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The complement system is a key component of innate immunity which readily responds

to invading microorganisms. Activation of the complement system typically occurs

via three main pathways and can induce various antimicrobial effects, including:

neutralization of pathogens, regulation of inflammatory responses, promotion of

chemotaxis, and enhancement of the adaptive immune response. These can be vital host

responses to protect against acute, chronic, and recurrent viral infections. Consequently,

many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved

mechanisms for evasion or dysregulation of the complement system to enhance

viral infectivity and even exacerbate disease symptoms. The complement system has

multifaceted roles in both innate and adaptive immunity, with both intracellular and

extracellular functions, that can be relevant to all stages of viral infection. A better

understanding of this virus-host interplay and its contribution to pathogenesis has

previously led to: the identification of genetic factors which influence viral infection

and disease outcome, the development of novel antivirals, and the production of

safer, more effective vaccines. This review will discuss the antiviral effects of the

complement system against numerous viruses, the mechanisms employed by these

viruses to then evade or manipulate this system, and how these interactions have

informed vaccine/therapeutic development. Where relevant, conflicting findings and

current research gaps are highlighted to aid future developments in virology and

immunology, with potential applications to the current COVID-19 pandemic.
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INTRODUCTION

The complement system is a heat-labile component of native plasma involving both extracellular
and cell surface membrane-associated proteins which form a major constituent of the innate
immune response. The whole system is comprised of over 30 proteins which have the potential
to react via an enzymatic cascade in response to recognition of various stimuli, such as pathogen-
associated molecular patterns (PAMPs) and abnormal or damaged host cells. Activation of the
complement system typically occurs via three distinct target recognition pathways (the classical,
lectin, and alternative pathways) which converge at a single point; the cleavage of complement
component 3 (C3). Each pathway has its own unique protease zymogens to recognize and respond
to different antigens, but all pathways primarily work to: opsonise pathogens, lyse pathogens and
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infected cells, regulate the inflammatory response, and enhance
the clearance of immune complexes and cell debris (1, 2).

In the context of viral infections, the complement system
has been shown to exhibit numerous antiviral mechanisms
via direct neutralization of both enveloped and non-enveloped
viruses, and/or the promotion of other immune responses.
The complement system can directly neutralize virus particles
through opsonisation (3), membrane attack complex (MAC)
formation on the virion (4), MAC formation on virus-infected
cells (5), or targeting of intracellular viral components for
proteasomal degradation (6). Other immune responses may
also be modulated by the complement system to promote viral
clearance, including: the regulation of inflammation/chemotaxis
(7), the induction of the antiviral state (6), and the enhancement
of adaptive immune responses specific to viral antigens (8, 9). The
effectiveness and outcome of this response can vary depending on
the infectious agent and host genetic variability.

Classical Complement Pathway
The classical complement pathway is typically activated when
hexameric C1q proteins bind to the fragment crystallisable
(FC) CH2-domains of antigen-bound IgM and/or IgG immune
complexes (10–12). The binding affinity of C1q to IgG is
dependent on the IgG isotype with the greatest affinity for IgG-3,
then IgG-1, a weak association with IgG-2, and no interaction
with IgG-4 (13). However, for downstream activation and
complement lysis activity, the response is more efficient following
IgG1-C1q interactions rather than IgG3-C1q interactions (14).
C1q is also a versatile pattern recognition molecule. In absence
of antibodies, C1q can directly bind to apoptotic cells (15) or
proteins on the cell-surface membrane of some pathogens, such
as human immunodeficiency virus (HIV) (16) and dengue virus
(DENV) (17). C1q can also bind other host plasma proteins
such as C-reactive protein (18), fibronectin (19, 20), decorin
(21), lactoferrin (22), pentraxin-3 (23), and serum amyloid P
component (24).

The C1q molecule is an assembly of six heterotrimers, each
containing three chains (C1qA, C1qB, and C1qC) with a central
collagenous stem and a globular head at the C-terminus. In
native plasma, the C1q molecule forms a calcium-dependent
complex with two C1r and two C1s serine proteases to form
the C1 complex (25). Ligand recognition and binding via the
C1q molecule in the C1 complex induces a conformational
change and autoactivation of the C1r2s2 tetramer to activate the
classical complement pathway (11, 12). Activated C1s cleaves
complement proteins C4 and C2 into active fragments C4b and
C2a, along with an inactive fragment (C2b), and a protease-
activated receptor (PAR)1/PAR4 ligand (C4a) which increases
endothelial cell permeability (26). Non-covalent binding of C4b
and C2a forms the classical pathway C3 convertase, C4bC2a,
responsible for cleavage of C3 into C3a (anaphylatoxin) and
C3b (active component of the convertase). The newly formed
C4bC2aC3b complex is a C5 convertase formed from either
the classical or lectin complement pathway activation, which
cleaves the C5 molecule into C5a (anaphylatoxin) and C5b. C5
proteolysis and the successive steps are then the same for each
of the three complement pathways - C5b is deposited onto the

activating surface and subsequent, irreversible binding of C6,
C7, C8, and multiple copies of C9 to permeate the cell surface
membrane and form theMAC (11, 12, 27). All three complement
pathways are summarized in Figure 1.

Lectin Complement Pathway
The lectin complement pathway follows the same enzymatic
cascade as the classical pathway but is distinct in the antigens
and proteases required for its activation. The lectin pathway is
activated in response to invading pathogens via direct binding
of PAMPs by various C1q-like lectins, complexed with mannose-
binding lectin (MBL)-associated serine proteases (MASPs)-1/2/3.
These C1q-like activators areMBL, ficolin-1 (M-ficolin), ficolin-2
(L-ficolin), ficolin-3 (H-ficolin), and collectin-11 (CL-11) (28–
30). In humans, MBL is typically present as a trimer, tetramer,
pentamer, or hexamer and these oligomeric structures influence
its carbohydrate binding properties (31, 32). Each monomeric
subunit in the complex is a homotrimer with each polypeptide
containing a cysteine-rich region at the N-terminus, followed
by a collagen-like domain, a neck region, and a carbohydrate
recognition domain capable of binding specific sugars present
on pathogenic surfaces i.e., N-acetyl-D-glucosamine and D-
mannose (33, 34).

Similar to MBL, multimeric ficolin complexes are assembled
through homotrimer subunits with cysteine-rich N-terminal
segments which form interchain disulphide bonds, followed
by collagen-like regions, but they are unique in their ability
to bind distinct carbohydrates via their C-terminal fibrinogen-
like domains (35–37). Ficolin-1 is predominantly synthesized in
monocytes and granulocytes where it can be found present on
their surface or extracellularly in native human plasma. Ficolin-
2 is synthesized in the liver and secreted into the bloodstream
where it can bind to various acetylated structures and sugars
via three inner binding sites (38). Ficolin-3 is synthesized
in the liver and lungs and is present in native plasma at a
higher concentration than ficolins-1/2, although less is known
about its functional capabilities (39). Collectin-11 (CL-11) can
form heterotrimeric complexes with collectin liver 1 (CL-10) in
serum and can also associate with MASPs to activate the lectin
complement pathway (40).

Once one or more of these lectins have complexed with
MASP-2 and bound their specified target, MASP-2 then cleaves
C4 and C2 to form the C3 convertase (C4bC2a complex).
Following the proteolytic cleavage of C3, the lectin complement
pathway follows the same catalytic process as the classical
pathway (Figure 1) (2). The roles of MASP-1 andMASP-3 in this
pathway are relatively ambiguous (29, 41). MASP-1 is capable
of cleaving complement component C2 and, to a much lower
extent, components C3 and C4 (29, 42), whilst MASP-3 may
have a negative regulatory role of the lectin pathway through
downregulation of MASP-2 cleavage activity (43).

Alternative Complement Pathway
The alternative pathway does not require the specific protein-
protein or protein-carbohydrate interactions seen with the
other two pathways. Under normal physiological conditions,
∼1% of C3 per hour undergoes spontaneous hydrolysis as
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FIGURE 1 | Overview of the complement system following activation via antigen (classical and lectin pathways) or spontaneous hydrolysis (alternative pathway).

Complement activation eventuates in formation of the membrane attack complex (MAC) and the cleavage products regulate inflammation (C3a and C5a) and

cell-mediated immunity (C3a, C3c, C3d, C5a).

the internal thioester bond is cleaved to produce C3(H2O).
This process is augmented in the presence of various surfaces
which lack complement regulatory proteins, as electrostatic
and/or hydrophobic interactions adsorb C3 to the surface to
induce conformational changes (44, 45). C3(H2O) can then
bind factor B to induce another conformational change, as
factor B is then cleaved into two components by factor D: Ba
(which dissociates from the complex) and Bb (which remains
bound in the complex). The protein complex C3bBb is the
alternative pathway C3 convertase, which is stabilized through
the binding of properdin to produce C3bBbP and can cleave
further C3 molecules through the serine protease activity of
fragment Bb. The alternative pathway therefore has the potential
to both activate and enhance complement activity through
an amplification loop; cleaved C3 components produce C3
convertases which cleave further C3 molecules (46, 47). Cleavage
of C3 also yields C3a and C3b, where C3b remains bound in
the complex to form the alternative pathway C5 convertase,
C3bBbPC5b, and C3a acts as an anaphylatoxin. The rest of the
complement cascade is then identical for all pathways (Figure 1)
(48, 49).

Although complement activity typically occurs via the three
pathways described, less conventional mechanisms of activation
and immune modulation can occur, and have been discussed in a
recent review (50). Typically, properdin is described as a positive
regulator of the alternative pathway through stabilization of the
C3 and C5 convertases. But its functions extend beyond this,
including complement activation via direct antigen recognition
of invading pathogens and apoptotic/necrotic cells (51–53), and
as a potential ligand for NKp46-mediated natural killer cell
activation and subsequent secretion of X-chemokine ligand 1
(54). Similarly, C3 and its cleavage products are often described
as extracellular components, yet they can have intracellular
signaling roles to eliminate pathogens, alter cytokine signaling
profiles and induce Th1 responses (6, 55–57).

Complement Protein Expression and
Regulation
Most complement proteins are primarily synthesized in the
liver and secreted into the bloodstream; this process is rapidly
upregulated during infection (58). Complement proteins can also
be produced by epithelial cells (59), endothelial cells (60), and
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FIGURE 2 | Overview of the complement system and the host soluble/membrane-bound regulatory proteins (red boxes): C1-INH, C1-inhibitor; C4bp, C4-binding

protein; C8bp, C8-binding protein; CPN, carboxypeptidase-N; CR1, complement receptor 1; DAF, decay-accelerating factor; MCP, membrane cofactor protein.

circulating immune cells such as dendritic cells, granulocytes,
macrophages, and monocytes (61, 62). Local production of
complement also occurs in immune privileged sites including
the brain (63), eyes (64), and testis (65). To regulate this activity
and prevent damage to healthy cells and tissues, many regulatory
proteins are primarily expressed as either soluble plasma proteins
or cell-surface receptors (Figure 2 and Table 1).

Complement regulatory proteins may be unique to a certain
pathway or influence the downstream activity of all three
pathways. Factor H, factor I, and properdin are unique to
the alternative pathway. Factor H is both a soluble and cell-
surface membrane regulator (124) which accelerates the decay
of the C3 convertase (C3bBb) to reduce complement deposition
(125), and it functions as a Factor I cofactor to cleave C3b and
C4b components (111). Properdin is a positive regulator of the
alternative pathway which stabilizes the C3 convertase (C3bBb)
and promotes its association with further C3b molecules (129).
The C1-inhibitor (C1-inh) is a negative regulator of all three
pathways. C1-inh competes with factor B to limit activation of
the alternative pathway (110), inhibits C1r and C1s to prevent
classical pathway activation (41), and inactivates MASP-1 and
MASP-2 to prevent lectin pathway activation (41).

Further proteins are required to regulate the downstream
complement activity. Carboxypeptidase-N/R regulates the
anaphylatoxin activity of C3a and C5a via cleavage of their
arginine residues (115). C8 binding protein (114), clusterin (123),
and vitronectin/S protein (130) are all soluble proteins which
prevent the complete assembly of the MAC. CD46/membrane
cofactor protein (106, 107), CD55/decay-accelerating factor
(116, 117), and CD59/protectin (119) are ubiquitously expressed
on the surface of host cell surface membranes to protect the cell
from complement deposition.

ANTIVIRAL ACTIVITY OF THE
COMPLEMENT SYSTEM

One of the key functions of the complement system is to assist
in the killing and containment of invading pathogens, including
bacteria (131), fungi (132), protozoa (133), and viruses (134).
Previous reviews have discussed various evasion mechanisms
adopted by viruses to dysregulate or evade this complement
activity (135–138). This knowledge may then be exploited
and has previously identified novel methods for vaccine and
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TABLE 1 | Overview of key complement regulatory proteins and receptors, their location within plasma and on circulating immune cells, and their roles within the

complement system of humans.

Complement receptors

Complement protein

receptors

Examples of immune cell expression Host complement

protein target(s)

Role(s) within the complement system References

A2β1 integrin Mast cells C1q 1) Mast cell activation and

cytokine secretion

(66)

C1q-Rp or C1qR1 or CD93 Dendritic cells, monocytes, neutrophils C1q 1) Potentially modulate

C1q-dependent phagocytosis

(67–69)

C3a receptor (C3aR) Astrocytes, basophils, dendritic cells,

eosinophils, macrophages, mast cells,

monocytes, neutrophils, T cells

C3a 1) Enable broad biological functions

of C3a

(70–78)

C5a receptor (C5aR) or CD88 Basophils, dendritic cells, eosinophils, mast

cells, monocytes, neutrophils, natural killer

cells

C5a 1) Enable broad biological functions

of C5a

(70–72, 79–82)

cC1qR or calreticulin or

collectin receptor

Ubiquitous, excluding erythrocytes C1q collagen-like

region, CD91

1) Complex with CD91 to enhance

phagocytosis of C1q-coated particles

(83, 84)

CD91 (LRP-1) or α2

macroglobulin receptor

Astrocytes, dendritic cells, fibroblasts,

monocytes

C1q and cC1qR 1) Complex with cC1qR to enhance

phagocytosis of C1q-coated particles

(85, 86)

Complement receptor 1 (CR1)

or CD35

B cells, basophils, erythrocytes, follicular

dendritic cells, monocytes, neutrophils, T

cells

C1q, C3b, C4b 1) Bind opsonised C3b particles to

enhance phagocytosis

2) Removal of immune complexes via

erythrocytes

3) Enhance B-cell activation, production

of antigen-specific antibodies

proliferation, and

4) Protect host epithelial cells from

complement activity

(79, 87–94)

Complement receptor 2 (CR2)

or CD21

B cells, follicular dendritic cells, T cells Polymerized iC3b,

C3dg, C3d

1) Enhance B-cell maturation through

recognition of C3d-coated antigens

and co-ligation with B-cell receptors

(95–97)

Complement receptor 3 (CR3)

or CD11b/CD18 or MAC1

Basophils, dendritic cells, macrophages,

monocytes, neutrophils, natural killer cells

iC3b 1) Mediate phagocytosis of C3b-bound

targets

2) Suppress dendritic cell stimulation

(79, 97–99)

Complement receptor 4 (CR4)

or CD11c/CD18

Basophils, dendritic cells, macrophages,

monocytes, neutrophils

iC3b 1) Mediate phagocytosis of

C3b-bound targets

(79, 97, 99)

Complement receptor of the

immunoglobulin family (CRIg)

Kupffer cells and macrophages C3b, iC3b 1) Phagocytosis of C3-opsonised

particles in circulation

(100)

gC1qR B cells, immature dendritic cells,

macrophages, mast cells, monocytes,

neutrophils

C1q globular heads 1) Mediate neutrophil and immature DC

chemotaxis

2) Mediate C1q-induced

immune functions

(101–104)

GPR77 or C5L2 Adipose tissue, leukocytes, natural killer cells C5a 1) Generally considered to be a

non-signaling receptor

(82, 105)

Complement regulators

Complement protein

regulators

Examples of protein location Host complement

protein target(s)

Role(s) within the complement system References

CD46 or membrane cofactor

protein (MCP)

Ubiquitous on cell surfaces excluding

erythrocytes. Soluble form also circulates in

tears, plasma and seminal fluid

C3b and C4b 1) Cofactor for factor-I mediated C3b and

C4b inactivation

2) Inhibit C3b deposition

3) Co-stimulator for Th1 IFN- γ production

(106–109)

C1-inhibitor (C1-inh) Soluble form in plasma C1r, C1s, MASP-1,

MASP-2, C3b

1) Inhibit C1r and C1s of the classical

pathway

2) Inactivate MASP-1 and MASP-2 of the

lectin pathway

3) Bind C3b to inhibit factor B binding

(41, 110)

(Continued)
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TABLE 1 | Continued

Complement regulators

Complement protein

regulators

Examples of protein location Host complement

protein target(s)

Role(s) within the complement system References

C4-binding protein (C4bp) Soluble form in plasma C4b, C3b and

C-reactive protein

1) Present C3b for Factor I cleavage

2) Accelerate the decay of the classical

C3/C5 convertase

3) Act as a cofactor for factor I inactivation

of C4b

(111–113)

C8 binding protein (C8bp) Peripheral blood cells and muscle cells of

myocardial tissue

C8 1) Prevent MAC formation (114)

Carboxypeptidase-N/R

(CPN/CPR)

Soluble form in plasma C3a, C5a 1) Inhibit C3a and C5a through cleavage

of carboxy-terminal arginine residues

(115)

CD55 or decay-accelerating

factor (DAF)

Ubiquitous C3b, C4b 1) Destabilize C3 and C5 convertases

2) Regulate T cell immunity

(116–118)

CD59 or protectin Ubiquitous C5b-8 and C9 1) Prevent MAC formation

2) Regulate B-cell, T-cell, NK

cell responses

(119–122)

Clusterin Soluble form in plasma C7, C8, C9 1) Prevent lytic activity of the MAC (123)

Factor H Soluble form in plasma and adherence to cell

surfaces expressing polyanions

C3b 1) Accelerates decay of alternative

pathway C3 convertase (C3bBb)

2) Factor I cofactor for cleavage and

inactivation of C3b

3) Prevents further C3b deposition on cell

surface membranes

4) Competes with C1q to certain

binding sites

(111, 124–126)

Factor I Soluble form in plasma C3b, iC3b, and C4b 1) Cleavage of C3b and C4b components (127, 128)

Properdin Soluble form in plasma C3bBb 1) Stabilize alternative pathway C3

convertase (C3bBb)

2) Pattern recognition molecule from

complement activation

(51, 129)

Vitronectin or S protein Soluble form in plasma C5b-7 1) Block membrane binding of C5b-7

2) Prevent C9 polymerization

(130)

therapeutic intervention—an area which has not been extensively
discussed in the previous reviews.

The antiviral mechanisms of complement have been divided
into four main sections in this discussion; physiologically
however, each section is not exclusive as they work together
to form a complete system. Briefly, complement deposition
on a virion can block interactions with host cell receptors,
aggregate virus particles, signal intracellularly to induce an
antiviral state, and enhance phagocytosis (3, 6, 139). This can
lead to formation of the MAC and lyse lipid membranes of
enveloped viruses (140) or lyse infected host cells expressing
viral antigens (141). Activation of the complement system
also produces pro-inflammatory anaphylatoxins (C3a, C5a, and
putatively C4a) which can enhance phagocytosis and in some
cases, worsen disease symptoms (142). Lastly, these processes can
enhance the adaptive immune response to viral antigens, induce
a Th1 response (56), modulate Treg and Th17 responses (143),
prolong B-cell memory and significantly increase antigen-specific
antibody titres (144). Many of these functions may be evaded or
manipulated by different viruses (shown in Figure 3) and such
examples are provided throughout.

Complement Deposition and Virus
Opsonisation
All three complement pathways can lead to virus opsonisation
and complement deposition following activation. The outcome
of this response largely depends on the infectious agent and
could enhance viral infection, suppress viral infection, or be
dysregulated by the expression of some viral proteins.

The MBL protein of the lectin pathway can interact
with numerous viral antigens and have varying effects on
neutralization or viral enhancement. MBL can directly bind the
Ebola virus (EBOV) glycoprotein (GP). High doses of MBL,
relative to other complement proteins, can enhance EBOV-GP
pseudotyped virus infection into primary human macrophages
and human monocyte-derived macrophage cell lines (145).
However, MBL opsonisation of the EBOV-GP can neutralize
EBOV-GP-pseudotyped virus by preventing cell interactions
via DC-SIGN (3). MBL has also been successfully used as a
rescue therapy in 40% of mice when administered at supra-
physiological levels, 24 h post-lethal challenge with a mouse
adapted EBOV strain (146). So, in the context of EBOV infection,
the effects of MBL appear to be dependent on the cellular
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FIGURE 3 | Overview of the complement system, host soluble/membrane-bound regulatory proteins influenced by the viruses mentioned (red boxes), and the

regulation exerted by certain viruses (green boxes) to promote survival: CHIKV, chikungunya virus; DENV, dengue virus; HCV, hepatitis C virus; HIV-1, human

immunodeficiency virus-1; HSV-1/2, herpes simplex virus-1/2; MuV, mumps virus; NiV, Nipah virus; RRV, Ross River virus; SV5, simian virus 5; WNV, West Nile virus;

YFV, yellow fever virus; ZIKV, Zika virus.

target and the relative concentrations of other complement
protein components.

MBL has also been shown to bind the HIV-1 protein, gp120.
This interaction was sufficient to neutralize cell-line adapted
HIV infection of CD4+ H9 lymphoblasts (134). A later study
reported a similar finding, although much higher concentrations
of MBL were required to achieve the same level of neutralization
(50µg/mL rather than 1µg/mL of MBL), and these findings
were not replicated when using HIV primary isolates or other
cell lines for infection. In the later study, MBL was shown to be
sufficient for virus opsonisation but not neutralization (147). This
highlights an important consideration for in vitro studies when
investigating complement and pseudovirus interactions, as small
method variations can yield significantly different results. Where
possible, in vivo experiments can help validate this work and
address possible discrepancies. Further possible implications of
MBL during HIV infection have been shown in a study of single
nucleotide polymorphisms (SNPs). SNPs in theMBL gene which

result in low serum concentrations of MBL were associated with
increased risk of HIV infection and poorer prognosis following
AIDS diagnosis (148).

Downstream from MBL binding, complement components
are deposited on HIV virions which increase viral uptake and
internalization into dendritic cells (DCs). Both complement-
opsonised and complement-free HIV binding was reduced
through the blockage of C-type lectins, integrins and
CD4. However, the use of individual blockers showed that
complement-opsonised HIV utilized β1- and β2-integrin for
binding and uptake, whereas complement-free HIV utilized β2-
and β7-integrin (149). A similar observation has been reported
for herpes simplex virus (HSV)-2 during the infection of human
DCs. Complement deposition and interactions with complement
receptor 3 (CR3) enhanced HSV-2 infection of immature DCs
and increased the production of new virus particles, whereas
complement with the use of neutralizing antibodies significantly
reduced infection (150). This highlights another important point
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with regards to in vitro investigations of complement and viral
infection. Plasma is often heat-inactivated for use in cell culture
to overcome concerns of complement-mediated cytotoxicity.
Consequently, investigations of virus-host cell interactions may
overlook important complement-mediated interactions that
would normally be present during infection.

The varied effects of MBL opsonisation during viral infection
have also been described for severe acute respiratory syndrome
coronavirus (SARS-CoV). Multiple studies have shown the
potential for MBL to bind immobilized SARS-CoV or the
SARS-CoV spike protein (151, 152). This interaction was
shown to be dependent on a single N-linked glycosylation
site of the spike protein and this binding could prevent spike
protein interactions with DC-SIGN but not the angiotensin-
converting enzyme 2 (ACE2) receptor or cathepsin-L (152).
Ip et al. showed that MBL binding to immobilized SARS-
CoV could also inhibit SARS infection into fetal rhesus
kidney cells and enhance deposition of C4 (151). However,
Leth-Larsen et al. did not observe any interactions between
MBL and SARS-CoV spike protein in their study (153).
Similar to HIV, several studies have found a significant
difference of MBL SNPs associated with lower or deficient
MBL serum levels in SARS patients compared to healthy
Chinese population control groups (151, 154), and a reduction
of MBL protein concentrations in SARS patient sera (151).
However, one other study observed no significant correlation
of MBL-deficient SNPs in SARS patients compared to healthy
Chinese population control groups (155). The role of MBL
in SARS-CoV infections appears conflicted but could be
significant. As later discussed, the downstream effects of
complement activation do significantly influence symptoms of
coronavirus infections.

Other complement proteins and downstream products of its
activation can opsonise virus particles. For DENV and West
Nile virus (WNV), neutralization of the virions occurs in a
C3 and C4 dependent manner following MBL binding. For
WNV, neutralization was achieved independent of downstream
C5 and therefore did not require formation of the MAC (156).
For Simian virus 5 (SV5), complement-mediated neutralization
is predominantly achieved through C3 deposition and the
formation of virion aggregates, rather than virion lysis. For the
closely related Mumps virus (MuV) however, the opposite effect
is observed with few aggregates formed but greater susceptibility
to complement lysis (157). Similarly, complement activation in
the presence of influenza A virus causes virion aggregation and
opsonisation of the hemagglutinin receptor. Although to achieve
neutralization, IgM antibodies and activation of the classical
pathway is required (139).

For Chandipura virus (CHPV), the alternative pathway and
factors C3, C5, and factor B were required for complement-
mediated virus neutralization in absence of C8 or antibodies
(158). A different study utilized antibodies to observe classical
pathway activation and reported that C1q, C3, and C4
were essential components for neutralization, but this was
independent of factor B and C8 (159). The discrepancy of the
importance of Factor B for CHPV neutralization could depend
on the presence of antibodies and the classical pathway.

Asmentioned previously, complement opsonisation of virions
can enhance infection through interactions with complement
receptors on host phagocytic cells (149, 160). However, some
complement proteins can have a protective intracellular function
as well, which is independent of cell-type (6). Enveloped viruses
may naturally evade the intracellular functions of complement,
as the protein deposition would occur on the lipid membrane.
So, for viral entry via membrane fusion or endocytosis, it is
expected that the complement-opsonised viral envelope would
be left on the host cell surface membrane or endosome plasma
membrane. This has been demonstrated in vitro using respiratory
syncytial virus (RSV), an enveloped virus which enters the cell via
membrane fusion, where complement intracellular signaling was
absent following infection (6).

The intracellular immune function of complement has a
better-defined role for non-enveloped viruses, although the
area of intracellular complement immunity is still relatively
new (161). In a C1-dependent manner and independent of
downstream complement activity, C4 deposition on the capsid
of non-enveloped human adenovirus 5 has been shown to
contain the virus within the endosome, by blocking the fiber
shedding and protein VI exposure mechanisms required for
capsid disassembly (162). The use of an adenovirus type 5 vector
(AdV) also showed that intracellular sensing of complement
could inhibit infection and degrade the virus particle (6). A
comparison of complement-coated AdV to AdV only, showed
that intracellular C3 signaling induced the activation of pro-
inflammatory cytokines (IFN-β, IL-6, IL-1β) through NF-κB,
interferon-regulatory factor (IRF), and activating protein-1 (AP-
1) transcription factor activation. Intracellular C3 sensing was
shown to be mitochondrial antiviral-signaling protein (MAVS)-
dependent, and independent of PAMPs and pattern recognition
receptors. Sensing of complement-coated AdV also targeted
the virion for degradation by valosin-containing protein (VCP)
and the proteasome. C3-mediated signaling could induce an
antiviral state in previously uninfected cells, as the supernatant
from complement-coated AdV infected cells was able to
protect uninfected HeLa cells from infection with interferon-
sensitive Sindbis virus. Lastly, some viruses have evolved evasion
mechanisms to overcome the complement-mediated intracellular
immune response. Rhinoviruses and polioviruses were shown
to inhibit the intracellular C3 complement signaling mechanism
through the expression of a cytosolic 3C protease to degrade
C3 (6).

Discussed inmore detail below, some viruses encode proteases
which enhance degradation of the C3 convertase to prevent
further complement deposition or MAC formation. This can
protect the virion from complement opsonisation and viral lysis.

Viral/Infected Cell Lysis and Evasion
Following complement deposition and opsonisation, the
complement cascade can progress to assembly of the MAC. MAC
formation can perturb and lyse lipid membranes of enveloped
viruses or destroy infected cells expressing viral antigens to
reduce viral load (4, 5, 140, 141). Again, viral proteins can be
expressed to dysregulate and evade this response.
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Zika virus (ZIKV) can lead to classical pathway activation
via formation of antigen-antibody complexes or through direct
binding of C1q. For ZIKV derived from insect cell lines, this
interaction resulted in MAC formation and a reduction of viral
titres in vitro. However, ZIKV derived from human cell lines
were more resistant to complement mediated neutralization (4).
ZIKV and other Flaviviruses (including yellow fever virus (YFV),
DENV, andWNV) express and secrete the non-structural protein
1 (NS-1) to regulate complement activity. The NS1 protein has
a wide variety of functions in complement regulation which
include: antagonism of C4 (163), recruitment of host C4 binding
protein (164), recruitment of host factor H (165), recruitment
of host vitronectin and inhibition of C9 polymerisation (166).
However, the DENV NS1 protein is also capable of complement
activation and the resulting soluble C5b-9 complexes have been
found to correlate with disease severity in patients with dengue
shock syndrome (167). This discrepancy was addressed with the
possibility that relative IgM, C4 and soluble NS1 concentrations
in plasma, at different sites of infection, could influence the extent
of inhibition and therefore have varied effects on complement
activity (163).

Similarly, Nipah virus (NiV) exhibits factor I-like activity,
either through acquisition of factor I host protein or through
inherent protease activity. Unlike soluble factor-I, NiV exhibits
no capacity for C4b cleavage and showed no significant cleavage
of C3b with a CD46 cofactor, despite its integration in the
NiV lipid membrane. However, NiV is capable of C3b cleavage
into iC3b with factor I cofactors (factor H and soluble CR1)
to protect against virus neutralization (168). Chikungunya virus
(CHIKV) also exhibits factor I-like activity, likely of viral
origin and dependent on host factor H concentrations, to
cleave C3b into inactive iC3b and resist complement-mediated
neutralization (169). MuV, SV5, and HIV-1 can all recruit
host cell CD46 into the viral lipid membranes during the
budding process to protect from complement deposition and
neutralization (170, 171). HIV-1 also incorporates glycosyl
phosphatidylinositol-anchored CD55 and CD59 for further
protection from complement mediated neutralization (170).
Conversely, complement deposition has been shown to enhance
HIV-1 infectivity into peripheral blood mononuclear cells
through interactions with complement receptors (160, 172). This
highlights the complexity of complement and viral interactions
with dualistic mechanisms, which has previously been reviewed
in the context of HIV-1 infection (173).

Infected host cells which present viral antigens on the
cell surface membrane can activate the classical pathway, as
the antigens bind IgM/IgG to induce complement dependent
cytotoxicity (CDC). The infected cell is then lysed via theMAC in
an attempt to reduce viral load. For Influenza A virus infection,
complement-dependent lysis (CDL) monoclonal antibodies
can cross-react with H1 and H2 hemagglutinin subtypes for
broader protection than neutralizing monoclonal antibodies
(141). Similarly, broadly neutralizing anti-HIV-1 antibodies can
bind the viral envelope protein expressed on infected primary
lymphocytes to initiate complement deposition. The deposition
does not result in a rapid lytic effect but neutralizes viral spread
to further cells (174). For HSV-1 and HSV-2, the glycoprotein

C (gC)-1 is expressed to protect virions and infected cells from
complement mediated neutralization. The gC-1 protein binds
C3, C3b, and C3c to prevent subsequent binding of C5 or
properdin. Modification of gC-1 on HSV infected cells can
therefore increase their susceptibility to antibody neutralization
and CDC (5, 175).

Promotion of Inflammation/Chemotaxis
Some of the cleavage products from complement activation can
function as anaphylatoxins and have broader immune regulatory
functions. Primarily, cleavage products C3a and C5a can be
generated via all three pathways and act as potent immune
regulators, whilst C4a is generated via the classical and lectin
pathways only (7). The role of C4a as an anaphylatoxin is
disputed as it currently has no known anaphylatoxin receptor
associated with its activity (176). However, it does function as
an effector protein that is derived from complement activation,
which enhances endothelial cell permeability and increases
stress fiber formation via PAR1 and PAR2 (26). The roles
of C3a and C5a are better described as anaphylatoxins, with
the latter demonstrating higher stability and broader biological
activity. C5a recruits neutrophils to the site of inflammation
and both C3a and C5a can recruit: eosinophils, fibroblasts,
macrophages, mast cells, and monocytes (70–72, 177–179).
These two anaphylatoxins demonstrate a large functional
overlap but each have their own discrete functions. To varying
degrees, both are capable of stimulating the production of
pro-inflammatory mediators from monocytes and macrophages
via inflammasome-caspase-1 activation (180, 181). Both can
induce the degranulation of mast cells (182–185), basophils
(186–188), and eosinophils (189). Both induce respiratory
bursts in eosinophils (190) and neutrophils, although only C5a
shows chemotactic activity for neutrophils whereas C3a may
actually prevent neutrophil mobilization from the bone marrow
(191). Further, only C5a can stimulate respiratory bursts in
macrophages (192).

The activity of C3a and C5a is mediated via binding to two
main G-protein coupled receptors; C3aR or C5aR, respectively
(193). A secondary, non-G-protein coupled receptor (C5L2) has
been shown to bind C5a and potentially regulate its biological
functions in vitro, although its primary functions are not yet
clear (105). These receptors are widespread across different
cell types including both myeloid cells and non-myeloid cells
(e.g., astrocytes, microglia, hepatocytes, endothelial and epithelial
cells) to produce various biological functions dependent on the
cell type (194, 195). C3a and C5a activity is further regulated
by the enzyme carboxypeptidase-N. Carboxypeptidase-N cleaves
the carboxy terminal arginine amino acid of these anaphylatoxins
to generate products with greatly reduced (C5a-desArg) or
absent (C3a-desArg) anaphylatoxin activities (196). The cleavage
product C5a-desArg retains some chemotactic activity to recruit
distant immune cells (188, 197) whilst C3a-desArg can function
as a hormone for lipid metabolism (198). Beyond their roles
in chemotaxis, C3a and C5a have been associated with: the
induction of smooth muscle contraction (199), regulation of
vasodilation (200), an increase in vascular permeability (201),
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and the production of various cytokines including IL-1β, IL-
8/CXCL-8, CCL5, IL-6, TNFα (180, 193).

During viral infection, excessive complement activation
leading to a strong pro-inflammatory response is often associated
with more severe disease symptoms. The negative impact
of complement activation has been associated with more
severe symptoms during SARS-CoV and MERS-CoV infections.
Infection of C3 deficient mice with SARS-CoV revealed that the
loss of complement activity resulted in milder disease outcomes
(202). Compared to the wild-type, the C3 deficient mice showed:
no significant weight loss, improved respiratory function,
reduced lung pathology, and lower levels of inflammatory
cytokines and chemokines (202). Proteomic analysis has shown
that a product of complement activation, C3c α chain, was
significantly higher in SARS-patient sera compared to non-
SARS patient sera (203). Similarly, increased concentrations of
C5a and C5b-9 were observed in sera lung tissues of hDPP4-
transgenic mice challenged with MERS-CoV. The subsequent
use of a C5aR antibody to prevent C5a functional activity
resulted in reduced tissue damage and a lower viral load (204).
Cytotoxic effects of complement may also occur post-SARS-
CoV infection. Autoantibodies elicited 1-month after infection
against epithelial and endothelial cells can mediate complement-
dependent cytotoxicity and enhance lysis against A549 cells and
human placenta endothelial cells (205).

In patients with severe DENV infection and dengue shock
syndrome, overactivity of the alternative pathway has been
reported with increased levels of NS1, C5a, and sC5b-9 in
pleural fluids, which likely contribute to the symptoms of
increased vascular permeability (167, 206). In DENV infected
cells, indicators of the alternative complement pathway are
upregulated, with a relatively higher concentration of Factor B to
factor H proteins and increased cell surface C3b deposition (206).

In mice infected with Ross River virus (RRV), complement
activation products have been identified in serum and inflamed
tissues. Similar observations have been made in the synovial
fluid of RVV-infected patients. In C3 knockout mice, the signs
of severe disease and tissue damage from RVV infection were
diminished compared to wild-type, which suggests complement
promotes RRV-induced inflammation (207). RRV infected cells
express the viral E2 protein which is glycosylated with N-linked
glycans. E2 N-linked glycans are antigens for MBL and can
activate complement via the lectin pathway, which results in
greater inflammation and tissue damage during RVV infection
(208, 209).

Complement Enhancement of Adaptive
Immunity
Complement activation also plays an important role in linking
the innate and adaptive immune responses. This interaction
can enhance the production of antigen-specific antibody titres
and shape the T-cell response to target viral pathogens more
efficiently. The importance of complement in the regulation of
T-cell immunity has previously been reviewed (50, 210).

Cognate and co-stimulatory interactions (CD80-, and CD86-
CD28, and CD40-CD40 ligand) between antigen presenting

cells (APCs) and T-cells results in the local production of
C3, factor B, factor D, and C5. Receptors C3aR and C5aR
are also upregulated on the T-cell surface whilst production
of decay accelerating factor (DAF) is down-regulated. The
local production of complement components from immune
cells enables signaling via C3aR and C5aR in an autocrine
and paracrine manner. Complement C3 can also be processed
intracellularly, or internalized as C3 (H2O) from the alternative
pathway, to increase pro-inflammatory cytokine expression from
T-cells and recycled back to the T-cell surface (55, 57). A major
component of C3 cleavage on the T-cell surface is iC3b. T-
cell membrane bound iC3b binds to CR3 (and possibly CR4)
on monocyte derived DCs to enhance T-cell proliferation (9).
Absence of C3aR and C5aR leads to: reduced complement
protein and receptor regulation, lack of co-stimulatory molecule
expression, impaired cytokine production (IL-1, IL-23, and IL-
12), an induction of an iTreg cell response, and suppression of
T-cell proliferation (211–213).

Activation of both C3aR and C5aR on DCs by their respective
anaphylatoxins (C3a and C5a) can mediate the production of
IL-6, IL-23, the IL-12 receptor, and TGF-β1 to promote T-
cell differentiation into antiviral Th1 and Th17 subsets (143).
Induction of the Th1 response also depends on C3aR and
CD46 activation on T-cells via their T-cell derived ligands
(56). In mice infected with Influenza A virus, inhibition of
the C5aR lead to a reduction in influenza-specific cytotoxic
CD8+ T-cells (214) and C3 deficiency lead to increased viral
titres and delayed viral clearance (215). C3 is also required
for the production of antigen-specific CD8+ T-cell responses
during lymphocytic choriomeningitis virus infection in mice
(216). During HCV infection, the HCV core protein can interact
with gC1qR on host immune cells and suppress the T-cell
response. This interaction inhibits T-cell proliferation in a dose-
dependent manner to downregulate CD69 activation and reduce
the production of IFN-γ and IL-2 from T-cells (217–219). HCV
core protein interaction with gC1qR on monocyte-derived DCs
inhibits IL-12 production and promotes Th2 cytokine production
to limit differentiation into Th1 cells (218). HCV core protein
interaction with gC1qR on B-cells has a differential response to
the one observed on T-cells and DCs, as it increases cell surface
costimulatory and chemokine receptor expression and enhances
B-cell proliferation (219). Furthermore, the HCV core protein
exhibits intracellular functions, as it can suppress the T-cell
factor-4 transcription factor required for C9 promoter activity
regulation. This reduces C9 mRNA and protein levels which are
required for complete MAC assembly (220).

As discussed previously, complement activation can result in
C3 deposition on the surface of virions. C3 and its cleavage
products can interact with the B-cell receptor and B-cell co-
receptor complex (CR2/CD21 ligated with CD19 and CD81)
to lower the B-cell activation threshold by several orders
of magnitude. This can dramatically increase antibody titres,
modulate the proliferation of mature B cells, and protect the
B-cells from CD95-mediated elimination (8, 144). Immune
complexes coated in C3 and C3 cleavage products covalently
interact with complement receptors on follicular DCs (FDCs).
The C3-coated immune complexes on FDCs are then presented
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to B-cells in the germinal center for optimal B-cell responses,
including: antibody production, somatic hypermutation, class
switching, and affinity maturation (87, 221). FDCs can then
retain the C3-coated complexes within the lymphoid for
extended periods of time to generate memory B-cells and
promote survival (222).

Alternatively, some aspects of the complement system can
suppress certain responses of adaptive immunity: stimulation of
CR3 on DCs can suppress the release of inflammatory cytokines
(98) and C1q-differentiated DCs demonstrate an increased
phagocytic capacity but reduced expression of CD80, CD83, and
CD86 required for T cell activation (223).

SIGNIFICANCE FOR VACCINES AND
THERAPEUTICS

It is apparent that the complement system has important
implications for virus neutralization and development of the
adaptive immune response. As our knowledge of virus and
complement interactions improves, this can inform novel
approaches for intervention and the development of therapeutics
and vaccines. One such example is the use of rupintrivir
against rhinoviral infections. Rhinoviruses encode a cytosolic 3C
protease which cleaves intracellular C3 to avoid the intracellular
mechanisms of complement, mentioned previously. Rupintrivir
inhibits the viral cytosolic 3C protease to increase susceptibility of
the virus to intracellular complement immunity (6). Similarly, the
use of Fab fragments could prevent the C4 inhibition of human
adenovirus 5 vector for its use in adenoviral gene therapy to
promote efficient transgene delivery (162).

Due to the multifaceted and complex immune functions of the
complement system, direct manipulation of complement would
need to be carefully considered. Inhibition of the complement
system could increase susceptibility to other diseases, whilst over-
stimulation could result in autoimmunity and damage to host
cells. A method of complement stimulation through inhibition of
the CD59 regulator has been proposed for the treatment of latent
HIV-1 infection in cells. The use of provirus stimulants and a
CD59 inhibitor showed a dose-response effect of cell sensitization
to antibody-dependent cell-mediated lysis and reduced viral
load. Aside from the target cells, no significant non-specific
cytolytic effects were observed in vitro. CD59 protects host
cells from complement activity, is ubiquitously expressed, and
so its inhibition has the potential to damage host cells (224,
225). Deletion of CD59 in mice did not have a lethal outcome,
however absence of the complement regulatory protein did lead
to intravascular haemolysis and thrombosis (226). Treatment in
the context of HIV-1 infection would be short-term however
(224) and could be an exception for an otherwise incurable
disease. Similar approaches have been considered for other life-
threatening diseases such as cancerous conditions (227, 228).

Methods of complement inhibition have also demonstrated
therapeutic benefit.Mentioned previously, excessive complement
activation is associated with more severe outcomes of MERS-
CoV and SARS-CoV infections. Use of a C5aR antibody to
block the pro-inflammatory effects of C5a inMERS-CoV infected

hDPP4-transgenic mice resulted in: lower concentrations of pro-
inflammatory cytokines, reduced viral replication in lung tissues,
reduced lung and spleen tissue damage, and a reduction of viral
antigen and microglia activation in the brain (204). Excessive
complement activation and similar lung pathology during SARS-
CoV infection has also been observed in H5N1 influenza cases,
where the use of C3aR and C5aR antagonists reduced signs of
acute lung injury and viral load in H5N1-infected mice (229).

A novel coronavirus, SARS-CoV-2, has recently emerged
and is the causative agent of COVID-19—an acute self-limiting
disease which has the potential to progress to severe disease
and death. Symptoms of severe disease involve major alveolar
damage, wide-spread lung inflammation, and progressive
respiratory failure (230, 231). The pathological features of lung,
liver, and heart tissue in a severe case of COVID-19 greatly
resembled those seen in SARS-CoV and MERS-CoV infections
which are complement-mediated (202–205, 231). MBL has been
shown to activate complement via binding to SARS-CoV spike
protein in some studies and this could translate to the SARS-
CoV-2 spike protein, which contains N-linked glycosylation sites
that are targets for MBL (151, 232). Thus, the widespread lung
inflammation observed in severe cases of COVID-19 could be
exacerbated by excessive complement activation. Furthermore,
viral infections with similar lung pathology to COVID-19 have
demonstrated therapeutic benefit with the administration of
complement inhibitors targeting C3a/C3aR or C5a/C5aR. This
has been shown for H5N1 (229), H7N9 (233), and MERS-CoV
(204) infections. So, it seems plausible that the lung inflammation
in severe cases of COVID-19 is exacerbated by excessive
complement activation and this pathologic inflammation could
be attenuated through use of complement inhibitors.

Clinical trials are currently being conducted with the use
of a C5a inhibitor, the monoclonal antibody IFX-1, which has
proven to be well tolerated in 300 clinical trial participants and
aims to reduce inflammation whilst preserving MAC formation
(234). As SARS-CoV-2 is an enveloped virus (235), it is possible
that MAC formation could have some beneficial antiviral effects.
Therefore, a C5a inhibitor such as IFX-1 (InflaRX) may be
favorable mechanistically over a C5 inhibitor such as eculizumab
(Soliris), which is also considered for use in clinical trials
(NCT04288713) (236). The IFX-1 monoclonal antibody targets
a specific conformational epitope of the C5a molecule to block its
anaphylatoxin activity, whilst C5b and downstream complement
activity are preserved (237). Eculizumab is a monoclonal
antibody which targets the C5 molecule to prevent cleavage into
C5a and C5b, and therefore inhibits all downstream complement
activity (238). The distinction between the two antibodies is the
preservation of MAC activity which could be relevant against the
enveloped SARS-CoV-2, although the effects of complement lysis
and whether it occurs on SARS-CoV-2 is not yet known.

Because the efficacy and safety of eculizumab is already well
characterized (239), it is logical that this would take precedence
over lesser-known options for urgent clinical trials. The use
of eculizumab has already proven beneficial for treatment of
severe cases of COVID-19, which shows that complement is
partly responsible for the symptoms in severe cases (240). It
would be interesting to compare the effects of preserving the
MAC during infection with the enveloped SARS-CoV-2, as it
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may offer an antiviral, as well as an anti-inflammatory, effect.
But it is also possible that Coronaviruses have an intrinsic
evasion mechanism, perhaps similar to the ones described in
this review, to avoid the lytic activity of the MAC. Another
important consideration could be the stage of infection for
implementing complement inhibitors: maintaining complement
activity may have a beneficial impact early on in infection for
virus neutralization and the development of adaptive immunity,
and intervention may only be required to treat excessive
inflammation in severe cases.

The complement system has several important considerations
for vaccine development, one example being its involvement in
antibody dependent enhancement (ADE). ADE is commonly
observed when non-neutralizing antibodies are present following
initial priming of the immune system. Non-neutralizing
antibodies can still bind the viral target with the potential
to cross-link with Fc receptors, or activate complement and
interact with complement receptors, to enhance viral infection
of host cells (241). ADE is more commonly observed to
be Fc receptor-mediated, however complement-mediated ADE
has been reported for HIV-1 (242), MERS-CoV (243), and
EBOV (244).

But complement activation can have a positive effect against
viral infections in the presence of some non-neutralizing
antibodies. Use of the non-neutralizing influenza virus M2
extracellular vaccine in mice required functional C3 to confer
protection and induce effective humoral and cell-mediated
immune responses (245). A similar effect has been reported
for monoclonal antibodies against human cytomegalovirus
(HCMV). Following the use of gB/MF59 HCMV vaccination
in humans, the immune sera had enhanced neutralization
potency toward HCMV in the presence of complement. Certain
HCMV monoclonal antibodies rely on complement for viral
neutralization, which appears distinct from CDC or virolysis,
and is likely the result of blocking virus-host interactions (246).
Complement activity has also been implicated for optimal
protection with non-neutralizing antibody mAB-13G8 against
Crimean-Congo haemorrhagic fever virus infection in adult
mice (247).

In Flavivirus infections, the mechanism of ADE is
predominantly shown to be Fc mediated (248). Complement
has been shown to augment antibody-mediated neutralization
of WNV in vitro (249) and the addition of C1q has been
shown to lower the antibody concentrations required for WNV
neutralization in vitro, which correlated with protective effects
observed in vivo (250). C1q was also shown to mediate effects
of ADE from Flavivirus infections in a subclass specific manner,
whilst MBL, factor B, or C5 depletion had no significant effect
(251). Although IgG subclasses are known to bind C1q with
varying avidities, the mechanism to explain this effect on ADE
has not been identified. This could highlight the importance
of selecting the right antibody subclass when considering
monoclonal antibody therapies.

In general, vaccines which effectively engage the complement
system may gave rise to a more potent, virolytic serological
response. For HIV vaccination in macaques, the presence
of complement augmented virus neutralization and
complement-mediated neutralizing antibody titres correlated

with vaccine-mediated protection (252). Other approaches have
modified vaccines to utilize aspects of the complement system
for increased antigen immunogenicity, such as complement
component C3d. C3d is an end-stage cleavage product from
C3 activation which interacts with CR2 on B-cells, T-cells,
and FDCs. When bound to an antigen, C3d can dramatically
reduce the B-cell activation threshold for a stronger, more
antigen-specific antibody response (8, 144, 253). CR2 on FDCs
interacts with iC3b, C3d, and C3dg to enhance antibody titres
and promote long-term B-cell memory development (254).
C3d also bears T-cell epitopes so even with a lack of CR2
expression, the peptide can be internalized and presented on
HLA II molecules to autoreactive T-helper cells and enhance
antibody responses (255, 256). C3d does not interact with other
components of the complement system and so the associated
risks are reduced, however a large enough reduction in the B-cell
activation threshold could potentially lead to antibody-mediated
autoimmune responses.

C3d has been used as a vaccine adjuvant against several
different viruses. DNA vaccines encoding the envelope
glycoprotein of porcine reproductive and respiratory syndrome
virus were more effective at increasing antigen specific
neutralizing antibody titres, IFN-γ levels, and IL-4 levels
when engineered with gene copies encoding the CR2 binding
site of C3d in the same plasmid construct (257). Similarly, use
of hepatitis E virus peptide (HEV-p179) for DNA vaccination
in mice had enhanced anti-HEV-p179 antibody titres and
avidity when fused with three tandem C3d copies as genetic
adjuvants (258). C3d has also been used as genetic adjuvant
for DNA vaccines against Newcastle disease virus and HIV-
1 for increased efficacy and higher, longer-lasting antibody
titres (259, 260). Fusion of C3d to target antigens is another
approach for the development of safer, more immunogenic DNA
vaccines. Coupling of C3d to the secretory form of Influenza
virus haemagglutinin in mice provided an effective and safer
mechanism for mucosal vaccination compared to the use of
other adjuvants i.e., cholera toxin B subunits and Escherichia
coli labile toxin (261). So, the use of C3d as an adjuvant can
help to overcome the low immunogenicity associated with DNA
vaccines, whilst maintaining their safety.

Many of the viruses discussed can activate complement,
resulting in beneficial and/or detrimental effects on its survival.
In the examples where viral-mediated complement activation
has been more extensively studied, a viral mechanism is
often identified which protects the virus from certain antiviral
functions, such as the acquisition of CD46, CD55, CD59 to
protect from MAC formation or the expression of a regulatory
protein to inhibit the complement cascade at various points.

For the viruses which have been shown to activate
complement but do not have a clear evasion/regulatory
mechanism, such as MERS-CoV (204), SARS-CoV (202, 205),
EBOV (3), and possibly SARS-CoV-2, it is plausible that
the mechanism simply has not yet been identified. The
viruses which activate complement would consequently trigger
the downstream antiviral effects, both intracellularly and
extracellularly. Therefore, it seems plausible that these viruses
would utilize a mechanism, similar to the ones described in this
review, to evade this antiviral activity and promote their survival.
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If such a regulatory protein or process is identified, then these
may present as possible antiviral targets, similar to the targeting
of the rhinovirus 3C protease with rupintrivir (6).

CONCLUSION

The complex interplay between viruses and the complement
system can have profound implications for protection via innate
immunity and the development of effective adaptive immunity.
The effects of the complement system can vary between viral
infections, and even during the different stages of the same
viral infection, so a clear understanding of these mechanisms
is important to improve efficiency of vaccine/therapeutic
development whilst mitigating risk. Such developments can
also be applied for non-viral pathogens (including bacteria,
fungi, protozoa) and to broader, more systemic functions of the
complement system including: interferon signaling (262, 263),
metabolism (264), brain development (265), and the coagulation
system (266).

Components of the complement system form an ancient
aspect of innate immunity in vertebrates (267) and even some
invertebrates (268, 269). Therefore, many animals which act
as viral hosts or reservoirs for zoonoses also have an active
complement system for targeting pathogens i.e., bats (270), cows
(271), deer (272), pigs (273), rabbits (274), and rats (274), which
the virus may have to overcome to avoid possible antiviral

activity. Further viral mechanisms of complement regulation
may therefore exist which have not yet been identified and the
plasticity of viral genomes could result in the emergence of novel
protein regulatory functions. Identifying these novel interactions
could be important for the development and augmentation of
vaccines and therapeutics or even the possibility of utilizing viral-
derived regulatory proteins as therapeutic complement inhibitors
in other diseases (137).

The benefits from understanding complement mechanisms in
viral diseases may have relevance for the current SARS-CoV-
2 outbreak. Previous research has demonstrated the impact of
the complement system in coronavirus infections and other
diseases, and this knowledge has led to the consideration of
several complement inhibitors as therapeutics for severe cases
of COVID-19.
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