from
Prevotella copri (Pc.) and other gut commensals (159). Since
then Pc. is in the focus by research on microbial species that
could be implicated in the etiopathogenesis of RA (159–163).
Subsequently, a Pc.-derived 27 kDa peptide was identified in
association with new onset RA (160). In 2019, Alpizar-Rodriguez
et al., reported that Pc. was enriched in the gut microbiome
of asymptomatic European first-degree relatives of RA patients
with immunity against citrullinated peptides, when their stool
microbiome was compared to asymptomatic first degree relatives
without ACPA (161). In the same year, Pc. as well as other
Prevotella species were reported as being enriched in a gut
MGWAS in Japanese RA patients (164). Prevotellaceae are also
common in the periodontal pathology, but is to our knowledge
not specifically associated with RA when present in the oral
microbiota (165). While these studies appear to hint to potential
microbial triggers of RA related immunity, it is remarkable to
find in healthy subjects bearing RA-associated DRB1 alleles in
association with the intestinal microbiome (30), suggesting that
a RA-related genetic background could shape the microbiome.

Immune System Activation in the Intestinal
Mucosa
The importance of ACPA in RA led us to search in the literature
for evidence of the presence of citrullinated peptides in the
mucosa. Indeed, a recent proteome analysis revealed striking
differences in abundance of citrullinated proteins in the colon
mucosa in RA and in healthy controls (166). However, this
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study was performed in a small number of patients only and
awaits replication. Furthermore, we do not know whether the
citrullinated peptides represent known RA antigens.

Goblet cells and M cells are specialized epithelial intestinal
cells, which are permissive for intestinal antigens from the gut
lumen. Furthermore, CX3CR1+ expressing dendritic cells (DC)
have the capacity of sampling commensal antigens in the small
intestine via transepithelial intercellular dendrites into the gut
lumen (167).

Mucosa associated lymphoid tissue (MALT) is the next line of
defense against invading microbes. MALT has many anatomical
similarities with secondary lymphoid organs of other locations,
but a specificity of MALT is its immediate vicinity to in quantity
more commensal than virulent microbial factors. Invading gut
commensals are rapidly killed by macrophages, but intestinal
DCs can contain small numbers of live commensals for several
days (168). This process is highly relevant to selectively induce
a protective IgA response. At the same time, immune responses
to commensal bacteria need to be restricted to the regional
lymph nodes, without potentially damaging the entire immune
system (168).

DC subtypes are since a couple of years in the focus
of research on intestinal MALT. Circulating DC are found
throughout the entire intestine. They are located in the lamina
propria of the small gut, where they accumulate in lymphoid
aggregates or follicles such as Peyer patches. DC engulf
microbial peptides, degrade them in their phagolysosomes into
presentable components via MHC molecules to antigen specific
T cell receptors (TCR) of their thymus selected T lymphocyte
counterparts. DCs can be subdivided into resident plasmacytoid
DCs (pDCs) and mDCs in secondary lymphoid organs, and into
a migratory tissue derived DC phenotype. Notably, migratory
DCs can be further subdivided by their surface molecule
expression profile. In context of the local induction of regulatory
T cells (iTreg), CD103+ αE integrin expressing migratory DC
have the selective ability to direct toward (iTreg) via production
of retinoic acid, which is an importantmyeloid cell differentiation
factor (169, 170). CD103+ cells are present throughout the
intestinal mucosa, but can be differentiated according to their
Integrin αM CD11b expression into CD103+CD11b+ DCs
preferentially of the small intestine and CD103+CD11b− DCs,
which are enriched in the colonic mucosa, in Peyer’s patches
and lymphoid follicles (171). As a third intestinal mucosal DC
population, CD103−CD11b− DCs also express CX3CR1. This
DC subset is resident under control of normal commensal
conditions, but can switch into a migratory phenotype with the
capacity of entering regional lymph nodes upon broad-spectrum
antibiotic therapy (170). At least to be briefly mentioned in this
review are type 3 immune-like cells (ILC3s) a fourth non-classical
type of antigen presenting cells, which are important for the
inflammatory response in the gut mucosa and at least present in
the synovium of arthritic joints (172, 173).

Each DC subtype appears, depending on the DC to T cell
ratio and other factors, to be associated with rather specific T
cell responses: CD103+CD11b− DCs appear to essentially foster
the generation of a Th1 expression profile, but CD103+CD11b+

DCs preferentially lead to either Th17 or iTreg differentiation,

while CD103-CD11b+ DCs appear to direct T cells to both, Th1
and Th17 responses (171, 174, 175). In the presence of IL-6 and
TGF-β, T cells can either differentiate into pro-inflammatory or
into immune stimulatory Th17 cells or into iTreg. Macrophage
derived IL-23 is essential in directing CD4+ T cells into the
inflammatory Th17 phenotype. Th17 cells express different IL-
17 isoforms and IL-22, which exert important functions in
APCs and in epithelial cells (176, 177). After having passed the
regional lymph nodes, gut derived T cells, but also B cells and
plasma cells could circulate throughout the entire body, and
their evasion from the circulation will be directed by specific
exit signs for their integrin homing receptors. The probably most
prominent representative of these molecules is α4 β7 integrin,
which directs the evasion of lymphocytes at intestinal blood
vessels. IgA producing plasma cells should essentially be located
at the gut mucosa, but specialized regulatory microenvironments
are of major relevance for the local distribution of antibody
secreting plasma cells in the gut or in the bonemarrow (178, 179).

PRELIMINARY CONCLUSIONS

We have aimed to collect as much as possible of the currently
available clinical, epidemiological, and experimental evidence for
the discussion of a causative link between mucosal inflammation
and the emergence of RA (Figure 2). However, the amount of
literature is overwhelming, and not all the potentially relevant
information could be incorporated into this review simply for
space and time restriction. We will now briefly discuss assembled
data according to the Bradford Hill criteria of causality (13).

1. Strength of association: We identified many reports with an
association, but pathogenic links between (a) periodontitis and
RA, (b) oral microbiome and RA, (c) intestinal microbiome
and RA as well as, (d) specific periodontal microbiota and RA
were always weak.

2. Consistency: Shared epitope and the presence of ACPA were
reproduced in many populations and on different continents.
Reports on association of PD with RA came from different
continents. Furthermore, this association was observed in
populations of different ancestry. Intestinal Prevotellaceae
were identified in association with RA in Northern America,
Europe and Japan, but a Chinese study did not find this
association. The microbial metagenome is probably more
diverse than the human genome, but all the currently available
MGWAS studies are by far smaller than the rather large and
robust genetic association studies. In conclusion, although we
have no formal power estimates for this statement, we believe
that larger MGWAS studies are warranted.

3. Specificity: Microbes with a low level of virulence usually
colonize in mixed communities. It can be assumed that
this statement is likewise true for the periodontal and other
localizations such as the intestinal tract. The polymicrobial
synergy and dysbiosis model (PSD) is an example of how a
combination of bacteria rather than a single specific species
is causal in a chronic disease process like PD. Furthermore,
not only Pg., but different periodontal pathobionts aroused
suspicion to specifically trigger different important aspects
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FIGURE 2 | Hypothetical summary schedule of some of the possibilities to connect the mucosal sites and RA joints, from top to bottom: persistent bacterial

components in DC and other phagocytosing cells, shaping of the T cell memory at mucosal sites, plasmablasts or plasma cells and soluble factors, as exemplified by

antibodies (IgG monomers, IgM pentamers, and IgA dimers). Important for the control of the mucosal responses are probably the clearing regional and secondary

lymph nodes. As we identified no reports on germinal center responses in the periodontal tissues, but some similarities between the subgingival periodontal and the

palatinal microbiome, we include the tonsils as another possibility of mucosal activation of immune processes in RA.

of immunity in RA. Moreover, at least in experimental
settings, bacteria of the oral cavity significantly affected the
intestinal microbiome. In conclusion, it is from the current
perspective not a single agent, but the combination of oral and
intestinal microbiota as well as other potential sites of mucosal
inflammation to be followed in parallel in future studies.

4. Temporality: PD diagnosis before the onset of RA perfectly
fulfills this prerequisite of causality. Furthermore, a high
prevalence of intestinal Pc. in an ACPA-positive at risk
population in a cross-sectional setting appears to fulfill this
criterion, but the definitive results of longitudinal studies have
to be awaited, before definiteconclusions can be made.

5. Biological gradient: A dose dependency of a single causal
agent, was demonstrated in several experimental settings.
However, in PD, not the most severe aggressive type but
the less progressive chronic form is preferentially associated
with RA. Furthermore, it is currently not clear how to
quantify models of polymicrobial synergy. We currently have
no information of biological gradients at hands to explain the
entire process of mucosal inflammation, citrullination, ACPA-
specific immunity, and arthritis. Furthermore, we yet do not
know how the type, the combination of synergistic factors, or

the effects of time exposure for different interacting stimuli to
be designed in a composite model.

6. Biological plausibility: We identified many reports about
mucosal inflammation or a specific mucosal stimulus that
were associated with onset or severity of experimental
arthritis. Now, albeit the detailed current knowledge about the
cellular mechanisms in the intestinal immune system and in
periodontal inflammation is not known, it appears essential
to pursue the identification of the cellular and molecular
processes between mucosal inflammation and immunization
in arthritis models as well as in human disease.

7. Coherence: This review is only a small extract of all the
available, but to some extent contradictory knowledge, i.e.,
regarding specific microbial taxa being implicated in the
connection of mucosal immunity and RA. Furthermore,
in terms of generalizability and the transfer of data from
model to disease, questions about the ACPA status, which
is different in CIA and RA, as well as the different arthritis
susceptibility in male and female humans and mice should
be answered.

8. Experiment: Chronic PD is a hardly reversible disease, but the
effects of PD therapy on RA severity are controversial. Lower
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incidence rates of RA in treated than in untreated PD patients
go into this definition.

9. Analogy: Different periodontal pathogens cause a similar
type of PD, and different oral or intestinal microbiota were
associated with RA. However, it is too early to decide
whether different exposures in terms of microbial taxa
leading to RA can be interpreted as analog evidence for
causality, or alternatively, as a violation of the criterion
of specificity.

Taken together, we summarized the current viewpoints on
putative mucosal triggers of RA in a narrative review. This
paper is an incomplete compilation of the currently available
supporting data for the postulated link between mucosal
immunity and RA. In this summary of work in progress,
several pieces of evidence appear to be of high validity. We
conclude that ongoing major efforts, both on PD as well as

the oral and intestinal microbiome, are warranted in order to
answer the many remaining questions about the etiopathogenesis
of RA.
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