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Infection with soil-transmitted helminths (STH) remains a major burden on global health

and agriculture. Our understanding of the immunological mechanisms that govern

whether an individual is resistant or susceptible to infection is derived primarily from

model infections in rodents. Typically, experimental infections employ an artificially high,

single bolus of parasites that leads to rapid expulsion of the primary infection and

robust immunity to subsequent challenges. However, immunity in natura is generated

slowly, and is only partially effective, with individuals in endemic areas retaining low-level

infections throughout their lives. Therefore, there is a gap between traditional model

STH systems and observations in the field. Here, we review the immune response to

traditional model STH infections in the laboratory. We compare these data to studies of

natural infection in humans and rodents in endemic areas, highlighting crucial differences

between experimental and natural infection. We then detail the literature to date on the

use of “trickle” infections to experimentally model the kinetics of natural infection.

Keywords: trichuris muris, trickle infection, Th2 immunity, Heligmosomoides bakeri, mucosal immunology,
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INTRODUCTION

Soil-transmitted helminths (STH) are a highly diverse group of parasites present across the globe.
Chronic life-long infection with at least one species of STH is common for most vertebrates (1).
This includes humans and livestock in low to middle income countries (LMIC). The morbidity
and reduced fitness associated with infection make STH helminthiases a major concern both for
global health and for agriculture in endemic areas (2, 3). The infectious stages of these parasites are
abundant in the environment and, due to their robustness against environmental insult, can persist
there for long periods. The longevity of these parasites is compounded by their capacity to act as
potent immunomodulators of their hosts (4).

A key determinant in the relationship between a host and STH parasite is the host’s immune
response. The host must balance an effective response to the parasite with limiting potentially
detrimental immunopathology and exhausting vital resources (5). Similarly, the parasite must
promote an immune response in the host that supports its own survival but that also protects the
host from excessive pathology and infection by other potential pathogens. Given this, it is highly
likely that anti-parasite immune responses have evolved to limit parasite burden and promote
wound repair rather than to cause rapid and total parasite expulsion.

The majority of studies on immune responses to STHs are performed using rodent-specific
STHs that have been adapted to the laboratory setting. These include the gastrointestinal (GI)
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nematodes, Trichuris muris, Heligmosomoides sp. (Formally
Nematospiroides dubius. Herein we refer to the laboratory strain
as H. bakeri and those identified in wild rodents as H. polygyrus.
It should be noted, however, in the literature to date these names
have been used interchangeably for experimental infections),
Trichinella spiralis and Nippostrongylus brasiliensis. Additionally,
in some cases, human-specific species can be experimentally
modeled in rodents, for example Necator americanus (6–9) and
Ancylostoma ceylanicum (10, 11) albeit with limited success.
Further, the larval migration that occurs during ascariasis, and
hookworm infection, can be modeled in mice using the porcine
STH, Ascaris suum (12).

Traditional experimental infections using well-established
models typically rely on infecting mice with a single, artificially
high dose of parasites. This is in contrast to the natural scenario
in which frequent low-level exposures are likely to be more
common. There is also a clear difference between the kinetics of
traditional experimental infections and those seen in naturally
infected populations. Thus, should we wish to fully understand
the nuances of STH infection, there is a need to ensure that we
are accurately modeling the natural situation.

INFECTION IN THE LABORATORY

Whilst there are species-specific responses based on the model
STH used, many aspects of the immune response to experimental
high-dose infections can be generalized. Upon invasion of the
host, and often throughout infection, STHs cause considerable
damage to tissue surrounding the site of infection. Migration of
N. brasiliensis through the lung causes gross changes in tissue
architecture and long term damage (13). Likewise, invasion of the
gut epithelium and lamina propria, by T. muris and H. bakeri,
respectively, causes considerable remodeling of the intestinal
environment (14, 15).

Breaches by STHs at these barrier sites are associated with
the release of alarmins, particularly interleukin (IL)-25, IL-
33, and thymic stromal lymphopoietin (TSLP) (16–19). These
cytokines trigger innate responses and prime the induction of
an adaptive type-2 (Th2) immune response (16, 20, 21). They
have also been established as essential to protection against
infection with a number of model STHs (22–25). Epithelial
cells themselves are potent reservoirs of these cytokines (26–
28). Of recent interest is the role tuft cells play in sensing and
responding to STH infection. Tuft cells are an epithelial cell
subset that exist at low frequency during homeostasis but rapidly
proliferate following STH infection (28–30). They sense the
presence of STHs and intestinal microbes via taste-chemosensory
receptors such as TRPM5 (29, 31) and secrete IL-25 and cysteinyl
leukotrienes (CysLTs) to support the establishment of a Th2
mucosal response (28, 32).

Among the first lymphoid responders are the type-2 innate
lymphoid cells (ILC2s). ILC2s have been shown to expand during
STH infection and act as early sources of IL-4, IL-5 and IL-13
(33–35). Their depletion results in the delayed induction of Th2
immunity (33), although a non-redundant role for these cells in
parasite expulsion has only been demonstrated for N. brasiliensis

(36, 37). A broad role for alternative activation of macrophages
(M2) has also been shown in most model STHs. M2s are required
for the trapping and killing of the larval stages of H. bakeri
and N. brasiliensis (38–40), this function is dependent on the
production of arginase-1 (Arg-1) (41) and can be regulated by
the expression level of resistin-like molecule (RELM)-α (40).
Whilst expansion of other innate cells – including neutrophils,
eosinophils, basophils, and mastocytes—at sites of infection is
well-documented (42–44) a functional role for these cells in
parasite expulsion has been harder to define and in some cases
may be species-specific. For example, depletion of basophils is
sufficient to trigger susceptibility to T. muris infection (45) but
has no impact on resistance to H. bakeri (46). Similarly, mast
cells and eosinophils have been linked to resistance to H. bakeri
and T. spiralis (46, 47) but are redundant for expulsion of T.
muris (48). Further, neutrophilia has been linked with expulsion
of N. brasiliensis and H. bakeri (41, 42), via the release of
neutrophil extracellular traps (NETs) (49) and support of M2
polarization (50). However, in cases where ablation of a given
cell type does not result in a failure to attenuate infection,
these cells may instead function to repair tissue damage once
the infection has been resolved (51), or to moderate ongoing
responses (40, 52). Alternatively, they may act to prime distal
mucosal sites against future infection with other STH species, for
example ILC2s primed by T. spiralis infection in the gut migrate
to the lung and contribute to protection against a subsequent
N. brasiliensis infection (53). Similarly, infection with H. bakeri
results in protection against N. brasiliensis infection via IL-33-
dependent induction of IL-5+CD4+ T cells capable of recruiting
activated eosinophils to the lung (54).

Central to the expulsion of STHs is the CD4+ T cell. This
can be inferred form studies of athymic nude mice which sustain
long term high dose infections, compared to WT mice which
readily expel parasites (55, 56). Depletion or ablation of CD4+

cells is enough to induce to susceptibility to infection in otherwise
resistant mouse strains (15, 57). Further, adoptive transfer of
CD4+ T cells to T and B cell deficient mice is sufficient to confer
protection against infection (58). It is noteworthy that T cell
deficient mouse strains such as athymic mice or recombinase 1 or
2 deficient mice still have a functional ILC2 compartment (36, 59,
60). A key function of CD4+ T cells is to provide Th2 cytokines—
over and above those produced by ILC2s—in particular IL-4 and
IL-13 which signal through IL-4 Receptor α (IL-4Rα) (61). IL-
4Rα signaling drives a broad array of down-stream responses
that are essential for the expulsion of STHs. These include;
hyperproliferation of goblet cells (62); increased expression
and secretion of mucins and anti-parasitic peptides, such as
Muc5ac and RELM-β (63–66); increased turnover of epithelial
cells (67, 68); enhanced gut contractility (69); immunoglobulin
(Ig) class-switching to generate parasite-specific IgG1 (46, 70);
and polarization of macrophages to an M2 phenotype (41, 71).
The CD4+ T cell is also likely to be key to adaptive immune
memory to STH infections. Under laboratory conditions, in
immunocompetent mice, in response to a high-dose infection,
these responses are robustly generated and lead to relatively rapid
expulsion of the infection; although the kinetics differ based on
genetic background of the host (39, 72–74).
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In laboratory models of STH infection, as well as driving
parasite expulsion, the immune response to a primary high-
dose infection is sufficient to generate immunity to subsequent
challenge infections (75–78). During secondary challenges the
rate of expulsion is significantly accelerated. Depending on the
species this may be a result of enhanced larval trapping mediated
by parasite-specific IgG1 (46), priming of localized immune
cells (50), or via expeditious induction of mucin secretion
or mast cell activity. Regardless of mechanism, high-dose
experimental infections produce robust sterilizing immunity to
secondary infection.

NATURAL STH INFECTION IN MAMMALS

The artificially high doses given during experimental infections
have proven a reliable system in which to investigate fundamental
mechanisms of resistance to STH infection. However, this regime
fails to reflect infection in natura. Not only is a single high-dose
of parasites unrealistic in the wild, laboratory rodents are housed
in pathogen free environments, with an abundance of resources,
and a significant limit to stressors such as predators.

Experimental high-dose infections present a scenario in which
primary STH infection is limited in duration, characterized
by an immediate and potent Th2-polarized immune response,
and generates sterilizing immunity to subsequent challenges.
However, epidemiological evaluation of STH burden in human
populations shows that in endemic areas, infected individuals
suffer chronic parasitism throughout their lives (79–82). This
holds true for non-human primates (83–85), livestock (86, 87),
and wild rodent populations (88, 89). In humans, infection
burden correlates strongly with age following one of two patterns:
(i) parasite burden builds rapidly during early childhood but
peaks shortly before adolescence, burden then declines and
plateaus at a low level throughout adulthood e.g., Trichuris
trichiura, and Ascaris lumbricoides (79, 90, 91); or (ii) STH
burden builds consistently throughout childhood and early
adolescence but plateaus at a moderate level prior to adulthood
e.g., Necator americanus and Ancylostoma duodenale (82).
Both patterns indicate that protective immunity to infection
develops with age. However, they also suggest that this
protection is incomplete and is preceded by a sustained period
of susceptibility.

Our understanding of immune responses to STH infection
in natura is limited. Much of what is known is founded on
inferences drawn from blood samples taken from individuals
living in endemic regions. As such, these data are caveated
by an array of confounding factors. What is clear is that, in
humans, up-regulation of the Th2 immune response is associated
with STH infection. Importantly, Th2 associated markers, such
as IgE and Th2 cytokines, show a clear negative correlation
with worm burden (90, 91). Further, a strong IL-5 response
in peripheral blood mononuclear cells (PBMC) isolated from
infected individuals was shown to be predictive of resistance to
reinfection following anthelminthic treatment (92, 93). A recent
study utilizing mass cytometry to profile the Th2 and regulatory
compartments before and after deworming in an Indonesian

cohort confirmed a clear link between infection status and the
expansion of ILC2s and Th2 cells, and reaffirmed the role of these
cells in production of Th2 cytokines (94). Thus, a functional role
for Th2 immunity in resistance to STH infection in natura is
likely.What is interesting is that the development of this response
is age-associated, with observed increases in anti-parasite IgE
levels, and IL-13 and IL-4 production, in older individuals within
the same cohort concurrent with a decrease in Th1-associated
cytokines (90, 91, 95, 96). However, a complete polarization
to Th2 immunity is rare, with most individuals maintaining
a mixed Th1/Th2 response. The inability to generate a fully
polarized protective response may be, in part, a consequence of
STH-mediated immunosuppressive mechanisms. In one human
cohort, deworming with the anthelmintic Albendazole resulted
in an increase in STH-specific cytokine responses, and correlated
with CD4+ T cells decreasing expression of the inhibitory
molecule cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
(97). A role for STH-controlled immune suppression in humans
is supported by evidence that peptides derived from human-
infecting hookworms (Necator americanus and Ancylostoma
duodenale) are able to induce IL-10 and TGF-β signaling,
and suppress IL-13 secretion in rodent models of colitis and
allergy (98–100).

Age-associated, slowly developed resistance to infection is
not unique to humans. Both feral and domestic sheep show
progressive decreases in STH infection prevalence and fecal egg
burden with age (101–103), as do domestic cattle (104). Wood
mice (Apodemus sylvaticus) show an age-associated plateau
in infection intensity of H. polygyrus akin to that seen in
human hookworm infection (88). Further, non-human primates
demonstrate slow acquisition of immunity to STHs following
long periods of susceptibility, with the infection intensity kinetics
of T. trichiura and other STHs paralleling those seen in humans
(84, 85). Unfortunately, whilst the kinetics of these infections are
broadly characterized, there is little in the way of immunological
data accompanying these parasitological findings. However, it has
been observed in woodmice thatH. polygyrus-specific IgG1 titers
increase with age and that treatment with the anthelminthics
Ivermectin and Pyrantel was more effective in older mice relative
to younger animals (105). This is consistent with a role for IgG1
in host-protection against Heligmosomoides (70).

Of significant importance to the outcome of infection is
the overlapping geographical distribution of these parasites; not
only with one another but also with other pathogens. STH-
STH co-infections are highly common, and have been shown
in a number of human cohorts to occur more frequently than
single STH infections (106–108). In cases of STH-STH co-
infection, infected individuals exhibit higher levels of infection
for each individual species relative to individuals with a single-
species infection (107, 108). From field data it remains unclear
as to whether this is a correlative effect—i.e., an individual
susceptible to infection with one species is simply more
likely to be susceptible to infection with other STHs—or if
STHs act synergistically by activating mechanisms that increase
host susceptibility to infection. Experimental co-infection with
H. bakeri and T. muris/T. spiralis has demonstrated that mice
normally resistant to infection with T. muris or T. spiralis are
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rendered susceptible to infection when concurrently infected
with H. bakeri (109, 110), although the mechanism through
which this is mediated remains unresolved. Conversely, existing
infection in the gut with H. bakeri or T. spiralis is protective
against subsequent N. brasiliensis infection via priming of host-
protective responses (53, 54). STH coinfection is also highly
common with protist, bacterial and viral pathogens important
to human health including malaria, tuberculosis and HIV.
The primary focus of research into coinfections of this nature
has been the effect STH coinfection has on the outcome of
immune responses targeted the other pathogen. The overarching
hypothesis being that as potent, and chronic, inducers of Th2/T-
regulatory immunity STH infection will suppress the required
Th1 immunity that targets single-cell/viral pathogens and thus
increase susceptibility to infection and/or impact the efficacy of
vaccines (111–113). However, it is also likely that infection with
such pathogens will feedback onto the immune response against
the STH. Therefore, it is important to bear in mind that in natura
STH infections do not exist in isolation and have evolved in the
context of a host immune system responding to a complex mix
of co-infecting pathogens that elicit a diverse range of responses.
Developing model systems with which to interrogate this reality
presents exciting and challenging opportunities.

MODELING NATURAL INFECTION

Given the difference in lifestyles experienced by laboratory
rodents and their wild counterparts, it is perhaps unsurprising
that there are considerable differences in their immune systems.
Wild mice appear to exist in a state of higher immune activation
with a more diverse repertoire of effector/effector-memory
cells (114, 115) likely due to greater antigenic exposure (116).
This may, in part, explain differences in observations between
laboratory experiments, and natural exposure to STHs.

Few studies have attempted to experimentally mimic a
“natural” setting for STH infection. Co-housing different mouse
strains in large in-door enclosures and allowing for “natural”
infection of H. bakeri (through contact with larvae in the
enclosure as opposed to controlled oral administration) removed
strain-specific resistance to infection resulting in longer-lived
infections in BALB/c mice (117). Given the time period in
which this experiment was conducted, the means through
which this change in immune response occurred was not
investigated. It could be speculated that co-housing mice on
different backgrounds resulted in a change in the composition
of the microbiome rendering previously resistant mice more
susceptible to infection. It has previously been shown that strain
specific resistance to infection by the enteric bacterial pathogen
Citrobacter rodentium can be imposed on normally susceptible
mice via fecal transfer from a resistant mouse strain; this effect
was mediated by induction of host innate responses including IL-
22-stimulated production of antimicrobial peptides (118, 119).
However, whether a similar effect can be achieved with model
STHs has yet to be shown.

More recently, C57BL/6 mice housed in controlled outdoor
enclosures (a process known as “rewilding”) were shown to

become susceptible to high-dose T. muris infection and exhibited
impaired IL-13 production (120). Similar to observations in
humans, higher worm burdens and biomass were correlated with
reduced numbers of IL-13+CD4+ cells and increased frequency
of IFNγ+CD4+ cells. The authors also found rewilding resulted
in a marked increase in fecal microbial diversity. It will be of
great interest to define the precise relationship between this
increase in community diversity and the outcome of infection.
In a subsequent analysis comparing uninfected mice housed in
specific pathogen free (SPF) to those that were rewilded, it was
shown that overall composition of blood and mesenteric lymph
node immune cells was dramatically altered by the rewilding
process including increases in central and effectormemory T cells
(121, 122). Interestingly, germ-free mice reconstituted with the
caecal content of rewilded mice showed a significant increase
in the proportion of granulocytes—in particular neutrophils—
in the peripheral blood relative to mice reconstituted with
caecal contents from SPF mice (121). Thus, rewilding has a
profound and complex effect on immune cell composition, in
part regulated by the microbiome, that may be responsible for
impaired resistance to STH infection.

Together, these data suggest that inbred laboratory mice are
not simply innately more resistant to STH infection than their
wild counterparts, but that that environmental context is a major
influence over the outcome of STH infection. Whilst studies that
seek to recreate a more natural setting are valuable in bridging
the gap between the laboratory and the field, they require an
abundance of space and specialized facilities. They also re-
introduce a myriad of confounding variables that reductionist
laboratory model systems aim to nullify. Thus, the challenge
is to develop an infection regime that is easily applicable
to a traditional laboratory setting, recapitulates the dynamics
observed in natural infections, and that limits the introduction
of confounding factors.

TRICKLE INFECTION

One factor that is easy to manipulate in a controlled fashion
is the dose of parasites administered. In the T. muris system
altering single infection dose within a single inbred strain of
mouse is sufficient to change both resistance phenotype and the
polarization of the immune response (123) with a high dose
infection generating a Th2 response and acute infection and
a single low dose, chronicity through the generation of a Th1
response (76). However, a single low-dose T. muris infection,
in which a chronic infection characterized by a regulated Th1
response is established, also does not recapitulate the dynamic
shift from susceptibility to a partial resistance, the observation
generally seen in the field. The concept of “threshold” and
“subthreshold” levels of infection associated with resistance or
susceptibility is not new [see review by Behnke (124)]. Indeed,
several observations from both natural and experimental STH
infections in ruminants suggest that for some parasites—such
as Ostertagia ostertagia (125), Nematodirus battus (126) and
Trichostrongylus sp (127, 128)—“lower levels” of infection are
consistent with longer survival of parasite burdens.
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Historically, there has been interest in so-called “trickle”
infections. In principal the trickle infection seeks to mimic
natural exposure to a parasite by infecting animals with frequent
low-doses of a given STH rather than a single high-dose.

Early on it was observed that, in rats, daily doses of five,
third larval stage (L3) N. brasiliensis over either a 12 or 16 week
period resulted in steady increase in worm numbers and egg
output during the observation periods. Adult worm numbers at
the end of the experiments were ≤ 30% of the total number
of L3 administered. This data is, therefore, suggestive of partial
immunity developing particularly in the latter stages of infection
with stunted female worms containing reduced eggs numbers
and the presence of few pre-adult/larval stages present. Indeed,
if a large (50–1000 L3) single dose challenge infection was then
administered to “trickled” rats, clear resistance was evident.
When the trickle infection regime was increased to 50 L3 per day
over 16 weeks, a rapid increase in parasite burden was observed
that peaked at 2 weeks post infection, followed by a steady
decline in infection intensity and an increase in the proportion
of “stunted” adult female worms for the duration of experiment
(129). The kinetics of this infection regime suggested that, in
contrast to a high-dose infection in which a robust immune
response would drive rapid parasite expulsion, the immune
response developed slowly with repeated exposure and was only
partially effective i.e., it limited subsequent infections but did not
prevent their establishment. Although levels of infection differed,
similar observations were made by Ovington (130). The immune
response during trickle infections of N. brasiliensis has received
little attention. With regards to peripheral antibody responses
to parasite surface antigens, there were few differences between
single dose and trickle infections (131). Ferens et al. (132, 133)
using a shorter trickle of 10 infections of 25 L3 over a 4 week
period, followed by a single large challenge, observed that trickle
infections primed for a much more robust lung inflammation
during the migratory phase of the infection through the lungs,
than a single large dose priming infection. Bronchiolar lavage
showed that trickle infection generated a marked elevation in
eosinophils and alveolar macrophages. This may be indicative
that trickle can effectively prime for robust immune mechanisms
operating against pre-intestinal larval stages.

In concert with these observations, twice weekly trickle
infection of 10–50 H. bakeri L3 in mice (134) or 30–50
Ancylostoma ceylaniucum larvae in hamsters (135) showed
similar increases in worm burden followed by a steady decline.
This slow expulsion of infection for both species was inhibited by
treatment with cortisone (134, 135) suggesting immune control
and induction of at least partial immunity by trickle infections.
Again, in both systems, a high dose challenge after trickle
was largely expelled although some worms still remained in
the intestine.

A short-term trickle infection using T. muris demonstrated
that infecting C57BL/6 mice on alternate days over the first 35
days of infection resulted an accumulation of parasites. Cytokine
and serological analysis at the experimental end-point suggested
that the trickle infected mice had an immunophenotype that
was intermediate between mice that were infected with a Th2
polarizing high-dose infection and mice that had received a

single low-dose infection known to drive a Th1 response (76).
This intermediate phenotype parallels the immune-status of
individuals in endemic regions that show a mixed Th1/Th2
response as opposed to the strong Th2 polarized responses seen
in traditional experimental STH infections in rodents. However,
trickle infection of Balb/K mice, a strain that is markedly more
resistant than C57BL/6 to a single high dose infection, indicated
that although trickle does lead to maintenance of worms within
the intestine, lower levels of trickle were required to achieve this
and this strain generated stronger Th2 response to the infection.

Similarly, CBA mice susceptible to H. bakeri infection had
a blunted immune response during trickle infection and failed
to initiate parasite expulsion compared to resistant SWR mice
which were able to reduce their parasite burdens (136). Thus,
as is evident with single-dose infections, genetic background can
influence the progression of trickle infections.

Experimental trickle infections of Trichuris suis have also
been undertaken in pigs. Pedersen and Saeed (137) used a
trickle regime of 250 eggs twice weekly for 4 weeks and showed
that substantial numbers of worms could be found in the gut
at week 4 post infection although numbers were considerably
reduced by week 14 (137). Trickled animals challenged at this
point were significantly immune to a single high dose challenge
infection. Nejsum et al. (138) used a more intense trickle regime
administering at least 100 eggs per day over a 4, 8, or 14-week
period, i.e., cumulative infections of ∼ 4,000, 11,000, and 30,000
eggs, respectively. Significant numbers of worms (hundreds)
were observed in the intestines at weeks 4 and 8, much lower
than the numbest of eggs received. By week 14 few parasites
were found in the intestine. Taken together, the data indicates
immunity to T. suis can be built up after trickle infections
over time and that the dynamics can be affected by the specific
conditions of the trickle infection regime used.

We have recently reported a detailed characterization of a
long-term trickle infection with T. muris (139). By performing
weekly infections of 20 embryonated T. muris eggs in C57BL/6
mice we observed infection kinetics that closely mimicked those
seen in human T. trichiura infection. Worm burden rose steadily
with subsequent infections for 9 weeks, however, at 11 weeks
we observed a decrease in worm burden and an absence of very
early larval stages in the caeca of infected mice. This apparent
acquisition of immunity correlated with an increase in Th2-
associated immune responses including goblet cell hyperplasia,
Muc5ac expression, and accelerated epithelial turnover (139).
Importantly, depletion of CD4+ cells during the period of
expulsion after trickle, removes protection. Given that these
responses have been linked to resistance in previous studies using
high-dose infection (66, 67, 140) it is reasonable to conclude
that the modes by which resistance to T. muris are mediated
are similar if not identical between single-dose and trickle
infection. What is different between these modes of infection
is the environment in which the initial response develops. In
single high-dose infection immunologically naïve mice are a
blank slate in which Th2 immunity can be rapidly generated.
However, during trickle infection a Th2 response must develop
in the context of an on-going Th1 response. Given that these
types of immunity are mutually antagonistic, understanding the
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processes through which an on-going Th1 response transitions
into a Th2-dominated state will be undoubtedly illuminating on
fundamental mechanisms of immune regulation. Thus, a number
of interesting questions present themselves.

Is There a Set Threshold of Worm Burden
That Can Be Tolerated Before Mechanisms
of Expulsion Are Generated?
During trickle infection a transition occurs between susceptibility
to infection and subsequent resistance to future challenges. In
the case of T. muris this transition is dependent upon the
number of doses, with fewer doses being insufficient to generate a
protective immune response given the same exposure time (139).
This would suggest that it is parasite burden, not the length of
exposure that is essential in driving a shift in immune response.
A dose-dependency in response to STHs can clearly be seen
when comparing the outcome of single high-dose (acute, Th2-
dominated) and low-dose (chronic, Th1 dominated) T. muris
infection (123). However, what drives this polarization remains
unclear. It is possible that there is a genetically set threshold
of STH burden, influenced by local environment, that may
be tolerated by the host beyond which point the cost exerted
by the parasite becomes too great and must be reduced. One
explanation could be that there exists a balance between the
host response and STH-mediated immune-regulation designed
to suppress Th2 immunity (141–143) and the effect of tissue
damage that necessitates Th2-dependent wound repair (144).
Were this the case, when the damaged caused by the STH
becomes greater than its ability to immune-modulate the host,
protective immunity is induced. These processes would be
dynamic and change as number of infection events alter and
the host responds. Recent work using single-dose T. muris
infections has implicated B cells as important regulators of the
balance between Th1/Th2 immunity. In BALB/c mice, which
produce a potent Th2 response to a single high dose T. muris,
infection antibody depletion of B cells had no effect. However, in
C57BL/6 mice, which initially show a mixed Th1/Th2 response
following infection, depletion of B cells resulted in an increase
in Th1 cytokines, enhanced IFNγ-associated gene expression,
and susceptibility to infection (145). This effect was antibody-
independent and places B cells as potential regulators of IFNγ

signaling during mixed Th responses. It is exciting to speculate
that B cells, whilst previously thought to be largely dispensable
for protection against T. muris (56, 57, 146), may play a role in
tuning the Th response during trickle infection.

With each subsequent dose of parasite, as parasite burden
increases, the relative concentration of available antigen is
likely to rise proportionally. The effect of antigen load on
T cell receptor (TCR) activation in STH infection remains
poorly understood. Based on in vitro studies, using recombinant
peptides not derived from STHs, it is canonically thought
that a high level of TCR signaling, stimulated by higher
antigen concentration or “quality,” favors Th1 differentiation
whereas weaker signals allow for Th2 polarization (147). These
observations were also mirrored in vivo (148) where it was
speculated that paradoxically, large pathogens such as STH

do not release amounts of antigen that readily gain access to
antigen processing pathways, unlike rapidly dividing microbes.
This may act in concert with immunomodulatory mechanisms
employed by helminths. Antigen released from the eggs of
the blood fluke Schistosoma mansoni actively reduces dendritic
cell-T cell interactions lowering activation signal strength and
directly biasing toward Th2 differentiation (149). This proactive
induction of Th2 immunity by S. mansoni is thought to protect
the host against severe pathology caused egg passage (150).

Is There a Role for Tissue Damage in the
Induction of Th2 Responses During Trickle
Infection?
There is a well-established link between tissue damage and the
type-2 immune response. As large macroparasites, STHs cause
considerable damage upon invasion of the host and during
the course of infection. Indeed, it has been argued that the
responses to tissue damage and STH infection co-evolved so that
mechanisms that facilitate parasite expulsion alsomediate wound
repair (144). Tissue damage results in epithelial, mesenchymal
and innate-derived cytokines, capable of inducing Th2 responses,
being released; these include TSLP, IL-25 and IL-33 (Figure 1)
(25, 28, 151). Subsequent expansion of ILC2s, eosinophils,
basophils, M2s and Th2 cells promotes/regulates both parasite
expulsion and wound healing. As these cytokines are often
produced as a result of cell damage, their concentrations present
during infection are likely to reflect the magnitude of damage
caused. Indeed, a role for IL-25 has been posited in late-stage
expulsion of H. bakeri functioning as a key inducer of effector
responses against adult-stage parasites (152). Therefore, during a
trickle infection the concentration of these alarmins may increase
with each subsequent challenge until a threshold concentration
is reached that is sufficient to drive a protective response. This
notion is consistent with the slow but progressive increase in
Th2-associated responses observed during T. muris trickle (139).
Further, damage-inducing microparticles have been previously
shown to act as potent adjuvants capable of driving innate and
antigen-specific Th2 immune responses in vivo comparable in
efficacy to Alum (153, 154), as does mechanical abrasion (155).
Epithelial derived micro(mi)RNAs are also known to influence
resistance to STHs. Epithelial specific deletion of Dicer, a key
gene encoding an RNAase involved in miRNA action, can change
resistance to T. muris to susceptibility. MiR-375 was identified
as an important miRNA in epithelial cells and deletion of MiR-
375 in mice phenocopies the Dicer null response to T. muris
(156). Little is known of the miRNA response to T. muris
after trickle infections. A combination of the repeated release of
alarmins, miRNAs and the Th2-specific adjuvant effect of tissue
damage resulting from regular repeat infection may facilitate
protective immunity.

How Is an Effective Memory Response
Generated During Trickle Infection?
Consistent with single-dose infection models there is an essential
role for CD4+ T cells in immunity during trickle infection
(139). These cells likely act as the dominant source of IL-13
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FIGURE 1 | Development of Immunity During Trichuris muris Trickle Infection. At the outset of infection the low level of worm burden results in minor damage to the

epithelial barrier. Whilst insufficient to drive a protective Th2 response this minor damage may be sufficient to allow for opportunistic invasion by commensal bacteria

triggering the release of antimicrobial peptides (AMPs) and IgA. With repeated infections the level of barrier damage is exacerbated resulting in increased release of

alarmins, micro RNAs (MiRs), and cysteinyl leukotrienes (CysLTs) from epithelial, mesenchymal, and innate cells. During this time a decrease in diversity of the

microbiome is observed, this may be a result of immune-mediated regulation to prevent invasion by opportunistic pathogenic bacteria, or via STH-mediated

remodeling. Activation of innate cells by type-2 signals results in the release of type-2 cytokines (IL-4 & IL-13) resulting in polarization of CD4+ T cells to a Th2

phenotype. Th2 cells then amplify the level of IL-4 & IL-13 signaling to activate host-protective responses at the epithelial barrier including goblet cell hyperproliferation,

production of mucins such as Muc5ac, and heightened epithelial cell turnover. These responses operate primarily on early larval stages (L1–3) limiting the

establishment of juvenile parasites within the epithelium. As a consequence barrier integrity is restored and intestinal microbial communities recover.

that drives anti-parasite effector mechanisms. During infection,
homing of T cells to the site of infection is essential for
effective parasite expulsion (58, 157, 158). Following single

high-dose STH infection, the memory T cells generated persist
in the mucosa long after parasite expulsion and are sufficient
to facilitate protection against subsequent challenge (159–161).
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However, the memory T cells generated following high-dose
infection were primed in the context of a potent Th2 response,
whereas memory cells generated during the early stages of a
T. muris trickle infection will likely have been polarized to a Th1
phenotype. Moreover, the activity of the potentially pathogenic
Th1 cells is regulated by IL-10 (162, 163) and thus regulation
of ongoing responses also accompanies trickle infections. This
scenario raises the question as to whether the CD4+ cells
required for protective immunity in T. muris trickle infection
arise from early memory T cells whose phenotype is plastic and
informed by de novo production of Th2 cytokines by innate
cells/environment, or if new CD4+ T cells are recruited later
in infection? Repolarization of Th1 effector T cells into Th2
cells has previously been shown as a result of STH infection,
OVA-specific Th1 cells transferred into naïve mice adopted a
Th2 phenotype during N. brasiliensis infection (164), however,
this was not in the context of an ongoing Th1 response.
Instead, if naïve CD4+ T cells are recruited that differentiate
into Th2 cells it will be interesting to determine if their TCR
repertoire differs from Th1 cells generated early in infection.
Identification of the specific antigens recognized by CD4+ T
cells following the development of resistance under a trickle
infection may provide a fertile avenue for the discovery of novel
vaccine candidates.

What Effect Does the Microbiome Have on
the Outcome of Trickle Infection?
There exists an evident relationship between the immune system
and the microbiome, especially in the gut where it is required
for both the development and maintenance of the mucosal
barrier (165), with loss of community diversity associated with
inflammatory bowel disease (IBD) (166, 167). Whilst there are
relatively few field studies that have investigated the relationship
between STH infection and the microbiome in humans, it
does appear that infection can affect microbial composition
(168, 169). This is consistent with laboratory studies of chronic
STH infection that have consistently shown that STHs alter the
microbiome (170–172) and that these changes in composition
can be reversed following expulsion of the infection (173).
Chronic STH infection has been associated with expansion of
bacterial genera with the capacity to promote the T regulatory
response such as Lactobacillus (174–176) which may contribute
to chronicity by suppressing the induction of a Th2 response.
During the Th1-dominated susceptible phase of T. muris trickle
infection there is a strong reduction of microbial diversity
and an expansion of genera associated with chronic STH
infection. Interestingly, the reduction in microbial diversity
during the susceptible phase leads to a reduced efficiency
of egg hatching (177) which is heavily dependent upon the
intestinal microbiota (178). It can be speculated that this would
have the net effect of keeping successive infection levels low,
reducing the induction of protective immunity. Coinciding
with the development of resistance during T. muris trickle
infection the microbiome appears to partially recover with
an increase in diversity and recovery of genera that had been
lost earlier in infection (139). The nature of this relationship

requires further assessment as several possibilities present
themselves: (i) the development of a Th2 response actively
promotes a homeostatic microbiota making the recovery in
diversity a direct consequence of acquired immunity to STHs;
(ii) recovery of the microbiome following loss of diversity occurs
independently of host-driven mechanisms, but subsequently
facilitates resistance by directly promoting a Th2 response;
(iii) STHs produce antimicrobial peptides that restructure
the microbiome to suit their own physiology, and when their
numbers are reduced this effect is lost and the microbiome
recovers as an indirect consequence of host-protective
immunity (Figure 1).

CONCLUDING REMARKS

Investigation of resistance and susceptibility to intestinal
nematode parasites and their underlying immune mechanisms
has not only informed on immunity to these particular
infectious agents, but has identified novel and fundamental new
information on how immunity works. This has no doubt arisen
in part from the fact that infection by STHs present a particular
set of challenges to the host immune system not seen in other
pathogen infections.

The available evidence from the field and from experimental
trickle infections of STH has led to a number of generally
consistent core observations. Infection from exposure to a low
number of infectious stages in any one infection event is more
likely to lead to parasite patency than exposure to a “high”
number of infectious stages in any one infection event (where
the parasites are more often than not expelled, even if not
completely). Thus, there appears to be a threshold for an infection
event, below which the parasites do not get immunologically
expelled and above which they do. This is not only influenced by
host genetics, but also the local intestinal environment. It will also
vary between different parasite species and the life cycle strategy
that they have evolved. It is also clear that as long as the individual
infection event remains below a certain level, increases in parasite
load are tolerated up to a “critical point.” Again, number of
infection events and interval between them will influence the
ultimate success of the infection and the speed with which the
“critical” point is reached. Ultimately, host protective immunity
does begin to operate, although it is generally only partial and not
sterilizing immunity. Adult parasites often remain for extended
periods, although parasite fecundity eventually drops and new
juvenile stages do not appear to be able to complete their
development effectively i.e., are expelled. Thus, trickle infections
are exemplars of concomitant immunity (179, 180). Protective
immunological memory does occur with resistance to both high
and low dose infection events, although some level of existing
infection generally persists.

The single/challenge high dose infection approach to study
experimental immunity to STH has been and continues to be
spectacularly informative. Nevertheless, bearing in mind the way
in which infections are acquired naturally, the trickle infection
approach is set to further inform and refine our understanding
of how protective immunity is generated, how it is regulated and,
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importantly, how it can be improved upon, especially for hosts
that are naturally, chronically infected.
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