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Cutaneous Lupus Erythematosus (CLE) is a clinically diverse group of autoimmune skin

diseases with shared histological features of interface dermatitis and autoantibodies

deposited at the dermal–epidermal junction. Various genetic and environmental triggers

of CLE promote infiltration of T cells, B cells, neutrophils, antigen presenting cells, and

NK cells into lesional skin. In this mini-review, we will discuss the clinical features of CLE,

insights into CLE immunopathogenesis, and novel treatment approaches.
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INTRODUCTION

Cutaneous Lupus Erythematosus (CLE) is an autoimmune disease primarily affecting skin and
mucosal tissue. Total CLE disease incidence is ∼4.3 per 100,000 (1, 2). CLE exhibits a strong sex
bias toward females much like systemic lupus erythematosus (SLE) (3–5). Certain CLE subtypes
may progress to SLE (6, 7), which can have health consequences, including kidney and brain
involvement leading to renal failure and neurologic disease (8). Successful treatment of cutaneous
disease may significantly decrease the risk of systemic involvement (9). Treatment options for CLE
are limited, with anti-malarials as the most commonly prescribed drugs, followed by calcineurin
inhibitors, mycophenolate mofetil, methotrexate, and steroids (10–13).

CLINICAL FEATURES OF CLE

CLE encompasses a heterogeneous group of photodermatoses with varying degrees of association
with systemic disease (SLE) [reviewed in (14)]. It is typically classified into three main subtypes
based on the disease chronicity, clinical morphology and distribution: acute (ACLE), subacute
(SCLE), and chronic (CCLE) (15, 16). All CLE subtypes are characterized histopathologically by
interface dermatitis (with the exception of tumid lupus and lupus panniculitis) and lupus band
reaction, which consist of infiltration of immune cells and deposition of autoantibodies at the
dermal-epidermal junction (DEJ) (17).

ACLE presents as transient erythematous patches that correspond to flares in SLE patients. A
well-known example of ACLE is themalar rash, or butterfly rash, that classically crosses both cheeks
but spares the nasolabial folds. This helps to distinguish it from other clinical mimickers such as
rosacea and seborrheic dermatitis. ACLE can affect the entire body in some patients with bad flares,
and is considered a criterion for the diagnosis of SLE. Up to 80% of SLE patients experience malar
rash, which typically flares with UV exposure but does not leave any scar or dyspigmentation.
Histologically, ACLE manifests as lymphoplasmacytic interface dermatitis with vacuolar changes
at the DEJ associated with mucin deposition.
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Lesions of SCLE last longer than the malar rash of ACLE,
but systemic lupus occurs in a significantly lower percentage
of the affected individuals. SCLE most often occurs on the
photo-exposed areas of the upper chest, back, and external
upper extremities (Figure 1). When active, it typically presents
as papulosquamous lesions and/or annular plaques (psorasiform)
with central clearing and raised erythematous scaly edges.
Upon resolution, SCLE can leave dyspigmentation but no
permanent scarring. SCLE is highly associated with anti-Ro/SSA
autoantibodies. In patients with new-onset SCLE, it is important
to carefully review medications, as SCLE can be induced by
nonsteroidal anti-inflammatory drugs (NSAIDs), proton pump
inhibitors, antihypertensives, and antifungals (18).

CCLE has multiple subtypes, and the most common is
discoid LE (DLE). DLE commonly presents as red, atrophic,
and hypopigmented plaques with a characteristic rim of
hyperpigmentation. DLE typically only affects areas above the
neck such as scalp, ears, nose, and cheeks (localized DLE).
Presence of DLE is one of the diagnostic criteria of SLE
and is observed in 20% of the patients with systemic disease;
however, only 5–10% of cases with isolated DLE eventually
progress to develop systemic disease (4). When it occurs
on the scalp, DLE can cause irreversible scarring alopecia
(19). Though rare, DLE may affect larger areas of the body
including trunk and upper extremities (generalized DLE),
which confers an increased risk of systemic involvement. DLE
exhibits more prominent histopathological findings including
follicular plugging, periadnexal lymphoplasmacytic infiltrate, and
pigment incontinence. Other variants of CCLE, including tumid
lupus, chilblain lupus, and lupus panniculitis, are significantly
less frequent.

AUTOANTIBODIES/AUTOANTIGENS

Like SLE, many CLE patients develop autoantibodies including
anti-nuclear antibodies (ANAs). Antibodies against Ro/SSA and
La/SSB are detected frequently and have been associated with
SCLE and neonatal lupus erythematosus (NLE), in addition
to SLE and Sjogren’s Syndrome (20–24). Most CLE patients
exhibit anti-Ro/SSA autoantibody reactivity patterns (25). Ro
refers to ribonucleoproteins that are encoded by two separate
gene products, resulting in 52 kDa (also known as TRIM21)
and 60 kDa (also known as TROVE2) protein isotypes (26).
CLE patients react more frequently to the 60 kDa form than
the 52 kDa form (27). Anti-Ro autoantibodies may also be
mechanistically involved in CLE pathogenesis, as commensal
bacteria that produce a Ro60 kDa ortholog can trigger lupus
development in mice (28). Infusion of anti-Ro/SSA into human
skin grafted mice results in lupus band reaction similar to what is
observed in CLE specimens (29).

Other autoantigens in CLE include SSB/La,
ribonucleoprotein, smith (sm) antigen (30), C1q (31), and
HMGB1 (32). UV damage can induce translocation of these
autoantigens to the surface of keratinocytes, thereby making
them bioavailable to the immune system (33–36). HMGB1
appears to play a significant role in the development of CLE:

HMGB1 is highly expressed in the epidermis of CLE skin
biopsies (37) and expression level correlates with clinically active
photoinduced CLE lesions (38, 39).

A recent study in a cohort of Italian CLE patients found strong
correlations between autoantibody specificities and CLE subtypes
(40). CCLE is negatively associated with anti-extractable nuclear
antigens (ENA), anti-Ro/SSA, and anti-dsDNA. SCLE positively
correlates with ENA, anti-Ro/SSA, anti-Smith, and anti-RNP.
ACLE is strongly associated with anti-dsDNA and ANA, though
this may be due to the finding that these autoantibodies are found
in higher frequencies in females and SLE patients.

NLE is a condition characterized by cutaneous, cardiac,
and multi-systemic abnormalities observed in 5–16% of
newborn infants whose mothers have autoantibodies against
Ro/SSA, La/SSB, and U1-ribonucleoprotein (41–44), regardless
of whether the mothers are symptomatic or not (45).
Autoantibodies against Ro/SSA and La/SSB were detected
in 98% of affected infants (45). Anti-Ro52/60-kDA Ro/SSA and
48-kD La/SSB auto-antibodies contribute to heart block (46),
whereas 50-kD La/SSB are associated with cutaneous disease
(47, 48), which is thought to self-resolve but can have long-term
cutaneous changes (49). A study of 186 antibody exposed fetuses
and infants indicates a direct correlation between the amount
of maternal anti-Ro and anti-La antibodies and fetal tissue
injury (48).

CLE IMMUNOPATHOGENESIS

Factors Contributing to Onset
Like many complex diseases, CLE is thought to arise from a
combination of genetics and environment. Several immune genes
have been implicated in subtypes of CLE, including cytokine
genes, complement genes, and innate immune genes [reviewed
in (50)]. Polymorphisms in the transcription factor IRF5, the
signaling molecule TYK2, and the immune regulator CTLA4
were identified in a Finnish cohort of CLE patients (51). Familial
chilblain lupus, a rare form of CLE characterized by acral
lesions, is caused by gain-of-function mutations in the DNA
sensor protein STING (52, 53), or mutations that decrease the
exonuclease activity of TREX1 (54–56).

CLE and cutaneous involvement in SLE can be induced
by UV radiation, and photosensitivity is a criterion used by
the American College of Rheumatology for lupus diagnosis
[reviewed in (57, 58)]. The pathogenic wavelengths of UV
radiation remain unclear. However, UVB is considered an
instigating factor, as the dosage required to induce erythema
is 1,000 fold less than that of UVA in lupus patients (59).
Lupus keratinocytes are more sensitive to UV light than
healthy keratinocytes (60), and exhibit aberrant apoptosis thereby
generating cellular debris and activating the immune system (57).
Some groups have reported impaired clearance and accumulation
of apoptotic keratinocyte debris in afflicted skin (61), while others
have found inflammatory clearance with no evidence of impaired
clearance (62). Regardless of clearance efficacy, it is clear that UV
damaged, apoptotic keratinocytes are one of the main instigating
factors in CLE lesion formation. A recent review by Wolf et al.
(63) summarized known aspects of UV-induced CLE.
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FIGURE 1 | Posterior view of the trunk in a Hispanic patient with Cutaneous Lupus Erythematosus (CLE). (A) Arrows point to two lupus patches on the upper back

and lower back. (B) Closer view of the upper back patch in the intrascapular area showing scaling, erythema, dyspigmentation, and scarring.

Over 100 drugs have been identified that induce CLE
or CLE flares (18, 64–66), with SCLE being the most
common clinical subtype induced by prescribed medications
such as antihypertensives and antifungals (67). The blood
pressure medication hydrochlorothorazide induces SCLE
in a photosensitive manner (68). The chemotherapeutic 5-
fluorouracil can cause SCLE or DLE (69, 70). Proton pump
inhibitors such as omeprazole are triggers of SCLE (71, 72).
There are a few case reports of CLE resulting after anti-TNF
therapy, though the etiology is not fully understood (73).

Smoking is a trigger of CLE (74), particularly DLE (75),
and reduces responsiveness to anti-malarial treatments (76, 77).
Counseling patients to quit smoking can significantly improve
CLE and other autoimmune conditions (77–80). Case reports
demonstrate environmental or occupational exposures can also
induce CLE, such as silica exposure (81, 82). Lastly, microbes
may trigger CLE: recent studies found Staphylococcus aureus can
colonize skin following IFN-mediated barrier disruption (83),
and is enriched in CLE lesional skin (83).

Sensing Damage: Innate Immune Cells
UVB radiation and/or drugs cause keratinocyte damage and
death, which is sensed by the innate immune system to
create a feed-forward loop driving pathogenesis. Keratinocytes
themselves can respond to TLR-independent nucleic acid ligands
via MDA5, RIG-I, c-GAS and STING, and can activate the
AIM2 inflammasome, which can initiate the interferon response
[reviewed in (84)]. Thus, they can respond to bystander damage
to alert the immune system.

Langerhans cells are specialized dendritic cell (DC)
populations that live in the epidermis, and migrate to skin
draining lymph nodes upon antigen encounter (85). UVB-
induced keratinocyte damage is sensed by Langerhans cells in
both lupus-prone [MRL/lpr and B6.SLE1yaa (86)] and wild type
mice (87). Shipman et al. (86) demonstrated that ADAM17 is
upregulated in Langerhans cells following UVB exposure, which
in turn increases conversion of EGFR ligands into an active

form in an attempt to protect keratinocytes from further UVB
damage. In murine SLE models, Langerhans cells have a reduced
ability to process EGFR ligands into an active form, resulting in
a dysfunctional LC-KC axis in CLE lesions. LCs are subsequently
replaced by other inflammatory DC subsets, thereby promoting
further inflammation (88, 89) (Figure 2A). These data are
supported by a recent microarray study of CLE biopsies that
demonstrated decreased EGFR signaling pathways (90).

One particularly important inflammatory DC subset
contributing to CLE pathogenesis is plasmacytoid DCs (pDCs).
pDCs are common in DLE, and are used by dermatopathologists
to assist in diagnosis (91). When presented with DNA, pDCs
potently upregulate Type-1 IFN, mainly IFNα. pDCs are a key
source of Type-1 IFN in lupus lesional skin (92, 93), and UVB
promotes their recruitment to the skin (94). A first-in-human
study of BDCA2 antibody (BIIB059), which targets pDCs, for
SLE decreased expression of IFN response genes in blood,
normalized MxA expression, reduced immune infiltrates in skin
lesions, and decreased CLASI-A score [(95), NCT02847598].
BIIB059 is now in a phase-2 clinical trial for SLE and active CLE
treatment (NCT02847598).

In addition to apoptotic keratinocytes, another potential
source of DNA that could activate pDCs in the skin is from
neutrophils. Some neutrophils have the ability to produce
neutrophil extracellular traps (NETs), which are comprised of
DNA, chromatin and various proteins. NETs have been found
in various CLE subtypes including: lupus panniculitis, ACLE,
DLE, and to a lesser extent, SCLE (96). Though the study by
Safi et al. (96) included a cohort of only 30 patients, their work
indicates the presence and contribution of NETs in CLE is worth
further investigation. A subclass of neutrophils, called low density
granulocytes (LDGs), have an increased propensity for producing
NETs. LDGs have been reported in the skin of SLE patients
(97). LDGs NETs provide a source of autoantigens, and may
interact with nucleic acids from UV-B damaged KCs. Subsequent
accumulation of apoptotic DNA provides a potential mechanism
by which skin lesions are initiated or sustained (98) (Figure 2B).
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FIGURE 2 | Initiation, immunopathogenesis, and histopathologic features of CLE. (A) Environmental triggers of CLE include UV light and drugs which may become

photoconverted to induce translocation of autoantigens, DAMP release and keratinocyte death. UV damage is sensed by LHC, which protect surrounding

keratinocytes through release of EGFR-L; however, LHC are decreased or absent in CLE lesional skin. Keratinocytes from CLE patients also exhibit a hyper IFN loop

via JAK/STAT signaling to release IFNs. Keratinocytes and skin resident immune cells upregulate cytokines and chemokines in response to IFN and other signals to

promote lesion formation. (B) Histopathological features of CLE lesions include mild hyperkeratosis, keratinocyte death and debris, lymphocytic infiltrates, interface

dermatitis, and mucin deposition. Dyspigmentation occurs in some CLE subtypes. Perivascular pDC clusters and fibrosing alopecia occur primarily in DLE lesions.

CLE interface dermatitis is comprised of lymphomonocytic infiltrates with “clockface” plasma cells. Neutrophils, which may form NETs, are also present in CLE lesions

and may activate pDCs through release of DNA and other autoantigens. Resident memory T and B cells likely form in CLE lesions. Inflammatory mediators drive

continued recruitment and damage in the lesion, including IFNκ (yellow, associated with keratinocytes), IFNγ (orange, associated with the infiltrating immune cells),

CXCL9 (red, amplified by keratinocytes and immune cells), and CXCL10 (blue, amplified by keratinocytes and immune cells).

Like DC populations, macrophages and monocytes are
also involved in debris clearance and sensing of DAMPs.
Immunohistochemical studies demonstrated that CD68+

macrophages express FasL and are densely populated near
hair follicles in CLE lesions (99). Inflammasome activity in
blood monocytes from SLE patients is enhanced via type I
IFN-mediated upregulation of IRF1 (100), though the functional
capacity of macrophages in CLE has not been well-studied. A trial
of macrophage colony-stimulating factor (MCSF) antibody failed
to reduce immune infiltrates or activation in CLE lesions and did
not improve CLASI score (101). Thus, it is possible that tissue
macrophages in CLE lesions perform an immune regulatory
function, require different cytokines for their function/survival,
or are dispensable for CLE.

Another aspect of innate immune involvement in lupus is the
uptake and processing of cellular debris for both clearance and
presentation of autoantigens. The scavenger receptor C1q binds
to keratinocyte apoptotic blebs to assist their clearance (102).
A silent single nucleotide polymorphism (SNP) in C1QA gene
(Gly70GGG/GGA) results in lower serum C1q and is associated
with SCLE (103).

Promoting Damage: Lymphocytic
Infiltrates
Inflammatory infiltrates in CLE are comprised mainly of T
lymphocytes, with other infiltrating cells including B cells/plasma

cells, NK cells, dendritic cells (104, 105), and in some subtypes,
neutrophils (106), implicating these populations as key drivers
of inflammation in CLE lesions. The T cell specificities in CLE
skin are unknown, but SLE studies identified T cells reactive
to nucleosomes/histones (107), which can induce anti-dsDNA
antibody production (108). TCR-Vβ38 and Vβ13 were enriched
in skin of CCLE patients, implicating oligoclonal expansion
(109). Several studies have observed expression of cytotoxic
markers characteristic of T cell function, such as Th1-related
cytokines and granzyme B (110, 111). Interestingly, the perforin
promoter (112), CD70 promoter (113), and other loci (114) are
hypomethylated in CD4+ T cells from SCLE patients, making
them poised to transcribe effector molecules. Both CD4+ and
CD8+ circulating T cells have higher HLA-DR expression in CLE
patients, and higher CD25 in DLE patients specifically, compared
to healthy controls (115). Tregs are lower (116, 117), and γδ

T cells are higher (118), in CLE lesions. Skin-infiltrating CD4+

T cells express FasL have the potential to ligate Fas and can
induce apoptosis in keratinocytes and other infiltrating immune
cells (99).

Plasma cells in lupus skin lesions are often observed as
“clockface” cells (119). It is not clear whether lupus band
reactions arise from local production of autoantibodies in the
skin by plasma cells, or if they deposit in the skin from
the circulation. Interestingly, while B cells are required for
development of lupus inmice (120, 121), autoantibody formation
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appears to be a byproduct of lupus immune responses and not a
driving factor: MRL-lpr mice with B cells incapable of secreting
immunoglobulin develop nephritis, implicating B cells’ antigen
presenting function as being critical for lupus development
(122). It is unclear which B cell functions are required for CLE,
though preclinical studies using chimeric antigen receptor T
cells (CAR-Ts) directed against B cells ameliorated skin disease
in lupus-prone mice (123). Furthermore, B cell depletion with
rituximab showed efficacy in a case study of 4 lupus panniculitis
patients with childhood onset who were refractory to other
standard treatments (124), and ameliorated skin symptoms in a
retrospective case study of 14 consecutive SLE, one CCLE and
two SCLE patients with recalcitrant skin involvement (125).

The atypical lymphocyte marker CD38 (ADP-ribosyl
cyclase/cyclic ADP-ribose hydrolase) is highly expressed in CLE
lesional skin. CD38 was recently shown to be important for Tfh-B
cell collaboration in response to recurrent influenza vaccination
(126). Polymorphisms in intron 1 of CD38 are associated with
the development of DLE in a Spanish patient population (127).
It is unclear what role CD38 plays in CLE pathogenesis, though
knocking CD38 out of MRL-lpr mice accelerates lupus (128).

NK cells have been studied in peripheral blood from SLE
patients, though their precise roles in CLE and skin are not
known due to a paucity of mechanistic studies. In the SLE studies,
blood NK numbers decrease with increased lupus disease activity
and/or exhibit defects in traditional killing functions (129–131);
though rare populations are often expanded and secrete higher
levels of IFNγ compared to healthy controls (132–135). Given
their roles in sensing cellular stress (136), clearing tumors (137,
138), and keratinocyte-derived tumors in particular (139), it is
likely that NK cells are also able to kill stressed keratinocytes
following UV or drug injury to promote CLE lesions. It is also
possible that T cells expressing killer receptors contribute to
keratinocyte death in CLE, as exemplified by NKG2D ligation
on mouse dendritic epidermal T cells (DETCs): in the absence
of TCR signaling, NKG2D ligation on DETCs induces IFNγ

production and causes keratinocyte cytotoxicity (140). In line
with this, one study found invariant NK T cells (iNKTs) were
enriched in SCLE and DLE patient blood by flow cytometry and
in lesional skin by immunohistochemistry (141): they expressed
IFNγ in situ, and were Ki67+, indicating they were proliferating
in skin lesions.

Chemokine Recruitment of Leukocytes to
CLE Lesions
Type 1 IFN and type 2 IFN signaling stimulates expression
of CXCL9, CXCL10, and CXCL11 which mediate leukocyte
migration to peripheral tissue via CXCR3. IFN and CXCR3
have been postulated to drive the pathogenesis of all subtypes
CLE (142), mediating the recruitment of the aforementioned
immune cell types and providing positive feedback loops for
T cell and pDC recruitment. Previous studies reported CXCR3
ligand expression in the skin in all the different subtypes of CLE
(57, 58, 104, 143). Further, UV light induces upregulation of
CXCR3 ligands in keratinocytes, linking the environmental insult
to the recruitment of pathogenic immune cells (58).

Type 1 IFN also induces CXCL13 (144), which can support
germinal center formation through migration of Tfh cells and B
cells [reviewed in (145)]. While CXCL13 serves as a biomarker
of SLE but not CLE (146), epidermal injury can accelerate
nephritis in NZM2328 mice via upregulation of CXCL13 (147).
The receptor for CXCL13, CXCR5, can influence B cell function
by enhancing antigen uptake via membrane ruffling and LFA-1-
mediated adhesion, and integrating BCR signaling in motile cells
(148). The precise role of CXCL13 in CLE is not known.

CCL17 is expressed by keratinocytes in CLE lesions and has
been hypothesized to recruit CD8+ T cells bearing the cognate
receptor CCR4 to the skin in scarring CLE (149). iNKT cells in
CLE lesions also express CCR4, and blood iNKTs express higher
levels of CCR4 and CCR6 than healthy controls (141). Higher
CCR5 and lower CCR3 expression on peripheral CD4+ T cells is
associated with higher disease activity in CLE (150).

Gene expression analysis of human DLE and SCLE skin
biopsies, as well as a mouse model of CLE, exhibited increased
CCL3, CCL4, CCL7, and CCL8 (151). While the precise roles of
these chemokines in CLE have yet to be elucidated, inferences
can be made based on their previously established biological
activities. Future studies will need to be conducted to determine
how these chemokines guide specific immune populations to and
through the skin during CLE.

Paracrine Signals: Cytokines, Hormones,
and Master Regulators
The inflammatory signatures of CLE are interferon (IFN)-based:
a recent microarray study of 90 CLE biopsies found increased
IFN pathways in all CLE subtypes, and DLE samples had a
unique IFNγ node (90). Interestingly, the authors found no
differences between skin biopsies of patients with and without
systemic involvement. Blocking IFNα receptor improved CLASI
scores for SLE patients with cutaneous involvement in a phase
II trial [(152, 153), reviewed in (154)]; however IFNγ blockade
did not improve CLASI scores in DLE patients (155). Single
cell resolution may be necessary to elucidate the precise roles of
different IFNs in pathogenesis.

Keratinocytes from CLE patients exhibit an enhanced
response to both type-1 and type-2 IFNs (156), and produce
IFNκ (157), IL-6 (158), and Type-III IFN (IFNλ) following
UVB damage. Cytokine dysregulation in UVB treated
CLE keratinocytes provides a link between UV initiation
factors and immunopathogenesis (156). UV treatment of
keratinocytes induces upregulation of IFNκ, which plays a
key homeostatic role in maintaining IFN balance in skin
(158). Lupus keratinocytes derived from active CLE lesions
and nonlesional skin constitutively overexpress IFNκ, which
increases photosensitivity via plasmacytoid DC production of
IFNα in response to IFNκ signaling (157).

Higher levels of Th1 and Th17 cells in CLE lesions have
been reported, along with IL-21 (159). IL-21 activates pDCs
to produce granzyme B (160), thereby enhancing keratinocyte
killing by NK cells. Interestingly, Salvi et al. (159) found that
type I IFN served as a negative regulatory loop for granzyme B
production by pDCs. This implies that high levels of type I IFN
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in skin are not pathogenic, but rather represent an attempt to
counter inflammation.

The contribution of female sex hormones in CLE remains
unclear. One epidemiological study noted premenstrual and
perimenopausal flares (161), indicating that a certain level of
estrogen is protective. Nevertheless, the addition of estrogen
to keratinocyte cultures doubles Ro/SSA surface expression
following UVB exposure (162) and enhances binding of anti-
Ro/SSA and La/SSB autoantibodies to the plasma membrane
(163). A patient who received estrogen as part of sex
reassignment surgery developed tumid lupus following UV
exposure (164). Estrogen can positively regulate the IFNγ

promoter (165) and NK cell activity (166), possibly explaining
other roles in CLE pathogenesis.

Vgll3 is a transcription co-factor that governs expression of
inflammatory genes associated with autoimmunity, including
CLE (167). Vgll3 is more highly expressed in female skin and in
lupus patient skin regardless of gender. Overexpression of Vgll3
inmalemicemakes skin appearmore “female-like” and promotes
both skin and systemic autoimmune attack (168).

CONCLUSION

The complexity of CLE has made it difficult to fully elucidate
pathogenesis, with genetic and environmental triggers causing
both innate and adaptive immune activation that creates diverse
clinical manifestations. Nevertheless, increased knowledge in
this field has paved the wave for promising new drugs in
CLE. Blocking IFNAR antibody (Anifrolumab) improved CLASI
scores in a phase IIb double-blind trial (>50% improvement,
p = 0.013) (152, 153). Rituximab B cell depletion showed
efficacy in case reports of CLE subtypes and SLE with skin
involvement (124). The JAK/STAT pathways mediate signaling
for a myriad of cytokines, including IFN, and other biological
processes. JAK inhibition with tofacitinib (JAK3>JAK1>JAK2),
baricitinib (JAK1/2) or ruxolitinib (JAK1/2) showed efficacy for
familial chilblain lupus in human case studies and small clinical
trials (53, 169–171). However, filgotinib (JAK1) did not reach its
primary endpoint in a phase II double blind study, underscoring

the need for a better understanding of which JAKs and STATs
drive CLE (172–174). Similarly, the roles of IL-12 and IL-23 need
to be revisited, as ustekinumab has been reported to both treat
(175–178) and cause CLE (179).

Another approach to treat CLE is to enhance Treg function.
The immune-dampening peptide Edratide, which stimulates
Tregs, was safe in a phase II trial for SLE and improved BILAG
score, but did not meet its primary endpoint (180). CAR-Tregs,
which have been shown to be efficacious in a mouse model of
asthma (181), may provide another approach, though they have
yet to be tested for lupus (182). Of note, a challenge that remains
in all CLE and lupus trials is the fact that patients are maintained
on immunosuppressive drugs to keep their autoimmunity
in check, which may have the unintended consequence of
masking true efficacy. Ultimately, novel immunotherapies
will need to be tested and developed for treatment of all
CLE subtypes.
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